
994
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

LETTER

Identifying Nonlocal Dependencies in Incremental Parsing

Yoshihide KATO†a), Member and Shigeki MATSUBARA††, Senior Member

SUMMARY This paper describes a method of identifying nonlocal de-
pendencies in incremental parsing. Our incremental parser inserts empty
elements at arbitrary positions to generate partial parse trees including
empty elements. To identify the correspondence between empty elements
and their fillers, our method adapts a hybrid approach: slash feature anno-
tation and heuristic rules. This decreases local ambiguity in incremental
parsing and improves the accuracy of our parser.
key words: incremental parsing, nonlocal dependency, empty element,
slash feature, c-command

1. Introduction

Nonlocal dependency represents several kinds of syntac-
tic phenomena such as wh-movement, A-movement in pas-
sives, raising, control and so on. Information about nonlocal
dependency plays an important role in semantic interpreta-
tion. Chung and Gildea [1] have reported an experimental
result where empty element information improved machine
translation results.

This paper investigates a method of identifying non-
local dependencies in incremental parsing. Incremental
parsers analyze an input sentence from left to right and gen-
erate partial parse trees, each of which spans an initial frag-
ment. They are useful to realize real-time spoken language
processing systems, such as simultaneous machine interpre-
tation systems, automatic subtitle generating systems and so
on [2], [3]. Moreover, incremental parsers can analyze un-
finished sentences such as “He was appointed CEO, suc-
ceeding . . .” Our incremental parser inserts empty elements
at arbitrary positions to generate partial parse trees including
empty elements. Our method identifies the correspondence
between empty elements and their fillers on the basis of
the slash feature annotation described in [4]–[6]. However,
our method does not assign slash features for some kind
of nonlocal dependency since it increases local ambiguity
in incremental parsing. To identify nonlocal dependencies
for which slash features are not assigned, our method uses
heuristic rules. This hybrid approach improves the accuracy
of our incremental parser.

Manuscript received September 18, 2014.
Manuscript revised December 5, 2014.
Manuscript publicized January 13, 2015.
†The author is with Information & Communications, Nagoya

University, Nagoya-shi, 464–8601 Japan.
††The author is with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8603 Japan.
a) E-mail: yoshihide@icts.nagoya-u.ac.jp

DOI: 10.1587/transinf.2014EDL8186

2. Nonlocal Dependencies and Their Identification

This section gives an overview of previous work on nonlocal
dependency identification.

2.1 Nonlocal Dependency

We explain nonlocal dependency on the basis of Penn Tree-
bank annotation [7]. Each nonlocal dependency is repre-
sented as a pair of an empty element and its filler. Figure 1
shows an example of Penn Treebank style tree. The label
− NONE− means that the node is an empty element. The
labels such as ∗T∗ and ∗ represent the type of the empty ele-
ment: ∗T∗ is used as a trace of wh-movement. ∗ is used as a
trace of A-movement and an unexpressed subject. When an
empty element is indexed, there exists its filler in the parse
tree. The filler has the same number. For example, ∗ − 1
means that the node NP − 1 is the corresponding filler. The
dotted arrows in the figure represent the correspondences
between the empty elements and the fillers.

2.2 Nonlocal Dependency Identification

Many syntactic parsers based on the Penn Treebank are
available, but they generate parse trees which do not include
nonlocal dependencies. We call this kind of parse tree a CF
tree. Several methods of identifying nonlocal dependencies
have been proposed so far. These methods can be divided

Fig. 1 A Penn Treebank style tree.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

LETTER
995

Fig. 2 A tree with slash feature annotation.

into the following:

• Recovering nonlocal dependencies from a CF tree
which is generated by a parser.
• Integrating nonlocal dependency identification into a

parser.

The former approach receives a CF tree as input and re-
turns the parse tree including nonlocal dependencies. This
is called a post-processing approach. Johnson [8] has pro-
posed a method of recovering nonlocal dependencies from a
CF tree based on pattern matching. In this method, pattern
trees each of which recovers a nonlocal dependency are ex-
tracted from the Penn Treebank. Levy and Manning [9] use
several classifiers to recover nonlocal dependencies. This
method applies the classifiers to each node in a CF tree and
identifies nonlocal dependencies. Campbell [10] has devel-
oped linguistically-motivated rules for recovering nonlocal
dependencies. The method applies the rules in top-down
fashion to recover nonlocal dependencies.

