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SUMMARY  Fault localization is essential for conducting effective pro-
gram repair. However, preliminary studies have shown that existing fault
localization approaches do not take the requirements of automatic repair
into account, and therefore restrict the repair performance. To address this
issue, this paper presents the first study on designing fault localization ap-
proaches for automatic program repair, that is, we propose a fault local-
ization approach using failure-related contexts in order to improve auto-
matic program repair. The proposed approach first utilizes program slicing
technique to construct a failure-related context, then evaluates the suspi-
ciousness of each element in this context, and finally transfers the result of
evaluation to automatic program repair techniques for performing repair on
faulty programs. The experimental results demonstrate that the proposed
approach is effective to improve automatic repair performance.

key words: automatic repair, fault localization, failure-related context,
program slicing, suspiciousness evaluation

1. Introduction

Fixing software bugs is a painstaking task in software de-
velopment and maintenance [1]. According to the recent re-
search, the cost related with software testing, debugging and
fixing has accounted for around 50% in an entire project,
sometimes even reaching 90% [2], [3]. In order to reduce
the cost of fixing bugs, researchers have devoted themselves
to realizing the automation of software repair, and proposed
many automatic repair techniques in recent years, for in-
stance, JAFF [4], [5], Par [6], etc. Among all of these tech-
niques, the most notable and influential one is GenProg, pro-
posed by University of Virginia[7], [8]. Those researchers
extend the conception of genetic algorithm, and put it into
use in automatic repair, and develop GenProg, which is an
effective automatic repair tool for C language. The large-
scale experiments show that GenProg succeeds in fixing 55
bugs out of 105 from those typical open-source software
such as libtiff, php, python, wireshark, etc[7]. Although
it indicates that GenProg performs well in automatic repair
and embodies great practical value, it is still not satisfactory
in both effectiveness and efficiency, and needs to be further
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improved. For example, GenProg takes the powerful Ama-
zon EC2 cloud computing platform to execute its bench-
marks, but it consumes a large amount of resources, with
every successful repair taking 96 minutes by average [7].

Automatic repair generally consists of three parts: fault
localization, patch generation and patch verification. Being
the first part, fault localization mainly provides the informa-
tion of possible faulty locations, and the follow-up steps will
conduct the mutation operations on these possible faulty lo-
cations to generate a valid patch as fast as possible. Thus,
the accuracy of fault localization greatly impacts the perfor-
mance of the follow-up steps and the whole repair process.
According to our previous research [9], developers mainly
design and evaluate the fault localization module from the
view of manual fixing, without considering the requirements
of automatic repair. We have found that the current fault lo-
calization approaches focus on how to obtain a high rank
for the faulty statements in the set of suspicious statements.
These approaches can attract developers’ attention to these
high-rank statements, and thus help them to repair the pro-
gram. However, these techniques just output the isolated
ranked statements and does not provide any contextual in-
formation. Since developers have the knowledge of the pro-
gram, they can construct the context by themselves to un-
derstand the relationship among these isolated ranked state-
ments and finally pinpoint the location of the fault.

However, automatic repair lacks the knowledge as de-
velopers have, and thus cannot construct a context by itself
to speed up the search of the location of the fault. In this
case, when obtaining fault localization results, existing au-
tomatic repair techniques generate a valid patch merely from
the perspective of the whole program. Since the whole pro-
gram has many statements which may have nothing to do
with a failure, if we conduct the automatic repair starting
from the view of all the program codes, it will produce a
large number of invalid patches until we find a valid patch.
Therefore, this can lead to a high cost in automatic repair,
and greatly restrict the performance of patch generation and
patch verification, and finally degrade the entire repair per-
formance. For improving the whole performance of auto-
matic program repair, it is necessary to study the fault local-
ization from the view of automatic repair.

