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Computational Complexity of Generalized Forty Thieves

Chuzo IWAMOTO†a), Member and Yuta MATSUI†, Nonmember

SUMMARY Forty Thieves is a solitaire game with two 52-card decks.
The object is to move all cards from ten tableau piles of four cards to eight
foundations. Each foundation is built up by suit from ace to king of the
same suit, and each tableau pile is built down by suit. You may move the
top card from any tableau pile to a tableau or foundation pile, and from the
stock to a foundation pile. We prove that the generalized version of Forty
Thieves is NP-complete.
key words: computational complexity, NP-completeness, puzzle

1. Introduction

Forty Thieves is a solitaire game with two 52-card decks.
The object is to move all cards from ten tableau piles of four
cards to eight foundations (see Fig. 1). Each foundation is
built up by suit from ace to king of the same suit, and each
tableau pile is built down by suit. You may move the top
card from any tableau pile to a tableau or foundation pile,
and from the stock to a foundation pile. (You can play Forty
Thieves online at many sites on the Internet.)

A card is exposed if no cards cover it. Exposed cards
in tableau piles may be moved to a foundation (resp. tableau
pile) if they are one rank higher (resp. lower) than the top
card of the foundation (resp. tableau pile). (Here, empty
foundations are regarded as cards of rank zero.) If no cards
may be moved, then the top card of the stock may be moved
to a foundation or to the waste. The cards in the waste po-
sition cannot be reused. Once no more cards can be moved,
the game ends. The aim of the game is to move all cards in
the tableau piles to eight foundations.

Figure 1 is an initial layout of Forty Thieves, where
cards of the first and second decks are denoted as ♠A, ♠2,
♠3, · · · and ♠A′, ♠2′, ♠3′, · · ·, respectively. (1) In the figure,
♠A is immediately moved to a foundation. Then, one of the
two exposed cards ♠2 and ♠2′ can be moved to the founda-
tion, since they are one rank higher than ♠A. (2) One of the
two cards ♦4 and ♦4′ can be moved to the fifth tableau pile,
since they are one rank lower than the top card ♦5. (3) If
♠2 was moved to the foundation at step (1) and if ♦4 was
moved to the fifth tableau pile at step (2), then ♥2′ and ♥A
are exposed. Consequently, ♥A, ♥2′, and ♥3 are moved to a
foundation in that order. At this point, there are no cards in
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Fig. 1 Initial layout of Forty Thieves.

tableau piles which can be moved to foundations. (4) Fortu-
nately, if the top card ♥6 of the stock is discarded, and ♦A′
is moved to a foundation, then (5) four cards ♦2′, ♦3, ♦4,
and ♦5 can be moved to the foundation.

In this paper, we consider the generalized version of
Forty Thieves, which uses two generalized 4k-card decks.
A 4k-card deck includes k ranks of each of the four suits,
spades (♠), hearts (♥), diamonds (♦), and clubs (♣). The
instance of the Generalized Forty Thieves is the initial layout
of 4 × l cards and a stock of s cards, where l is an integer
and s = 8k − 4l. The Generalized Forty Thieves Problem is
to decide whether the player can move all of the 4 × l cards
to the foundations. We will show that the problem is NP-
complete, even if the number of stock cards is zero. It is not
difficult to show that the problem belongs to NP, since each
card can be moved at most twice.

There has been a huge amount of literature on the com-
putational complexities of games and puzzles. In 2009, a
survey of games, puzzles, and their complexities was re-
ported by Hearn and Demaine [4]. Recently, Block Sum [3],
Pyramid [7], String Puzzle [9], Tantrix Match [10], Yosen-
abe [6], and Zen Puzzle Garden [5] were shown to be NP-
complete, and Chat Noir [8] is PSPACE-complete.