In the latter approach, a parser identifies nonlo-
cal dependencies directly. This approach is called in-
processing. Dienes and Dubey [4], Dienes and Dubey [5],
and Schmid [6] have proposed methods which assign slash
features to the nodes on paths from empty elements to their
fillers. Figure 2 shows an example of slash feature annota-
tion†. Their parsers insert empty elements at arbitrary po-
sitions between words and generate a parse tree annotated
with slash features. They recover nonlocal dependencies by
traversing the nodes with slash features.

3. Nonlocal Dependency Identification in Incremental
Parsing

This section proposes a method of identifying nonlocal de-
pendencies in incremental parsing. First, we describe an in-
cremental parsing method. Next, we extend the parser to

†In this example, a node η has a slash feature if η dominates an
empty element E and η is not an ancestor of the filler corresponding
to E. A slash feature consists of the category of E and the type of
E.

Fig. 3 A process of incremental parsing.

Fig. 4 Incremental parsing with inserting empty elements.

generate partial parse trees including nonlocal dependency
information.

3.1 Incremental Parser

Incremental parsers analyze a sentence from left to right,
and generate partial parse trees for each initial fragment.
The partial parse trees connect all words in each initial frag-
ment of the sentence. Collins and Roark [11] and Kato and
Matsubara [12] have proposed incremental parsing methods
in which the parsing process proceeds on a word-by-word
basis by using allowable chains. An allowable chain is a se-
quence of nonterminal symbols followed by a terminal sym-
bol. Each allowable chain corresponds to a label sequence
on a path from a node to its leftmost descendant leaf. Fig-
ure 3 illustrates an incremental parsing process. The allow-
able chains are specified by the dotted boxes. This example
illustrates that the incremental parsing method can generate
partial parse trees which span each initial fragment.

3.2 Nonlocal Dependency Identification

To identify nonlocal dependencies in an incremental parsing
process, we adapt in-processing approach. Post-processing
approach is not suitable for incremental processing.

3.2.1 Inserting Empty Elements

Our incremental parser is similar to the one used for previ-
ous work in the literatures [11]–[13]. We extend the parser
to deal with empty elements. Our approach is the same as
the in-processing approach. That is, our incremental parser
inserts empty elements at arbitrary positions between words.
Figure 4 shows our incremental parsing algorithm with in-
serting empty elements. Hi is a priority queue, which keeps

996
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 5 Local ambiguity caused by slash feature annotation.

partial parse trees for w1 . . . wi. Each partial parse tree has
a probability score and each priority queue is sorted by the
score. To improve the efficiency of the parsing, we adapt a
beam search strategy†. Combine(σ, t) is a set of the results
of combining a partial parse tree σ and a terminal symbol
t using some allowable chains. ε is an arbitrary empty ele-
ment terminal symbol.

The parser simply attaches the allowable chains for
empty elements with partial parse trees and pushes the re-
sults into the priority queue. All we need is to add the line 8
in incremental parsing procedure. This enables the parser to
generate partial parse trees including empty elements.

3.2.2 Slash Feature Annotation and Local Ambiguity

Our proposed method uses slash feature annotation in the
similar manner to the one used for the previous work. How-
ever, our method does not assign slash features for nonlocal
dependencies of type ∗, because this increases local ambi-
guity in incremental parsing. As an example, let us consider
the incremental parsing process shown in Fig. 3 again. The
partial parse tree for “He was” has two slash features. This
represents that at least two empty elements of type ∗ exist
in the right context as shown in Fig. 2. On the other hand,
to parse sentences such as “He was a chief executive offi-
cer.” and “Hei was appointed ∗i chief executive officer.”, the
parser needs to generate partial parse trees (a) and (b) shown
in Fig. 5, respectively. The ambiguity caused by slash fea-
ture annotation of type ∗ cannot be resolved at this point
since the decision of a correct partial parse tree depends on
the following input. If we remove slash features of type ∗,
the ambiguity does not arise.

Removing slash features of type ∗ may have a negative
effect since slash features help the parser detect empty ele-
ments. To avoid this problem, we introduce another kind of
annotation which does not cause local ambiguity. We call
this annotation PRO feature. For each empty NP of type ∗
and its parent whose category is PP or S, we assign a tag PRO
to the node. See Fig. 6.

