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LETTER

Detection of S1/S2 Components with Extraction of Murmurs from
Phonocardiogram

Xingri QUAN†, Nonmember, Jongwon SEOK††, and Keunsung BAE†a), Members

SUMMARY The simplicity is a type of measurement that represents
visual simplicity of a signal, regardless of its amplitude and frequency
variation. We propose an algorithm that can detect major components of
heart sound using Gaussian regression to the smoothed simplicity profile
of a heart sound signal. The weight and spread of the Gaussians are used
as features to discriminate cardiac murmurs from major components of a
heart sound signal. Experimental results show that the proposed method
is very promising for robust and accurate detection of major heart sound
components as well as cardiac murmurs.
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1. Introduction

Detection of S1 and S2 components from a heart sound sig-
nal, i.e., a phonocardiogram (PCG), is generally the first step
in heart sound analysis for the automated diagnosis of heart
disorders. Many algorithms have been reported so far, and
most of them are based on the energy or time-frequency
characterization of the signal [1]–[3]. But they are mostly
affected by amplitude and frequency variations of the heart
sounds. Recently, simplicity that shows a large value in the
regions where the major components of the PCG occur has
been proposed as a new measure [4], [5]. The advantage of
simplicity measure is that it is robust to amplitude and fre-
quency variation of a heart sound signal.

This letter presents a heart sound segmentation algo-
rithm that can detect S1, S2 effectively from the patholog-
ical heart sound signals containing various types of cardiac
murmurs. It employs Gaussian regression to the smoothed
simplicity profile of a heart sound signal, and discriminate
cardiac murmurs from S1 and S2 components by examining
the weight and spread of the Gaussians.

2. Simplicity Profile of a Heart Sound Signal

The simplicity is calculated on the frame basis. First take
the N data samples as an analysis frame. Then construct
a subframe whose length is m. Here m is called an em-
bedding dimension. We can construct p = N − m + 1
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subframes within the analysis frame by shifting sample-
by-sample. Then these subframes construct a data matrix
X(m × p) to compute the simplicity. The procedure to get
the simplicity profile can be summarized as follows.

• Construct a data matrix X for a given PCG.
• Generate a covariance matrix C, where XT denotes the

transpose of X and p is for normalization.

C = XT X/p (1)

• Obtain a diagonal matrix D whose elements are eigen-
values of C sorted in descending order. Then get the
normalized eigenvalue λ̂ j with Eq. (3).

D = diag(λ1, λ2, . . . , λm), λ1 > λ2 > · · · > λm (2)

λ̂ j =
λ j∑m

k=1 λk
, j = 1, 2, . . . ,m (3)

• Calculate the entropy and complexity defined as
Eqs. (4) and (5).

H =
m∑

j=1

λ̂ jlog2λ̂ j (4)

Ω = 2H (5)

• The simplicity is then obtained by Eq. (6).

simplicity = 1/Ω (6)

• Shift the analysis frame by one sample, and repeat the
steps for the given PCG.

Figure 1 shows both an energy contour and a smoothed
simplicity profile of a PCG, which contains a systolic mur-
mur of aortic stenosis. The sampling frequency of the sig-
nal is 8 kHz. For simplicity computation, we set N = 50,
m = 10, and a moving average with length 100 is used to get
the smoothed simplicity profile. The zero mean unit vari-
ance white Gaussian noise with scale factor of 0.02 is also
added to the amplitude normalized PCG to improve discrim-
inating capability of the simplicity profile between its major
components and background noise [6]. From the Fig. 1, we
can see the robustness of the simplicity against energy mea-
sure with respect to amplitude and frequency variation.

3. Extraction of Major Components of the PCG Using
Gaussian Regression

The proposed simplicity-based heart sound analysis method
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Fig. 1 Comparison of energy contour with simplicity profile for a patho-
logical PCG.