2. Reduction from 3SAT to Generalized Forty Thieves

The definition of 3SAT is mostly from [2]. Let U =

{x1, x2, . . . , xn} be a set of Boolean variables. Boolean vari-
ables take on values 0 (false) and 1 (true). If x is a variable
in U, then x and x are literals over U. The value of x is
1 (true) if and only if x is 0 (false). A clause over U is a
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set of literals over U, such as {x1, x2, x3}. It represents the
disjunction of those literals and is satisfied by a truth as-
signment if and only if at least one of its members is true
under that assignment. An instance of 3SAT is a collection
C = {c1, c2, . . . , cm} of clauses over U such that |c j| = 2 or
|c j| = 3 for each c j. The 3SAT problem asks whether there
exists some truth assignment for U that simultaneously sat-
isfies all the clauses in C. (An example of C is given in the
caption of Fig. 3.) It is known that 3SAT is NP-complete
even if each variable occurs exactly once positively and ex-
actly twice negatively in C [1].

We present a polynomial-time transformation from an
arbitrary instance C of 3SAT to tableau piles of cards such
that C is satisfiable if and only if all cards can be moved to
the foundations. Let n and m be the numbers of variables and
clauses of C, respectively. Without loss of generality, we can
assume n and m are divisible by four and two, respectively.
We use two 4k-card decks, where k = 15m − 2n + 4.

Each variable xi ∈ U is transformed into six non-white
cards in Fig. 2. (See also Fig. 3 when n = m = 4. Those
cards for x1 are ♠1, ♠2, ♠2′, ♠9, ♠12, ♠15.) Figure 2 con-
sists of cards ♠1, ♠3, . . . , ♠2i − 1, . . . , ♠2n − 1 (labeled with
x1, x2, . . . , xi, . . . , xn); ♠2i, ♠2i′ (labeled with “xi = 1”,“xi =

0”); �2n+3 j1−2,�2n+3 j2−2,�2n+3 j3−2 (labeled with

Fig. 2 Variable gadget for xi.

Fig. 3 Variable gadget when n = m = 4 for U = {x1, x2, x3, x4} and C = {c1, c2, c3, c4}, where
c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}.

c j1 , c j2 , c j3 ) where � ∈ {♠,♥, ♦}; and three dummy cards.
This figure implies that xi appears in c j1 positively and in
c j2 and c j3 negatively. If this is the first (resp. second, third)
appearance of a card of rank 2n + 3 j − 2, the suit is ♠ (resp.
♥, ♦). (For example, ♠9, ♥9, and ♦9 labeled with c1 appears
in the green cards of Fig. 3, since c1 contains x1, x2, and x3.)

Suppose ♠2i−1 is placed on the top of a foundation (see
Fig. 2). If ♠2i is moved to the foundation, then card 2n +
3 j1 − 2 (labeled with c j1 ) will be exposed. This situation
implies the assignment xi = 1. On the other hand, if ♠2i′ is
moved to the foundation, then card 2n+ 3 j2 − 2 followed by
2n + 3 j3 − 2 (labeled with c j2 and c j3 ) will be exposed. This
implies xi = 0.

Figure 3 consists of 4×n/4 yellow cards, n sets of 4×2
cards for n variables containing yellow, green, and white
cards, and 4 × n grey cards. Grey cards are dummy, which
can be moved to foundations at the beginning of the game.

Let p be the number of size-two clauses. Suppose |c1| =
|c2| = · · · = |cm−p| = 3 and |cm−p+1| = · · · = |cm−1| = |cm| =
2. Then, the (4 × 2n)-card area of Fig. 3 contains no cards
denoted by ♦2n+3 j−2, where m− p+1 ≤ j ≤ m. In Fig. 7,
the area of 2 × 3(m − n)/2 green cards is filled with those
p ♦-cards. (Note that p = 3(m − n) because the number of
literals is 3n = 3(m − p) + 2p.)

Figure 4 is a clause gadget for c j. (a) If ♠2n + 3 j − 2
(labeled with c j) is moved to a foundation (see also ♠9 with
c1 when n = 4 in Fig. 3), then ♠2n+ 3 j− 1 and ♠2n+ 3 j can
be moved to the foundation (see also ♠10 and ♠11 in Fig. 6),
and red card ♣5 j − 4 is exposed (see ♣1 in Fig. 6).

