
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015
433

LETTER

A Load-Balanced Deterministic Runtime for Pipeline Parallelism

Chen CHEN†,††a), Kai LU†,††, Xiaoping WANG†,††, Nonmembers, Xu ZHOU†,††, Member,
and Zhendong WU†,††, Nonmember

SUMMARY Most existing deterministic multithreading systems are
costly on pipeline parallel programs due to load imbalance. In this
letter, we propose a Load-Balanced Deterministic Runtime (LBDR) for
pipeline parallelism. LBDR deterministically takes some tokens from non-
synchronization-intensive threads to synchronization-intensive threads.
Experimental results show that LBDR outperforms the state-of-the-art de-
sign by an average of 22.5%.
key words: deterministic runtime, pipeline parallelism, round-robin
scheduling, load balance

1. Introduction

Nondeterminism makes parallel programming a daunting
task. For the same input, a parallel program is unlikely to
repeat the same thread interleaving between any two execu-
tions. Different interleavings may not only lead to different
outputs, but also make the bug reproducing a challenging
task. Recognizing this fact, researchers have recently de-
veloped a range of deterministic multithreading (DMT) sys-
tems that enforce deterministic thread interleavings.

Pipeline parallelism is one of the most important par-
allel patterns. There are two pipeline parallel programs in
the PARSEC benchmark suite [1]. Pipeline parallelism can
be applied to many emerging applications, such as stream-
ing workloads, due to its ability to extract parallelism from
loops which are difficult to parallelize otherwise.

Unfortunately, state-of-the-art DMTs are much costly
on pipeline parallelism than on data partition parallelism.
One of the main reasons is, unlike data partition paral-
lelism, pipeline parallelism assigns unbalanced work among
threads. In pipeline parallelism, threads are split into stages
of a pipeline. Threads from different stages execute differ-
ent codes, which make DMTs hard to achieve load-balanced
scheduling among threads.

Currently, there are two ways to guarantee determin-
istic order of synchronization operations. One way is to
order synchronization operations according to the number
of instructions each thread has executed [2], [3]. Taking in-
struction count as logical clock is an effective way to guar-

Manuscript received August 22, 2014.
Manuscript publicized October 21, 2014.
†The authors are with National Laboratory for Parallel and Dis-

tributed Processing, National University of Defense Technology,
Changsha, PR China.
††The authors are with the School of Computer, National Uni-

versity of Defense Technology, Changsha, PR China.
a) E-mail: chenchen2011@nudt.edu.cn

DOI: 10.1587/transinf.2014EDL8171

antee load balance. However, as pointed out by [4], such
approaches are unstable, as instruction count is sensitive to
minor input or code changes.

Another way is round-robin scheduling [4]–[6].
Round-robin scheduling is a simple and stable way to guar-
antee determinism. However, round-robin scheduling may
serialize computations. To compensate for this weakness,
soft barriers [4] are added to align time-consuming compu-
tations, preventing them from serialization.

The combination of round-robin scheduling and soft
barrier is effective on data partition parallelism, in which
worker threads execute the same computation on different
data partitions. However, when it comes to pipeline paral-
lelism, soft barrier performs poorly. It is difficult to stati-
cally align threads from different stages.

In this paper, we present a Load-Balanced Determin-
istic Runtime (LBDR) for pipeline parallelism. Like the
method in [4], LBDR orders synchronization operations in
a round-robin manner by default. To address the load im-
balance caused by default scheduler, we introduce two tech-
niques. The first technique forces a thread to give up its
tokens when entering time-consuming synchronization-free
sections. The second technique eliminates token operations
(token acquisitions and releases) when a thread is about to
pass token to itself.

2. Overview

This section first illustrates the poor performance of round-
robin scheduling on pipeline parallelism using an example,
and then gives an overview of our approaches.

Parrot is a state-of-the-art round-robin deterministic
runtime. We study the behavior of Parrot on ferret, a
pipeline parallel program from the PARSEC benchmark
suite [1]. Figure 1 shows the simplified version of ferret.
We run ferret with 4 threads in each parallel stage. Fig-
ure 2 shows part of the schedule we observed. Thread T1
is assigned with t load stage, while thread T2 is assigned
with t seg stage. There are two sources of inefficiency in
Fig. 2. First, T2 calls a time-consuming synchronization-
free function image segment() while holding the token. At
the same time, T1 is blocked at the synchronization point
waiting for the token. To address this inefficiency, we add a
programmer annotation at line 10. Line 10 informs LBDR
that the thread is entering a Synchronization-Free Section
(SFS). During this SFS, the thread will give up the token

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



434
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 1 Simplified ferret. It contains 6 stages, 2 of which are shown.
t load is the input stage, which reads image from disk and then en-
queues the items into q load seq queue. t seg stage dequeues items
from q load seq queue, segments and then enqueues them into queue
q seq extract.