3.2.3 Identifying Nonlocal Dependencies

Our incremental parser identifies nonlocal dependencies
when an empty element E or a filler candidate F is instanti-
ated in a partial parse tree σ. If the type of the instantiated

†We use the same strategy proposed by the literature [13],
that is, our parser exits the while-loop when P(Hi−1[0]) <
10−11P(Hi[0])|Hi|3 holds. Here, P(·) represents a probability. See
the literature [13] for more details.

Fig. 6 PRO feature annotation.

element is not ∗, the parser searches σ for the correspond-
ing element by using slash features. The procedure is the
same as the one in the literature [4]. When the parser finds
no corresponding element, it assumes that a corresponding
element exists in the right context which is not constructed
at this point.

For nonlocal dependencies of type ∗, our method uses
heuristic rules since slash features are removed. When an
empty element E of type ∗ is instantiated in a partial parse
tree σ, the parser selects the nearest node F which satisfies
the following conditions:

• F c-commands E.
• F is a subject, or the object of an object-control verb.

When a complement noun phrase F is instantiated in
a partial parse tree σ, the parser searches σ for the empty
element E satisfying the following conditions:

• The type of E is ∗.
• E is c-commanded by F.
• E does not have the corresponding filler.

All the nodes satisfying these conditions are co-indexed
with F.

4. An Experiment

To evaluate our proposed method, we conducted a parsing
experiment. We used the metric proposed by Johnson [8] to
evaluate the performance of identifying nonlocal dependen-
cies. Johnson’s metric represents a nonlocal dependency as
a tuple which consists of the type of the empty element, the
category of the empty element, the position of the empty el-
ement, the category of the filler and the position of the filler.
The metric measures the precision and the recall using these
tuples. For more details, see the literature [8].

We implemented a probabilistic incremental parser de-
scribed in Sect. 3. The probabilistic model and the grammar
were learned from the parse trees in section 02-21 of the
Wall Street Journal in Penn Treebank [7]. We marked heads

LETTER
997

Table 1 Parsing results.

features Labeled bracketing Nonlocal dependency identification
remove slash feature of type ∗ PRO OC recall(%) precision(%) f-score(%) recall(%) precision(%) f-score(%)

87.1 (87.2) 87.7 (87.8) 87.4 (87.5) 73.4 78.8 76.0√
87.2 (87.2) 87.8 (87.7) 87.5 (87.4) 73.2 78.6 75.8√
87.4 (87.2) 87.9 (87.8) 87.6 (87.5) 74.8 80.1 77.4√ √
87.4 (87.2) 87.9 (87.7) 87.7 (87.5) 74.6 80.2 77.3√
87.4 (87.5) 87.9 (88.0) 87.7 (87.7) 71.9 76.9 74.3√ √
87.3 (87.5) 87.8 (88.0) 87.6 (87.8) 72.0 77.1 74.4√ √
87.5 (87.5) 88.0 (88.0) 87.8 (87.8) 75.3 80.1 77.6√ √ √
87.5 (87.6) 88.0 (88.1) 87.7 (87.9) 75.6 80.6 78.0

Table 2 Comparison with previous work.

Unindexed empty elements
are excluded.

rec.(%) prec.(%) f(%) rec.(%) prec.(%) f(%)
Johnson [8] 63 73 68 − − −
D & D [4] 66.0 80.5 72.6 − − −
D & D [5] 68.7 81.5 74.6 − − −
Campbell [10] 75.1 78.3 76.7 − − −
Schmid [6] − − − 73.5 81.7 77.4
our method 75.6 80.6 78.0 73.6 80.3 76.8

and complements using heuristic rules similar to the ones
in the literature [14]. All function tags remain. Therefore,
the parser can identify subjects using the function tag SBJ.
To identify object-control verbs, we assigned a tag OC to the
verbs whose object is a filler of type ∗. Each verb and prepo-
sition subcategorized for its complements.