To the best of our knowledge, there is no study aim-
ing at developing effective fault localization approaches for
automatic repair. This paper tries to fill this void and pro-
pose a fault localization approach using failure-related con-
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texts to improve the performance of automatic repair. This
approach puts all the suspicious statements into a failure-
related context, which can provide useful guidance infor-
mation for patch generation and finally improve the whole
repair performance. There are mainly three phases in this
approach, and firstly we try to construct the failure-related
context from several failed test cases’ outputs. Our previous
work on constructing a context [10] inspires us to use pro-
gram slicing technology to realize it. Secondly, we apply
Spectrum-based Fault Localization (SFL) [11] to implement
suspicious value evaluation of the elements in the context.
Finally, we present the evaluation result to the follow-up au-
tomatic repair module to finish the repair work. Considering
the popularity and influence of GenProg, we apply our ap-
proach on it, that is, we replace GenProg’s original fault lo-
calization module with ours. The experimental results show
that our approach can effectively reduce the number of in-
valid patches generated, significantly reduce the time cost,
and thus improve the whole performance of automatic re-
pair.

2. Fault Localization Using Failure-Related Contexts
(FLFC)

M. Weiser first proposed program slicing” to assist re-
searchers in debugging programs[12]. Since M. Weiser’s
approach is static program slicing, it considers all data and
control dependency in all possible inputs and thus obtains
relatively large slices. For reducing the size of those slices,
B. Korel and J. Laski [13] proposed dynamic program slic-
ing by considering all data and control dependency in a spe-
cific input. By using the data and control dependency, re-
searchers use program slicing technology to identify those
statements that have direct or indirect data and control de-
pendency with a failure, and those statements are denoted
as a slice. More specifically, when a failure happens in
a program, its faulty output should be related to the fault.
Therefore, we conduct backward slicing on the faulty out-
put to obtain a slice. The statements of this slice have
data and control dependency on the computation value of
the faulty output. The previous studies [10], [14], [15] have
shown that this slice can effectively include the faulty state-
ments and some critical statements relevant with the faults.
It means that if automatic repair conduct mutation opera-
tions on the elements of this slice to generate patch candi-
dates, it may have a higher probability to obtain a valid patch
among the patch candidates and thus reduce the number of
invalid patches and the whole repair time. Based on the
analysis above, we propose an approach called Fault Local-
ization using Failure-related Contexts (FLFC), to construct
failure-related contexts and thus give more guidance on the
follow-up patch generation and verification. The main idea
of FLFC is to implement SFL on the statements appearing
in the failure-related context to get the fault localization re-

In this paper, program slicing is backward slicing and they are
used interchangeably.
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sult. So our goal is to replace the original fault localization
module of GenProg with FLFC. The following content will
describe the process of FLFC.
Step 1: Construct a failure-related context. A failure-
related context is defined by backward slicing. First, a back-
ward slice is usually defined by two factors: a statement s
in the program and a variable v at the statement s. Give a
slicing criterion (s, v), backward slicing will output a set of
statements (denoted as a slice) that affect the computation
of the value of variable v at statement s. Suppose that we
have a failed test case 7, and the variable v at the statement
sy outputs the faulty value that mismatches the value in the
test oracle. A failure-related context for the failure of #; is
a backward slice against the faulty output of the failed test
case t, that is, it is the backward slice in case of the slic-
ing criterion (vs, s¢). Thus, a failure-related context for #;
can identify those statements affecting the faulty value that
leads the program to have a failure. For automatic repair, the
follow-up patch generation will apply mutation operations
on those statements to generate patch candidates. Since the
statements of a failure-related context are highly related to a
failure, it means that we have a higher probability to obtain a
valid patch among the patch candidates and thus improve the
performance of automatic repair. For a given bug program,
our approach will select several critical failed test cases to
construct a failure-related context for the follow-up repair
activities.

To make our idea more explicit, we give a simple ex-
ample below:

int main(int argc, char ** argv)

1

2 {

3 int number[10];

4 int a=0,b=1,c=2,d=3;
5 while(a<20)

6 {

7 a+=b;

8

9

10 number[a]=a;

11 d=d-b;

12 c=c+d;

13

14 printf("%d" ,number[a]);
15 }

16

17 return 0;
18
19 3}

It is evident that an array boundary exception of the array
“number” happens when the variable “a” equals to 10, and
line 14 is a output statement relevant to the array “number”.
Therefore, we conduct backward slicing with a slicing cri-
terion (line: 14, varible: number) to obtain a backward slice
that can identify those statements affecting the computation
value of the variable at the line 14. This slice is the failure-
related context including the lines of 3, 4, 5, 7, 10 and 14.
As shown in this example, we successfully exclude those
lines which have no relationship with this exception.

