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A Compressive Regularization Imaging Algorithm for
Millimeter-Wave SAIR

Yilong ZHANG†a), Nonmember, Yuehua LI†b), Member, Guanhua HE††, and Sheng ZHANG††, Nonmembers

SUMMARY Aperture synthesis technology represents an effective ap-
proach to millimeter-wave radiometers for high-resolution observations.
However, the application of synthetic aperture imaging radiometer (SAIR)
is limited by its large number of antennas, receivers and correlators, which
may increase noise and cause the image distortion. To solve those prob-
lems, this letter proposes a compressive regularization imaging algorithm,
called CRIA, to reconstruct images accurately via combining the sparsity
and the energy functional of target space. With randomly selected visi-
bility samples, CRIA employs l1 norm to reconstruct the target brightness
temperature and l2 norm to estimate the energy functional of it simultane-
ously. Comparisons with other algorithms show that CRIA provides higher
quality target brightness temperature images at a lower data level.
key words: millimeter wave, SAIR, compressive regularization, imaging
algorithm

1. Introduction

Millimeter-wave imaging radiometer (MMIR) is a method
of forming images through the passive detection of
millimeter-wave radiation from a scene. It offers advantages
over visible light and infrared imaging. Moreover, because
of the significantly different brightness temperature between
metal objects and the background, MMIR can be used to
detect concealed metal objects in near-field. These benefits
make MMIR an ideal imaging modality for remote sensing,
safety check, and military applications [1].

However, current MMIR systems suffer from several
limitations in terms of poor spatial resolution which is at-
tained in size of antenna apertures. Aperture synthesis tech-
nology represents an effective approach to millimeter-wave
radiometers for high-resolution observations with moder-
ately sized antennas [2], [3].

SAIR measures the correlation between pairs of many
nondirective antennas to achieve a larger aperture antenna,
realizing high-resolution. Obviously, this approach meets
the problem of big data processing, which traditional FFT
and method based on the G matrix of SAIR cannot reduce.

In terms of solving contradictions between achieving
larger aperture antenna and reducing the amount of data
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processing, Compressive sensing (CS) theory is applied to
G matrix method of SAIR via the sparsity of target bright-
ness temperature images based on l1 norm [4], [5]. But as
non-adaptive measurements of CS, priori information is ig-
nored which can help correct target brightness temperature
images.

In this letter, we propose a compressive regularization
imaging algorithm, called CRIA, for millimeter-wave SAIR
to reconstruct images accurately via combining the sparsity
(l1 norm) and priori information which is the energy func-
tional (l2 norm) of target space [6]. Firstly, we randomly
select part of visibility samples as we set the observation
matrix is an identity matrix which is incoherence with DCT
matrix. Then, the random number will help establish the ba-
sis matrix of target brightness temperature images which is
made up of the G matrix of SAIR and DCT matrix. Bright-
ness temperature images can be reconstructed by minimiz-
ing l1 norm and l2 norm of images simultaneously at last.

2. Model of Millimeter-Wave SAIR

Millimeter-wave SAIR measures the correlation value,
namely the visibility function, between pairs of spatially
separated antennas. Binary interferometer is the basic unit
of SAIR. The geometric relationship of interferometry is
shown in Fig. 1.

Antenna array is located on the plane z = 0 while the
radiation source S is on the plane z = R. Assuming that
the radiation source S is dispersed into N small parts. The
visibility function can be expressed as:

Vc,l =

N∑
n=1

T (xn, yn)Fc(xn, yn)F∗l (xn, yn)e− jK(Rc
n−Rl

n)ΔS n

(1)

Fig. 1 Interference measurement schematic
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Where T (xn, yn) is target brightness temperature images as-
suming that the interferometer is an ideal narrowband sys-
tem, Fc(xn, yn) and Fl(xn, yn) are the normalized antenna
pattern of antenna c and l. The distance Rc

n and Rl
n are

processed approximately by Taylor expansion in far-field of
SAIR, on which traditional FFT and G matrix method are
established, so traditional FFT and G matrix method need
phase compensation in near-field. Here, the distance Rc

n and
Rl

n will be processed accurately to establish a new G matrix
suitable for both far-field and near-field. Thus, Eq. (1) can
be expressed as:

Vc,l =

N∑
n=1

T (n)FcF∗l e− jKΔR (2)

ΔR =
√

(xn − Xc)2 + (yn − Yc) + R2

−
√

(xn − Xl)2 + (yn − Yl) + R2

(3)

Hence rewrite Eq. (2) into the matrix form:

VM×1 = GM×NTN×1 (4)

G(m, n) = Fc(xn, yn)F∗l (xn, yn)e j2πΔRmn/λ (5)

ΔRmn =

√
(xn − Xml)2 + (yn − Yml) + R2

−
√

(xn − Xmc)2 + (yn − Ymc) + R2

(6)

Based on Eq. (4), Eq. (5) and Eq. (6), CRIA will reconstruct
target brightness temperature images accurately with part of
visibility function.