Fig. 2 Block diagram of the proposed method.

to detect S1, S2 and cardiac murmurs is shown in Fig. 2.
First, we pick up one cardiac cycle of the smoothed sim-
plicity profile using its autocorrelation. Then it is neces-
sary to remove the baseline offset of the simplicity profile
to fit Gaussians well to the major components and cardiac
murmurs separately. After removing the baseline offset, the
simplicity profile is fitted using Gaussian regression given
by Eq. (7).

f (x) =
l∑

i=1

aiexp

⎡⎢⎢⎢⎢⎢⎣−
(

x − bi

ci

)2⎤⎥⎥⎥⎥⎥⎦ (7)

where ai is a weighting factor, l denotes the number of Gaus-
sians, bi and ci correspond to mean and spread, respectively.
The values of ai, bi, and ci are obtained using nonlinear
least square method. Considering S1, S2, and cardiac mur-
murs, the number of Gaussians should be at least equal to or
greater than three, and we set l = 5, empirically.

Figure 3 shows the result of S1, S2 detection using the

Fig. 3 Results of S1, S2 detection using the proposed method.

Table 1 Gaussian regression parameters for the PCG in Fig. 3.

proposed Gaussian regression method. We can see that very
accurate time gating is obtained after removing Gaussians
correspond to cardiac murmurs. In Table 1, typical values
of Gaussian regression parameters for a pathological PCG
shown in Fig. 3 are given. Here G1 ˜G5 represent fitted
Gaussians to the simplicity profile, and ( · ) stands for the
heart sound component corresponds to each Gaussian. In
the Table 1, we can find that the ratio of ai and ci, i.e.,
ri as given in Eq. (8) shows a big difference between S1,
S2 components and murmurs. It can be used to discrimi-
nate them and extract Gaussians corresponding to cardiac
murmur components using an appropriate threshold. To de-
termine appropriate threshold value, we used the histogram
of ri of all Gaussians for S1, S2 components and murmurs.
Figure 4 shows the distribution of ri value using histogram
analysis. It is obvious that S1/S2 components and murmurs
occupy different regions in Fig. 4. Using the histogram, we
set the threshold value to 1.6.

ri = (ai/ci) × 1000 (8)
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Fig. 4 Histogram value for ri.

Table 2 Experimental result of S1 and S2 detection.

If we remove Gaussians corresponding to cardiac mur-
murs, the remaining Gaussians belong to S1 and S2 com-
ponents. In order to get accurate gating for S1 and S2 sep-
arately, adjacent overlapped Gaussians are merged if they
are located very near. The criterion for merging adjacent
Gaussians is whether one is within two times of standard
deviation (

√
2 c) of the other. Finally decision of S1 and

S2 from two Gaussians is made based on the general medi-
cal domain feature that the duration of systole period is less
than the diastole period.

4. Experimental Results

The heart sound signals used in this work were obtained
from [7], and the sampling rate was converted from 44.1
kHz to 8 kHz. We selected 22 files of normal heart sounds
and 21 pathological ones containing various types of car-
diac murmurs. In case of normal sounds, it is not difficult
to detect S1/S2 components. Even with a simple energy, we
can easily discriminate S1/S2 components from the normal
sounds.

Figure 5 shows some detection results for various
pathological PCGs and their Gaussian regression. We can
see that the proposed method works quite well for various
types of systolic and diastolic murmurs. Once S1 and S2
are detected from the PCG we can identify the location and
characteristics of cardiac murmurs, which can help the di-
agnosis of heart valve abnormalities. Table 2 shows the suc-
cess rate of correct time gating of S1 and S2. It is shown
that the proposed method outperforms the simplicity-based
fuzzy-c means clustering method [5].

5. Conclusion

This letter presented a simplicity-based heart sound segmen-
tation method. It uses the weight and spread of multiple
Gaussians as feature parameters to discriminate S1, S2 of
the PCG from cardiac murmurs. Experimental results have

Fig. 5 Examples of some heart sound detection results. (a) AS (Aortic
Stenosis heart sound), (b) MS (Mitral Stenosis), (c) early AS (early Aortic
Stenosis).
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shown that the proposed is very promising for robust de-
tection of major components of the PCG and extraction of
cardiac murmurs.
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