
1596
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

LETTER

T-L Plane Based Real-Time Scheduling Using Dynamic Power
Management

Youngmin KIM†, Ki-Seong LEE†, Byunghak KWAK†, Nonmembers, and Chan-Gun LEE†a), Member

SUMMARY We propose an energy-efficient real-time scheduling algo-
rithm based on T-L Plane abstraction. The algorithm is designed to exploit
Dynamic Power Management and generates a new event called event-s to
render longer idle intervals, which increases the chances of switching a
processor to the sleep mode. We compare the proposed algorithm with
previous work and show that it is effective for energy management.
key words: real-time scheduling, dynamic power management, energy
management

1. Introduction

There has been increasing interest in energy-efficient real-
time/embedded systems equipped with multi-processors.
The most popular techniques to save energy of a proces-
sor include Dynamic Power Management (DPM) and Volt-
age Frequency Scaling (VFS). DPM [1] switches a proces-
sor to lower power consumption states such as idle or sleep
modes from the active mode. VFS scales the frequency of
a processor since the frequency directly relates to its power
consumption. There are recent scheduling approaches based
on Dynamic Voltage Frequency Scaling (DVFS) [2]–[5] and
Static Voltage Frequency Scaling (SVFS) [6], [7].

The T-L plane scheme is actively adopted to develop
scheduling algorithms for real-time tasks on multi-core sys-
tems. LLREF [8] and LRE-TL [9] algorithms are efficient
real-time scheduling algorithms for periodic and sporadic
tasks, respectively. An extension to LLREF was made so
that it can schedule tasks with synchronization [10]. Later
Funaoka et al. advanced the algorithm to allow tasks to be
work conserving [11] and help the system to reduce waste-
ful idle times. It was further extended to deal with energy
consumption with static voltage and frequency scaling [7].
T-R plane was proposed along with NNLF scheduling algo-
rithm [12] to handle dynamic events such as aperiodic ser-
vices. Cho et al. proposed work conserving and non-work
conserving algorithms to reduce migrations of tasks [13].
Alhussian et al. proposed a technique for sporadic tasks to
reduce the task migrations [14]. A few approaches [2]–[5]
made the energy-efficient extension to the T-L plane based
algorithms using DVFS recently. RT-DVFS [2] scales the
frequency of processors with respect to the fluctuation of

Manuscript received September 18, 2014.
Manuscript revised March 5, 2015.
Manuscript publicized May 12, 2015.
†The authors are with School of Computer Science and En-

gineering, Chung-Ang University, 221 Heukseok, Dongjak, Seoul
156–756, Korea.

a) E-mail: cglee@cau.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2014EDL8184

Fig. 1 Taxonomy of T-L plane based global scheduling algorithms.

task execution time. LRE-DVFS-EACH [3] scales the fre-
quency of processor when sporadic tasks are released on
multiprocessor. GMF [4] is a non-uniform frequency scal-
ing algorithm for uniform multiprocessors.

However, to the best of our knowledge, most energy-
efficient scheduling algorithms based on the T-L plane ab-
straction studied so far did not consider DPM but only uti-
lized VFS. Zhang et al. briefly mentioned the utilization of
idle intervals [5], however, they mainly focused on DVFS
and did not fully exploit DPM.

In this paper, we make an extension of the T-L plane
based real-time scheduling algorithm LLREF [8] to exploit
the DPM technique. Figure 1 shows the taxonomy of global
scheduling algorithms based on T-L plane abstraction. In
the figure, TM represents the technique for minimizing task
migrations. WC and NWC represent work conserving and
non-work conserving scheduling algorithms, respectively.
The proposed algorithm (TL-DPM in Fig. 1) introduces a
new event called event-s which is designed to let the system
steal tasks scheduled for the upcoming T-L plane. The event
renders longer idle intervals in the next plane in hoping that
they become long enough to accommodate the sleep mode.