Step 2: Evaluate each element’s suspiciousness value in
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the failure-related context. Furthermore, it is necessary
to identify the suspiciousness of being faulty for each state-
ment in the failure-related context on the program output
and give more guidance to patch generation. Therefore,
this step adopts SFL to evaluate the suspiciousness value for
the statements which only appear in the failure-related con-
text, and thus uses the suspiciousness value to measure the
magnitude of the correlation of each statement with the pro-
gram behavior (that is program output). If a statement has
a high suspiciousness value, it means that this statement has
stronger influence on the output. Therefore, the automatic
repair program will choose and mutate this statement with a
high priority in follow-up patch generation to generate patch
candidates.

In contrast, the original fault localization module of
GenProg uses SFL to evaluate the suspiciousness value of
all statements in the program. Therefore, all the statements
are potential to be mutated, and a statement with a high
suspiciousness value will have higher priority to be chosen
and mutated in follow-up patch generation to generate patch
candidates. Since the number of all statements is too large,
GenProg will perform more mutation operations on more
statements to obtain a valid patch, and thus this would de-
grade the repair performance. Actually, many statements
have no relation with the program failure so it is unneces-
sary to inspect all of them. If we can exclude those irrele-
vant statements and only evaluate the suspiciousness value
of those relevant statements instead of all statements of the
program, we can effectively narrow down the scope of the
statements to be mutated, and thus obtain a valid patch with
fewer trials. Hence, we conduct SFL on the statements only
appearing in the failure-related context from step 1 instead
of all statements. Since the failure-related context can ex-
clude those statements that have no influence on the pro-
gram output, it will highly improve the searching process
of a valid patch in the current methodology of program re-
pair. The algorithm of SFL on the failure-related context is
described as follows:

Firstly, suppose that there is a program P, with its
failure-related context S = {sy, s2,..., sy} executed in the
test case suite T = ty,%p,...,ty, Where M = |S|, N = |T|.
As shown in Fig. 1, the N X (M + 1) matrix is the input of
SFL. An element x;; is 1 if the statement s; is covered by
the execution of test case ¢;, 0 otherwise. The result vec-
tor r at the rightmost column of the matrix represents the
test results. The element r; is 1 if ¢ is failed, O otherwise.

M statements failed/passed
g1 KXo XNy n|
]

S| X Xy Xom r, t,

hod .

|

S

3

= vt Xya Xnm vl Iy
s, S, Sy

Fig.1 Input of SFL.

957

Based on the matrix defined in Fig. 1, four statistical vari-
ables are defined: ano(s;) and ap;(s;) represent the numbers
of test cases that do not execute the statement s;, and re-
turn the passing and failing test results, respectively; aio(s;)
and ay(s;) stand for the numbers of test cases that execute
s, and return the passing and failing testing results, respec-
tively. With the four statistical variables, many suspicious-
ness evaluation formulas are proposed for SFL. Eq. 1 shows
how Jaccard formula computes the suspiciousness value of
statement ;.

ai(s;)

ay1(s;) + ao1(s;) + ao(s;)

Jaccard(s;) = (D
Take the above simple program as an example. FLFC
will only evaluate the suspiciousness values of the lines of
3,4,5,7, 10 and 14, and the other lines are excluded. On
the contrary, the original GenProg will evaluate the suspi-
ciousness values of all statements.
Step 3: Input the result of FLFC into the patches gen-
eration to conduct automatic repair. This step input the
result of FLFC into the patches generation stage, that is, we
present the statements in the failure-related context and their
suspiciousness values to the follow-up process. The patch
generation module will apply mutation operations only on
the statements appearing in the failure-related context. It
will first choose and mutate those statements with a high
suspiciousness value to generate patch candidates. In con-
trast, the original GenProg will evaluates the suspiciousness
values for all statements, which means those statements ir-
relevant to the faulty output also have the chance to be cho-
sen and mutated in the follow-up process.