(b) If ♥2n + 3 j − 2 or ♦2n + 3 j − 2 (labeled with c j) is
moved to the foundation (see also ♥9 or ♦9 in Fig. 3), then
{♥2n + 3 j − 1,♥2n + 3 j} or {♦2n + 3 j − 1, ♦2n + 3 j} can be
moved to the foundation ({♥10,♥11} or {♦10, ♦11} in Fig. 6),
respectively. In this case, blue card ♣5m + 2 j or ♣5m + 2 j′
is exposed (♣22 or ♣22′ in Fig. 6).

(a) If red card ♣5 j−4 of Fig. 5 is moved to a foundation
(see ♣1 in Fig. 6), then red cards ♣5 j−3,♣5 j−2,♣5 j−1,♣5 j
can be moved to the foundation (♣2,♣3,♣4,♣5 in Fig. 6).
This situation implies that clause c j is satisfied.

(b) If blue card ♣5m + 2 j or ♣5m + 2 j′ of Fig. 4 is
exposed, then blue card ♣5m + 2 j − 1 can be moved on it
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Fig. 4 Clause gadget for c j.

Fig. 5 Card ♣5 j is exposed if one of {♠2n + 3 j − 2,♥2n + 3 j − 2, ♦2n + 3 j − 2} in Fig. 4 is exposed.

Fig. 6 Clause gadget for C = {c1, c2, . . . , cm} when n = m = 4.

Fig. 7 Cards in the bottom two layers are released after the top two layers are removed.

(see Fig. 5), and red card ♣5 j − 4′ is exposed (♣1′ in Fig. 6).
Then, red cards ♣5 j − 4′,♣5 j − 3,♣5 j − 2,♣5 j − 1,♣5 j can
be moved to the foundation. This also implies c j is satisfied.
Red card ♣5 j is called the target card for clause c j.

Since k = 15m−2n+4 (= 56 when n = m = 4), our two
4k-card decks contain 120m − 16n + 32 cards in total. The

numbers of non-white cards in Figs. 3, 6, and 7 are 10n, 18m
and 16m − 4n + 8, respectively. The number of the unused
cards is (120m−16n+32)− (10n+18m+ (16m−4n+8)) =
86m − 22n + 24. In Figs. 3, 6, and 7, there are 3n + 6m +
(80m− 25n+ 24) white cards, which are filled up with those
86m − 22n + 24 unused cards. The 86m − 22n + 24 cards
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are arranged so that all the remaining cards can trivially be
moved to the foundations after the target card ♣5m (= ♣20
when m = 4) is removed.

3. NP-Completeness of Generalized Forty Thieves

In this section, we will show that the instance C of 3SAT is
satisfiable if and only if all cards in the tableau piles can be
moved to the foundations.

Assume that the instance C of 3SAT is satisfiable.
When ♠2i − 1 is placed on the top of a foundation for ev-
ery i ∈ {1, 2, . . . , n} (see ♠1, ♠3, ♠5, ♠7 in Fig. 3), either ♠2i
or ♠2i′ can be moved to the foundation.

Suppose xi appears in c j1 positively and in c j2 and c j3
negatively. If ♠2i is moved to the foundation, then a card
with label c j1 is exposed. If ♠2i′ is moved, then a card c j2
(followed by a card c j3 ) is exposed. We call such a pair
of cards c j2 and c j3 sequentially exposed cards. Since C is
satisfiable, we can choose ♠2i or ♠2i′ so that at least one of
the c j-cards of rank 2n + 3 j − 2 is exposed or sequentially
exposed, for every j ∈ {1, 2, . . . ,m}. (In Fig. 3, cards ♠2,
♠4′, ♠6, ♠8 are moved to the foundation, and ♠9, ♥12, ♠18,
♥15, ♦12 are exposed or sequentially exposed.)

Suppose ♠2n or ♠2n′ is placed on the top of the
foundation (see ♠8 or ♠8′ in Fig. 3), and grey cards
{♥1,♥2, . . . ,♥2n} and {♦1, ♦2, . . . , ♦2n} are piled up on
foundations. In the following explanation, we use the 3SAT-
instance C given in the caption of Fig. 3 for simplicity.