2. T-L Plane Algorithm Review

Figure 2 shows the basic concept of T-L plane. For each
task Ti with periodical arrivals at ai1, ai2, . . . , and the cost
ci, its deadline is assumed to be the same as its period. In
the figure, horizontal and vertical axes represent time (T)
and local remaining execution (L), respectively. Each dotted
slope from (ai j, ci) to (ai j+1, 0) represents the fluid schedule
of a task. The absolute deadline of every task divides time
as the vertical dotted lines and a triangle containing its fluid
schedule is placed between every two adjacent deadlines.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



LETTER
1597

Fig. 2 Constructing T-L plane [3].

Fig. 3 Scheduling example for LLREF and T-L DPM.

By overlapping all triangles with the same time intervals,
we can construct a T-L plane as shown in the bottom of the
figure. Since it is impractical to realize the fluid scheduling,
scheduling decisions are made based on local laxity times of
the tasks and events such as event-c and event-b which will
be explained in the following.

For illustration purpose, assume that we are given a
task set as shown in Table 1. Figure 3 shows how LLREF [3]
schedules the tasks using T-L plane abstraction. The tasks
are shown as tokens moving from t0 to t f , the start and end
time of the current plane, respectively. For this example, ig-
nore the tokens enclosed by parenthesis; they are only valid
in our proposed algorithm explained in the next section. The

Table 1 Task property.

tasks assigned to the processors move diagonally down like
T2 and T3 at t0. Otherwise, they move horizontally like
T4. When a token hits the bottom, an event-b occurs and
the processor that has executed the task becomes available.
Note that every processor is available at t0 in each T-L plane.
When a processor is available, the task with the highest local
utilization is assigned to it. The local utilization of a task Ti

is li, j/(t f − tcur) where li, j is remaining time at current time
tcur. The local utilization indicates the processor capacity re-
quired for executing Ti from tcur to t f . When a token hits the
slope of T-L plane, an event-c occurs and the corresponding
task must be assigned to one of the processors immediately.

3. Extension for DPM

For the processors supporting multiple operating modes, we
can reduce the power consumption by utilizing the sleep and
idle mode of the processors. LLREF can be incorporated
with DPM by the following simple extension to the b-event
handler and we shall refer to it as a naive approach in this
paper:

• If the wait queue is not empty, then the handler resumes
its normal behavior, i.e., pick a task and let the proces-
sor execute it.
• If the wait queue is empty, then check if t f−tcur > csleep.

If it is true, then the processor is switched to the sleep
mode till the end of the current plane. Otherwise, we
switch the processor to the idle mode.

In the above csleep is break-even time for the sleep
mode; in order to put a processor to the sleep mode, the
idle interval must be long enough to compensate the over-
head for the transitions, which occur when the processor is
switched from active to sleep and from sleep to active.

Now we extend the naı̈ve approach so that we can ren-
der longer idle intervals in the next plane. The idea is to
allow the scheduler to steal the tasks originally scheduled to
be executed in the next plane when a transition to the sleep
mode is not permissible.

Figure 4 illustrates this idea in detail. A new event
named event-s occurs instead of event-b when the execution
of a task is just completed by a processor, the wait queue is
empty, and t f − tcur is smaller than csleep. These conditions
imply that the processor has nothing to do and the remaining
time is not long enough to utilize the sleep mode.

At initialization (else part), it accepts a set of ready
tasks and returns an array of running tasks. When an event-c
is detected, the corresponding task is moved to Qrun from
ready queue ζcur. The victim is the one with the smallest
remaining time in the execution queue.

In case of an event-b, a task in ζcur moves to Qrun. How-



1598
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

Fig. 4 T-L plane DPM algorithm.

Table 2 Processor property.

Fig. 5 Scheduling examples for naive (a) and proposed algorithms (b).

ever, if ζcur is empty, then the processor executing the task
caused the event-b enters the sleep mode and the task is re-
moved from Qrun. Upon the detection of event-s, the sched-
uler selects a task originally scheduled for the next plane and
its corresponding instance has been completed for current T-
L plane. If there is no such task, we let the processor go to
the idle mode. In the algorithm, the method decideLocal-
Parameters sorts the tasks in current queue in the order of
local laxities and adjusts the local parameters. The method
initNextReadyParameters initializes the tasks to be executed
in the next plane.