3. Compressive Regularization Imaging Algorithm

Sparse representation has been a powerful approach to im-
age restoration. The basic model of sparse representation in
image denoising is expressed as:

∧
θi j = arg min

θi j

∑
i j

∥∥∥θi j

∥∥∥
0
s.t.D · θ = x (7)

The image x can be approximated to a sparse linear combi-
nation of the columns with a basis matrix D. Thus we can re-

cover a sparse approximation
∧
θ for x by D. For target bright-

ness temperature T of SAIR, Eq. (4) will be rewrote to:

VM×1 = GM×N DT
N×NT ′N×1 (8)

Where DN×N is an orthonormal basis constructed by dis-
crete cosine transform (DCT). In the actual measurement
of SAIR, ε2(V : T ) is the error functional and E2(T ) is the
energy functional, they are expressed as:

ε2(V : T ) = ‖GT − V‖2F (9)

E2(T ) = ‖T‖2 (10)

Based on the CS theory, the reconstruction method of SAIR
can be expressed as:

min
∥∥∥T ′∥∥∥

0
s.t.
∥∥∥∥∥
∧
ΦGDT T ′ − ∧V

∥∥∥∥∥
2
≤ ε (11)

Where
∧
Φ is constructed by m measurements vectors uni-

formly randomly selected from sensing matrix Φ which is

the identity matrix.
∧
V is the result of m measurements.

Based on regularization with error functional and energy
functional, reconstruction method of SAIR can be expressed
as:

min ‖GT − V‖2s.t. ‖T‖
2
≤ E (12)

CRIA employs l1 norm to reconstruct the target brightness
temperature and l2 norm to estimate the energy functional
of it simultaneously. Mathematically, the new functional of
CRIA is expressed as:

Lλ1 ,λ2 (V : T ) =
∥∥∥∥∥
∧
ΦGDT T ′ − ∧V

∥∥∥∥∥
2
+ λ1

∥∥∥T ′∥∥∥
1
+ λ2

∥∥∥T ′∥∥∥
2

(13)

We explain each term of the new functional in detail as fol-
lows: The first and second terms are the reconstruction con-
straint. The reconstructed image should be consistent with
the observation with respect to the imaging model and re-
constructed by sparsest solution to reduce data calculation
and denoising. The third term enforces the l2 norm con-
straint as priori information and energy functional is consid-
ered, for T represents the intensity of radiation sources at
millimeter-wave waveband, which can be estimated priori.
Thus CRIA aims to solve:

min Lλ1 ,λ2 (V : T ) (14)

The proposed functional of CRIA involves nonsmooth and
nonseparable l1 norm terms which is hard to be minimized
directly. Thus, CRIA adopts k-th gradient iteration to solve
the minimization problem in cooperation with l2 norm [7].
The main idea is tantamount to convert the unconstrained
minimization problem into several easy constrained convex
problems. Set function as:

f (X) =
∥∥∥∥∥
∧
ΦGDT X − ∧V

∥∥∥∥∥
2

(15)

f (X) is a smooth convex function and is continuously differ-
entiable with Lipschitz gradient. So,

Xk = arg min
X
{ f (Xk−1)+ < (X − Xk−1),∇ f (Xk−1 >

+ 1
2tk
‖X − Xk−1‖2}

(16)

where tk equals to reciprocal of Lipschitz constant of func-
tion f (X). Thus Eq. (14) becomes:

T ′k = arg min
T ′
{ f (T ′k−1)+ < (T ′ − T ′k−1),∇ f (T ′k−1 >

+ 1
2tk
‖T ′ − T ′K−1‖2 + λ1‖T ′‖1 + λ2‖T ′‖2}

(17)

Or equivalently:

T ′k = arg min
T ′
{1 + 2λ2tk

2tk

∥∥∥T ′ −Ck

∥∥∥
2
+ λ1

∥∥∥T ′∥∥∥
1
} (18)

Where
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Table 1 CRIA algorithm.

Input:
∧
Φ,
∧
V , K, λ1, λ2, D, N.

Output: target brightness temperature T .
Algorithm:

Step 1: calculate
∧
Φ ·G · DT according to Eq. (4);

Step 2: set k = 1, T ′k−1 = zero(N);
Step 3: update by using Eqs. (15), (20);
Step4: k + 1, if k < K, repeat from step3, otherwise go to step5;
Step5: calculate T by using T = DT · T ′

Ck =
T ′k−1 − tk∇ f (T ′k−1)

1 + 2λ2tk
(19)

Equation (18) can be divided into N constrained convex
problems which can be solved respectively. Thus original
nonsmooth and nonseparable l1 norm terms could be solved
easily. The solution of Eq. (18) is:

T ′k = max{|Ck | − λ1tk
1 + 2λ2tk

, 0} × sign(Ck) (20)

Then unconstrained minimization problem of CRIA can be
easily solved by Eq. (15) and Eq. (20). CRIA is summarized
in Table 1.