Fig. 2 A round-robin schedule. T2 holds the token when executes im-
age segment, results to T1 being blocked at pthread mutex unlock.

assigned to it.
The second source of inefficiency in Fig. 2 is that T2 is

blocked at pthread cond wait waiting for T1 to enqueue an
item. Compared to T2, Thread T1 is slow because func-
tion read image() makes intensive use of locks. What’s
worse, the slowdown is magnified by token operations (ev-
ery synchronization is wrapped by a token acquisition and
a token release). We present an optimization called Single-
Threaded Section (STS) to eliminate unnecessary token op-
erations. STS indicates that there is only one active thread.
When a STS is dynamically detected, our runtime bypasses
token operations to reduce overhead. Determinism is pre-
served since the bypassing does not change synchronization
scheduling.

After using the above two techniques on baseline
round-robin scheduler, the schedule changes to the one in
Fig. 3, in which there are one SFS and two STSs. When T2
enters the SFS, T2 gives up the token so that T1 success-
fully executes synchronization operation without blocking.
Furthermore, T1 becomes the only candidate for the token,
and then enters a STS, even though T2 is running (assuming
that other threads are all blocked). Another STS is detected
when T2 is blocked at pthread cond wait and T1 is the only
candidate for the token.

Fig. 3 A schedule after two techniques enforced.

3. Load-Balanced Deterministic Runtime

In this section we present our techniques and illustrate how
these techniques improve the load balance of round-robin
scheduling.

3.1 Synchronization-Free Section

We provide a performance hint for developers to start
Synchronization-Free Section (SFS). SFS is used to prevent
thread from holding token for a long time without executing
any synchronization operation. Thread must hold the token
when starting a SFS. Then it will give up the turn and quit
the queuing up for token. When a thread enters a SFS, to-
ken scheduler ignores the thread, even it is running. The
interface is like below:

void give_up_turn(int hint_id);

hint id is the identity of the SFS. Each SFS should be as-
signed with an unique identity.

Developers should generally add give up turn hints at
the beginning of time-consuming synchronization-free com-
putations. One way to determine the starting point of a SFS
is performance profiling. We execute programs with a set
of representative inputs and log the round-robin schedules.
From the logs, we identify the most time-consuming sec-
tions during which tokens are held by a thread without ex-
ecuting any synchronization operation. The starting points
of these sections are determined as the insertion points of
give up turn hints.

The exit points of SFSs are conducted by LBDR dy-
namically. It is error-prone for developers to decide the exit
points of SFSs. These exit points should cover all the exe-
cution paths started from the entry of the SFS. Furthermore,
all the paths should be synchronization-free, which is hard
to determine statically in the presence of external libraries.

Instead of using explicit exit points, LBDR maintains
a budget for each SFS. A SFS’s budget is the amount of
synchronization operations the other threads should execute



LETTER
435

during this SFS. Once the budget is exhausted, the SFS ex-
its. Thus, budgets must be deterministic. A simple way to
guarantee determinism is assigning same budget for every
SFS. However, setting up a reasonable budget is critical to
performance. If a budget is too small, the thread may still
hold the token without executing synchronization operation.
If a budget is too large, the thread will block at the end of
the SFS waiting for other threads to exhaust the budget.

LBDR computes budgets in a deterministic and adap-
tive manner. Figure 4 shows the algorithm. Theoretically, a
thread T’s budget represents the amount of synchronization
operations the other threads execute when T executes one
synchronization operation (line 10). However, this budget is
often small, as SFSs are likely to be longer than average in-
terval of two synchronization points. We design an adaptive
supplementary method for budgets (line 11). At the exit of a
SFS, LBDR increases the supplement if the budget is small
(line 15-17). The increasing of supplement is deterministic.
LBDR employs deterministic performance counters to de-
termine if a budget is small or not. From the start to the end
of a SFS, if the SFS thread executes more instructions than
any other active threads, namely other threads are blocked
early, then we determine that the budget is small.

3.2 Single-Threaded Section

We define Single-Threaded Section (STS) as an execution
section that there is only one thread available for token pass-
ing, namely the current token-owner thread will pass token
to itself repeatedly. In STSs, LBDR directly executes syn-
chronization operations without acquiring for token.

STSs are detected by LBDR dynamically. LBDR
maintains a run queue and a wait queue for threads. Once
a thread is blocked, it is transferred from run queue to wait
queue. When there is only one thread in the run queue, a
STS is determined. A STS is ended whenever a thread is
backed into run queue.

STSs do not violate determinism. First, STSs are
started when only one thread is available for token. Since

Fig. 4 Entry and exit of the synchronization-free section.

threads are always blocked at synchronization points, so the
logical time when a STS starts is deterministic. Second, a
STS ends when a thread is signaled by some synchroniza-
tion operations, so the timing only depends on logical time.
Third, removing token passing in STSs only reduce the real
time, not the logical time. When a synchronization oper-
ation is executed in a STS, LBDR also increases the logi-
cal time. STSs do not change the result of token passing,
because token operations are eliminated when provably re-
dundant.

4. Experiment and Analysis

We evaluated LBDR on two pipeline parallel programs: fer-
ret and dedup from the PARSEC benchmark suite [1]. We
excluded a pipeline program bzip2 [7] because LBDR dose
not yet support Intel Threading Building Blocks (TBB). Our
evaluation machine was a 2.60GHz dual-socket hex-core In-
tel Xeon with 32 hyper-threading cores and 126GB memory
running Linux 2.6.32. The native inputs for PARSEC were
used.