Let us run the algorithm for the same task set used for
illustrating LLREF before and compare their energy con-
sumptions. Table 2 shows the processor characteristics,
which are typical in many modern processors. In Fig. 3, the
tokens and tasks surrounded by parenthesis are scheduled by
our algorithm only. In the naı̈ve approach, however, those
intervals would have been filled with the idle mode. Fig-
ure 5 (a) shows the scheduling results in the naı̈ve approach
for longer durations; the processors P1 and P2 are switched
to the idle mode for 1ms and 1.5ms every 5ms, respectively.
Because the idle intervals are shorter than csleep = 2ms,
none of the processors can exploit the sleep mode. In con-
trast, Fig. 5 (b) shows that all the processors can enter the
sleep mode every 10ms in our proposed algorithm. From
the given processor characteristics, it turns out that our pro-
posed algorithm reduces the energy by 323mW every 30ms
compared with the naive approach.
Theorem 1. The proposed algorithm is never worse than the
naı̈ve approach in terms of energy management.
Proof: The total energy consumptions for a hyper-period
under the naı̈ve and our proposed algorithms are calculated
as shown in the following, respectively:

ENaive = EAANaive + EI INaive + EsS Naive

EProposed = EAAProposed + EI IProposed + ES S Proposed

where ENaive means the total energy consumption under the
naı̈ve approach. ANaive, INaive, and S Naive represent the to-
tal durations of the active, idle, and sleep intervals, respec-
tively under the naı̈ve approach. EA, EI , and ES mean the



LETTER
1599

unit energy consumptions for active, idle, and sleep mode,
respectively. AProposed, IProposed, S Proposed, and EProposed can
be understood similarly.

Note that ANaive and AProposed are the same since the
two schedules are given the same tasks and their total uti-
lizations are the same. Because the total durations of both
approaches are the same, i.e., ANaive + INaive + S Naive =

AProposed + IProposed + S Proposed, the equation INaive + S Naive =

IProposed + S Proposed holds.
From the algorithm description, it is obvious that

whenever the condition for sleep mode is satisfied under
the naı̈ve approach, the corresponding processor is switched
into the sleep mode. So is true for our proposed algorithm.
In addition, the proposed algorithm may steal upcoming
tasks when the naı̈ve one forces the processor(s) into the
idle mode. Those unused idle intervals are accumulated in
the next plane and increase the chances of making idle inter-
vals long enough to exploit the sleep mode. This means that
INaive ≥ IProposed and S Naive ≤ S Proposed. Because EI > ES ,
ENaive ≥ EProposed holds.

4. Conclusions

We proposed an energy-efficient real-time scheduling algo-
rithm based on T-L Plane abstraction for multi-processor
systems. In order to exploit DPM, we introduced a new
event that can render longer idle intervals by stealing tasks
scheduled for the next plane. We showed that the proposed
algorithm enables better energy management than a naı̈ve
extension of LLREF in typical processor environments.

Acknowledgments

This research was supported by the Chung-Ang University
Research Scholarship Grants in 2014 and the National Re-
search Foundation (NRF-2014R1A2A2A01005519).

References

[1] V. Devadas and H. Aydin. “Real-time dynamic power management
through device forbidden regions,” Proc. IEEE Real-Time and Em-
bedded Technology and Applications Symposium, pp.34–44, St.
Louis, MO, USA, April 2008.

[2] K. Funaoka, A. Takeda, S. Kato, and N. Yamasaki, “Dynamic volt-
age and frequency scaling for optimal real-time scheduling on multi-
processors,” Proc. International Symposium on Industrial Embedded
Systems, pp.27–33, Le Grande Motte, France, June 2008.