Since c1 is satisfied by x1 = 1, card ♠9 in Fig. 3 is
exposed and is moved to the foundation. Then, in Fig. 6,
cards ♠10, ♠11; ♣1, ♣2, ♣3, ♥9′, ♥10, ♥11; ♣4, ♣5, ♦9′, ♦10,
♦11 can be moved to foundations. (In this case, ♠9′ is not
removed in the procedure of this paragraph.)

Since c2 is satisfied by x2 = 0 and x4 = 1, cards ♥12
and ♦12 in Fig. 3 are exposed and are moved to the foun-
dations. Then, ♥13,♥14 and ♦13, ♦14 can be moved to the
foundations, and thus blue cards ♣24 and ♣24′ are exposed.
Now, ♣23 can be moved on ♣24 or ♣24′, and therefore ♣6′
is exposed and moved to the foundation. Next, cards ♠12′,
♠13, ♠14; ♣7, ♣8; ♣9, ♣10 can be moved to foundations.
(Cards ♥12′ and ♦12′ are not removed in this paragraph.)

By continuing this observation, one can see that all the
target cards ♣5,♣10, . . . ,♣5m can be moved to the founda-
tion under the assumption that all the clauses c1, c2, . . . , cm

are satisfied.
Once the target card ♣5m for cm is moved to the foun-

dation, then all of the remaining cards in Figs. 3, 6, and 7 are
moved to the foundations, since white cards were arranged
so that all the remaining cards can trivially be moved to the
foundations after the target card is removed. Hence, if the
instance C of 3SAT is satisfiable, then all cards in the tableau
piles can be moved to the foundations.

Assume the player can move all cards in the tableau
piles to the foundations. Consider the target card ♣20 for c4.
This card can be moved to a foundation only if ♣16 or ♣16′
is moved to the foundation. Consider a configuration when
exactly one of {♣16,♣16′} is moved to the foundation, and

all of {♣17,♣17′,♣18,♣18′, · · · ,♣k,♣k′} are in tableau piles.
Suppose ♣16 is moved to the foundation (and ♣16′ is

in a tableau pile). Card ♣16 can be moved to the foundation
only if ♠20 and ♠19 are already removed. Card ♠19 can be
removed only if ♠18 in Fig. 3 is moved to the foundation,
since (i) ♠19 and ♠20 belong to a single pile, (ii) ♠20′ is
under {♣39,♣40} in Fig. 7, and (iii) ♠18′ is under ♣16′.

Suppose ♣16′ is moved to the foundation (and ♣16
is in a tableau pile). Card ♣16′ is moved to the founda-
tion only if blue card ♣27 is moved on either ♣28 or ♣28′,
since none of the cards {♣17,♣17′,♣18,♣18′, · · · ,♣k,♣k′}
has been moved to foundations. From the same reason as
the previous paragraph, card ♣28 or ♣28′ is exposed only if
♥18 or ♦18 in Fig. 3 is moved to the foundation, respectively.

One of {♣16,♣16′} is moved to the foundation only if
♣15 (labeled with c3) is moved to the foundation, since ♣15′
is under {♣51,♣52} in Fig. 7. By continuing this observation
from cm to c1, one can see that cards ♣5m, . . . ,♣10,♣5 can
be moved to the foundation only if yellow cards removed
from the set {♠2, ♠2′, ♠4, ♠4′, . . . , ♠2n, ♠2n′} in Fig. 3 indi-
cate the truth assignment satisfying all clauses of C. (From
Fig. 3, one can see that (x1, x2, x3, x4) = (1, 0, 1, 1) satisfy all
the clauses.)

At the beginning of the game, exactly one of
{♠2i, ♠2i′} is moved to the foundation for every i ∈
{1, 2, . . . , n}, since {♠1′, ♠3′, . . . , ♠2n − 1′} are under {♣7m +
1,♣7m + 2, · · ·} (see {♣29,♣30,♣31,♣32} in Fig. 7). Four
cards ♠10′,♥1′, ♦1′,♣2′ under {♣33,♣34,♣35,♣36} in Fig. 7
interrupt four foundations during the procedures for variable
and clause gadgets of Figs. 3 and 6. Hence, if the player can
move all cards in the tableau piles to the foundations, then
C is satisfiable.
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