By using section 23, we evaluated the accuracy of non-
local dependency identification and labeled bracketing task.
The labeled bracketing task was evaluated by the PARSE-
VAL metric [15]. Table 1 shows the results. The accuracies
of the parser without empty element insertion are shown in
brackets†. This result demonstrates that the empty element
insertion has little negative effect. The last line shows the
results of our proposed method. Our method achieved the
highest recall and precision in nonlocal dependency identi-
fication. The labeled bracketing f-score is also higher. It
is worth noting that worst results of nonlocal dependency
identification were observed when slash features were sim-
ply removed. On the other hand, the accuracy increased con-
siderably by using PRO features. This means that PRO fea-
ture annotation avoids a disadvantage of removing slash fea-
tures. Table 2 summarizes the accuracies of previous (non-
incremental) methods. This result shows that our method
compares favorably with the previous ones.

5. Conclusion

This paper proposed a method of identifying nonlocal de-
pendencies in incremental parsing. Our incremental parser
can identify nonlocal dependencies at the point when an
empty element and the filler are instantiated in a partial parse
tree. This paper investigates only nonlocal dependency of
type ∗, and the previous approach is simply adapted to the

†All empty elements were removed from the training data after
annotating features.

other types of nonlocal dependencies. In future work, we
will explore how to deal with the other types of nonlocal
dependencies in incremental parsing.

Acknowledgements

This research was partially supported by the Grant-in-Aid
for Scientific Research (B) (No. 22300051, 26280082) of
JSPS.

References

[1] T. Chung and D. Gildea, “Effects of empty categories on machine
translation,” Proc. 2010 Conference on Empirical Methods in Natu-
ral Language Processing, pp.636–645, Oct. 2010.

[2] J. Allen, G. Ferguson, and A. Stent, “An architecture for more real-
istic conversational systems,” Proc. International Conference of In-
telligent User Interfaces, pp.1–8, 2001.

[3] G. Aist, J. Allen, E. Campana, C.G. Gallo, S. Stoness, M. Swift, and
M.K. Tanenhaus, “Incremental understanding in human-computer
dialogue and experimental evidence for advantages over nonincre-
mental methods,” Proc. 11th Workshop on the Semantics and Prag-
matics of Dialogue, ed. R. Artstein and L. View, pp.149–154, June
2007.

[4] P. Dienes and A. Dubey, “Antecedent recovery: Experiments with a
trace tagger,” Proc. 2003 Conference on Empirical Methods in Nat-
ural Language Processing, pp.33–40, July 2003.

[5] P. Dienes and A. Dubey, “Deep syntactic processing by combining
shallow methods,” Proc. 41st Annual Meeting of the Association for
Computational Linguistics, pp.431–438, July 2003.

[6] H. Schmid, “Trace prediction and recovery with unlexicalized
PCFGs and slash features,” Proc. 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Associ-
ation for Computational Linguistics, pp.177–184, July 2006.

[7] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Computa-
tional Linguistics, vol.19, no.2, pp.310–330, 1993.

[8] M. Johnson, “A simple pattern-matching algorithm for recovering
empty nodes and their antecedents,” Proc. 40th Annual Meeting
of the Association for Computational Linguistics, pp.136–143, July
2002.

[9] R. Levy and C. Manning, “Deep dependencies from context-free sta-
tistical parsers: Correcting the surface dependency approximation,”
Proc. 42nd Meeting of the Association for Computational Linguis-
tics, Main Volume, pp.327–334, July 2004.

[10] R. Campbell, “Using linguistic principles to recover empty cate-
gories,” Proc. 42nd Meeting of the Association for Computational
Linguistics, Main Volume, pp.645–652, July 2004.

[11] M. Collins and B. Roark, “Incremental parsing with the perceptron
algorithm,” Proceedings of the 42nd Meeting of the Association for
Computational Linguistics, Main Volume, pp.111–118, July 2004.

[12] Y. Kato and S. Matsubara, “Incremental parsing with adjoining oper-
ation,” IEICE Trans. Inf. & Syst., vol.E92-D, no.12, pp.2306–2312,

998
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Dec. 2009.
[13] B. Roark, “Robust garden path parsing,” Natural language engineer-

ing, vol.10, no.1, pp.1–24, 2004.
[14] D.M. Bikel, “Intricacies of Collins’ parsing model,” Computational

Linguistics, vol.30, no.4, pp.478–511, Dec. 2004.
[15] E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P.

Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman,
M. Marcus, S. Roukos, B. Santorini, and T. Strzalkowski, “A proce-
dure for quantitatively comparing the syntactic coverage of English
grammars,” Proc. 4th DARPA Speech and Natural Language Work-
shop, pp.306–311, 1991.