[3] D.-S. Zhang, F.-Y. Chen, H.-H. Li, S.-Y. Jin, and D.-K. Guo, “An
energy-efficient scheduling algorithm for sporadic real-time tasks
in multiprocessor systems,” Proc. IEEE 14th International Con-
ference on High Performance Computing and Communications,
pp.187–194, Banff, Canada, Spet. 2011.

[4] G.A. Moreno and D. de Niz, “An optimal real-time voltage and fre-
quency scaling for uniform multiprocessors,” Proc. IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems
and Applications, pp.21–30, Seoul, Korea, Aug. 2012.

[5] D. Zhang, D. Guo, F. Chen, F. Wu, T. Wu, T. Cao, and S. Jin,
“TL-plane-based multi-core energy-efficient real-time scheduling
algorithm for sporadic tasks,” ACM Trans. Architecture and Code
Optimization, vol.8, issue 4, no.47, Jan. 2012.

[6] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” Proc. 1st USENIX Symposium on Operating
Systems Design and Implementation, no.2, CA, USA, Nov. 1994.

[7] K. Funaoka, S. Kato, and N. Yamasaki, “Energy-efficient optimal
real-time scheduling on multiprocessors,” Proc. IEEE 11th Interna-
tional Symposium on Object-Oriented Real-Time Distributed Com-
puting, pp.23–30, Orlando, FL, USA, May 2008.

[8] H. Cho, B. Ravindran, and E.D. Jensen, “An optimal real-time
scheduling algorithm for multiprocessors,” Proc. IEEE 27th
Real-Time Systems Symposium, pp.101–110, Rio de Janeiro,
Brazil, Dec. 2006.

[9] S. Funk and V. Nadadur, “LRE-TL: An optimal multiprocessor al-
gorithm for sporadic task sets,” Proc. Symposium on Real-Time and
Network Systems, vol.46, issue 3, pp.332–359, Paris, France, Oct.
2009.

[10] H. Cho, B. Ravindran, and E.D. Jensen, “Synchronization for an
optimal real-time scheduling algorithm on multiprocessors,” Proc.
IEEE 2nd International Symposium on Industrial Embedded Sys-
tems, pp.9–16, Lisbon, Portugal, July, 2007.

[11] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal
real-time scheduling on multiprocessors,” Proc. IEEE 20th Euromi-
cro Conference on Real-Time Systems, pp.13–22, Prague, Czech,
July 2008.

[12] K. Funaoka, S. Kato, and N. Yamasaki, “New abstraction for optimal
real-time scheduling on multiprocessors,” Proc. IEEE 14th Interna-
tional Conference on Embedded and Real-Time Computing Systems
and Applications, pp.357–364, Kaohsiung, China, Aug. 2008.

[13] H. Cho, B. Ravindran, and E.D. Jensen, “T-L plane based real-time
scheduling for homogeneous multiprocessors,” Journal of Parallel
and Distributed Computing, vol.70, issue 3, pp.225–236, June 2010.

[14] H. Alhussian, N. Zakaria, F.A. Hussin, and H.T. Bahboug, “Reduc-
ing tasks migration in LRE-TL real-time multiprocessor scheduling
algorithm,” Proc. 4th International Conference on Electrical Engi-
neering and Informatics, vol.11, pp.235–242, Selangor, Malaysia,
June 2013.

http://dx.doi.org/10.1109/rtas.2008.21
http://dx.doi.org/10.1109/sies.2008.4577677
http://dx.doi.org/10.1109/hpcc.2011.33
http://dx.doi.org/10.1109/rtcsa.2012.51
http://dx.doi.org/10.1145/2086696.2086726
http://dx.doi.org/10.1109/isorc.2008.19
http://dx.doi.org/10.1109/rtss.2006.10
http://dx.doi.org/10.1109/sies.2007.4297311
http://dx.doi.org/10.1109/ecrts.2008.15
http://dx.doi.org/10.1109/rtcsa.2008.15
http://dx.doi.org/10.1016/j.jpdc.2009.12.003
http://dx.doi.org/10.1016/j.protcy.2013.12.186