4.1 Performance Hints

The program ferret only needs one give up turn hint while
dedup needs two. Table 1 shows the locations at where hints
been added. It is straightforward to add give up turn hints
in pipeline parallelism. Even without performance profiling,
developers can easily add give up turn hints at following lo-
cations.

• Right before the return of enqueue().
• Right before the return of dequeue().
• Right before the calling of time-consuming functions.

In our experiments, adding give up turn hints at wrong
locations incurs negligible runtime overhead. For example,
developers may add give up turn hints before the section
which is neither synchronization-free nor time-consuming.
Since the budget of a SFS is dynamically computed, fake
SFSs always get small budgets.

4.2 Performance

We compare the performance of LBDR to Parrot, default
round-robin scheduling and pthreads. Figure 5 presents the
results (normalized to pthreads). For ferret, LBDR out-
performs Parrot and round-robin scheduling by an aver-
age of 26.5% and 48.1%, respectively. For dedup, LBDR
outperforms Parrot and round-robin scheduling by an av-
erage of 18.5%. Although Parrot reduces the overhead
of round-robin scheduling from 4.6x to 3.0x by inserting

Table 1 Locations of give up turn hints.

benchmark location
ferret queue.h:129, Right before the return of dequeue().
dedup enqueue.c:85, Right before the return of enqueue().
dedup enqueue.c:136, Right before compress().



436
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 5 Normalized execution time with respect to pthreads. Parrot uses
no performance hint on dedup, so its performance on dedup is the same as
round-robin scheduling. (a) ferret; (b) dedup.

Fig. 6 Normalized execution time with different sets of optimizations.
(a) ferret; (b) dedup.

Table 2 Proportion of synchronization operations executed in single-
threaded sections and the execution time reduced by single-threaded sec-
tions.

benchmark proportion time saving (s)
ferret 98.3% 3.0
dedup 23.9% 1.6

a soft barrier in ferret, soft barriers cannot alleviate dy-
namic load imbalance. LBDR achieves good load balance
by taking token from non-synchronization-intensive threads
to synchronization-intensive threads. Note that soft barrier
is orthogonal to the optimizations presented in this article.
Although currently LBDR has not employ soft barrier, we
believe that Parrot and LBDR are complementary.

We also evaluated how two optimizations reduce
LBDR’s overhead. Figure 6 shows the effects of differ-
ent sets of optimizations. Synchronization-free section is
very effective at reducing overhead. Single-threaded sec-
tion does not help ferret much, but it does help for dedup.
Table 2 shows the proportion of synchronization operations
executed in single-threaded sections. Although LBDR ac-
celerates 98.3% of synchronization operations, the overhead
of token passing is not the main source of inefficiency on
ferret.

4.3 Scalability

To measure the scalability of LBDR, we ran our benchmarks

with different core counts and different workload scales.
LBDR scales better than Parrot for all workload scales.
Parrot’s soft barrier needs global synchronization, which
limits the scalability of Parrot. Threads in LBDR exit from
synchronization-free sections based on their own history in-
formation, thus LBDR does not need global synchroniza-
tion.

5. Conclusion

In this paper, we propose LBDR, a load-balanced determin-
istic runtime for pipeline parallelism. By default, LBDR
schedules synchronization in a round-robin fashion. To ad-
dress the load imbalance of default scheduling, LBDR em-
ploys two critical improvements. Synchronization-free sec-
tion prevents thread from holding token for a long time with-
out executing synchronization operation. Single-threaded
section removes token passing when a thread is about to pass
token to itself. Experiments show that LBDR outperforms
prior deterministic runtime on pipeline parallelism.

Acknowledgments

This work is partially supported by National High-tech
R&D Program of China (863 Program) under Grants
2012AA01A301 and 2012AA010901, by program for New
Century Excellent Talents in University and by National
Science Foundation (NSF) China 61272142, 61103082,
61170261, 61103193 and 614024992.

References

[1] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” Proc.
Intl Conf. Parallel Architectures and Compilation Techniques, PACT,
pp.72–81, 2008.

[2] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: Efficient deter-
ministic multithreading in software,” Proc. 14th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, pp.97–108, 2009.

[3] K. Lu, X. Zhou, T. Bergan, and X. Wang, “Efficient deterministic mul-
tithreading without global barriers,” Proc. PPOPP, pp.287–300, 2014.

[4] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G.A.
Gibson, and R.E. Bryant, “Parrot: A practical runtime for determinis-
tic, stable, and reliable threads,” Proc. Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, pp.388–405, 2013.

[5] T. Liu, C. Curtsinger, and E.D. Berger, “DTHREADS: Efficient deter-
ministic multithreading,” Proc. 22nd ACM Symposium on Operating
Systems Principles, pp.327–336, 2011.

[6] T. Merryfield and J. Eriksson, “Conversion: Multi-version concur-
rency control for main memory segments,” Proc. EuroSys, pp.127–
139, 2013.

[7] Intel, Source code for Intel threading building blocks, http://www.
threadingbuildingblocks.org/, 2009.