3. Experimental Study
3.1 Subject Programs and Evaluation Metrics

To evaluate our approach, the experiments selected the sub-
ject C programs used in the most recent work [7] on Gen-
Prog as the experimental benchmarks. Since the automatic
repair needs a lot of computational resources, the current
experiments include 10 different bugs. Table 1 lists the pro-
grams, lines of code, the number of test cases and the bug
version. We prepare two different kinds of fault localization
modules: our fault localization module FLFC and the origi-
nal one of GenProg. The first module is FLFC. Since FLFC

Table1  Subject programs.
Program LOC Test Cases Version
59 bug-6{9f4d7-73757f3
31 bug-0860361d-1ba75257
33 bug-10a4985-5362170
libtift 77,000 73 bug-0fb6cf7-b4158fa
73 bug-01209c9-aaf9eb3
64 bug-5b02179-3dfb33b
73 bug-d39db2b-4cd598c
python 407,000 303 bug-69783-69784
php 1,046,000 4,986 bug-309892-309910
wireshark | 2,814,000 53 bug-37112-37111
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needs a SFL formula and the study [9] has shown that one of
many SFL formulas called Jaccard is the best suspiciousness
evaluation formula for automatic repair, we choose Jaccard
formula to perform suspiciousness evaluation. FLFC will
provide the statements only in the failure-related context and
their suspiciousness values for the follow-up patch genera-
tion process. The second module is the original fault local-
ization module of GenProg: a single Jaccard module with-
out failure-related contexts. This module will present all
statements of the program and their suspiciousness values
to the follow-up patch generation process. We will compare
their performance in program repair using the benchmark
programs. The Jaccard formula is shown in Eq. 1.

The experiments evaluate the repair performance from
two aspects, namely effectiveness and efficiency. For ef-
fectiveness, the experiments adopt Number of Candidate
Patches (NCP) [9]: the number of invalid patches generated
until a valid patch is found. A smaller NCP indicates bet-
ter effectiveness. For efficiency, we take the time consumed
during the whole repair process as the criterion. Lower time
cost represents higher efficiency.

All the experiments ran on an Ubuntu 10.04 machine
with 2.35 GHz Intel quad-core CPU and 2 GB of memory.
For each version of bugs, we ran the two different automatic
repair approaches, equipped with FLFC and the original sin-
gle Jaccard module respectively, 20 times to obtain our ex-
periment results. We choose Unravel and Gcov as our slic-
ing tools.

3.2 Results and Analysis

In order to compare the performance between FLFC and the
single Jaccard module, the study will obtain the repair time
and NCP with 10 different bugs, and analyze the experi-
ment results from two aspects: the boxplots and the paired
Wilcoxon-Signed-Rank Test.
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Figure 2 and Fig. 3 use the boxplots to show the re-
pair time and NCP of FLFC over Jaccard. As shown in
the two figures, the repair time and NCP of the GenProg
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equipped with FLFC are apparently smaller than the Gen-
Prog equipped with the single Jaccard module. It shows that
FLFC improves the repair performance in both effectiveness
and efficiency. More specifically, the average decrease of the
repair time is 39.74% against using the single Jaccard mod-
ule. It demonstrates that FLFC can significantly speed up
the automatic repair process. Furthermore, the average de-
crease of NCP is 38.37%, and it shows that FLFC can con-
siderably reduce the number of invalid patches generated.

Although the boxpolts provides a visual comparison,
the result is not rigorous enough. Therefore, we further con-
duct a more rigorous and scientific comparison: the paired
Wilcoxon-Signed-Rank Test[16]. The study performs two
paired Wilcoxon-Signed-Rank Test: the repair time of 20
times on each version using FLFC v.s. that of using sin-
gle Jaccard, and the NCP of 20 times on each version using
FLFC v.s. that of using single Jaccard. Each test uses both
the 2-tailed and 1-tailed checking at the o level of 0.05.

Table 2 illustrates the p value of Wilcoxon-Signed-
Rank test on repair time and NCP by comparing FLFC with
Jaccard. As shown in Table 2, FLFC obtains BETTER re-
sults over Jaccard on all versions. It means that the repair
time and NCP using FLFC significantly tends to be less than
using Jaccard.

Based on the above results of the boxplots and
Wilcoxon-Signed-Rank test, we conclude that FLFC is ef-
fective to improve the automatic repair performance.

4. Conclusion

From the perspective of automatic repair, this paper pro-
poses a fault localization approach using failure-related con-
texts to improve the repair performance. We apply our
approach to the state-of-the-art automatic repair technique
GenProg, and compare our approach with the best fault lo-
calization technique in GenProg. The experimental results
show that constructing failure-related contexts is effective to
guide the follow-up patch generation activities and finally
improve the automatic repair performance.
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