4. Experimental Results

In this section, we demonstrate the performance of the CRIA
and give the image and numerical comparison with the sim-
ilar algorithm: MFFT, method based on G matrix and CS
method with the same parameters of SAIR with different
noise levels. Among the compared algorithms, only the CS
method supports images reconstruction with part of visibil-
ity samples while MFFT, method based on the G matrix
need entire visibility samples. In order to be able to include
MFFT and method based on the G matrix in the compar-
isons, we perform two simulation experiments.

The performance of all methods is evaluated by using a
64 × 64 square image of ideal target brightness temperature
distribution of plane shown in Fig. 2 which will be formu-
lated as a vector (4096 × 1) by all algorithms. The gray
value of images represents the intensity of radiation sources
at frequency of 34GHz with an ideal bandwidth of 200MHz,
where the metal plane has a minimum brightness tempera-
ture compared with the background. CRIA will reconstruct
brightness temperature of the whole scene more accurately
with this priori information. Parameters of SAIR are estab-
lished in Table 2. Based on Eq. (4), the number of visibility
samples (M = 2500) equals to the number of the row vec-
tor of G matrix, which also means CS method CRIA just
need to calculate the corresponding row vector of G matrix
based on Eq. (5) and Eq. (6) according to the selected part of
visibility samples, that means a great reduction of the data
processing. We use the peak signal-to-noise ratio (PSNR) as
an objective measure of reconstruction quality and the zero-
mean white Gaussian noise as received noise.

In first experiments, reconstruction images of Fig. 2
by MFFT and G matrix using entire visibility samples, CS

Fig. 2 Ideal scene of target brightness temperature distribution of plane

Table 2 Simulation parameters of SAIR.

Simulation parameters value
Center frequency 34GHz
scene size 1m × 1m
image pixel size 64 × 64
gray value of image 0∼1
Imaging distance 10m
Antenna array 70 × 70
minimum antenna spacing 24mm
Entire G size 2500 × 4096
visibility samples 50 × 50
variance of received noise 0∼0.14

Fig. 3 Reconstruction images of plane. (a), (b), (c), (d) are reconstructed
by MFFT, G matrix, CS with 70% of visibility samples, CRIA with 70%
of visibility samples, respectively.

method and CRIA using 70% of visibility samples with-
out noise are shown in Fig. 3. CRIA produces a more vi-
sually pleasing result, compared with the results of other
methods. The PSNR performance of all methods of recon-
struction images of Fig. 2 with different variance Gaussian
noise is shown in Fig. 4, while CRIA and CS still use 70% of
visibility samples. We can see that the PSNR performance
of CRIA is the best with any different variance Gaussian
noise compared to the other three. And with the increase
of Gaussian noise, PSNR performance of CRIA decreases
much more slowly, which means CRIA has strong ability of
denoising.

In second experiments, CS and CRIA are evaluated by
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Fig. 4 Mean reconstruction PSNR comparison for all algorithms with
different variance Gaussian noise

Fig. 5 Mean reconstruction PSNR comparison for CS and CRIA with
different usage percent of visibility samples

Fig. 6 Reconstruction PSNR comparison for CS and CRIA with 200 it-
eration steps

different usage percent of visibility samples ranging from
10% to100%, the PSNR performance of them for the recon-
struction images of Fig. 2 without noise is shown in Fig. 5.
The PSNR performance of CRIA is better than CS without
received noise of any usage percent of visibility samples and
while using entire visibility samples, CS even cannot work.

With variance Gaussian noise is 0.1, we do compar-
isons of CS and CRIA in different number of iterations and
the result is shown in Fig. 6. Result shows the PSNR per-
formance of CS is unstable with interference by noise and
CRIA is more robust.

5. Conclusion

In this letter, we have proposed a compressive regulariza-
tion imaging algorithm, called CRIA, for millimeter-wave
SAIR to reconstruct images via combining the sparsity and
priori information. With randomly selected visibility sam-
ples, CRIA reconstruct images by minimizing l1 norm and
l2 norm of target brightness temperature images simulta-
neously. Experimental results demonstrate that CRIA pro-
vides higher quality target brightness temperature images at
a lower data level and performs very robustly with received
noise. In the current model, CRIA formulates brightness
temperature images as a vector which limits the image size
and future work incorporating structured matrix completion
to CRIA is being developed.
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