
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014
2827

PAPER

Static Mapping with Dynamic Switching of Multiple Data-Parallel
Applications on Embedded Many-Core SoCs

Ittetsu TANIGUCHI†a), Member, Junya KAIDA†, Nonmember, Takuji HIEDA††, Yuko HARA-AZUMI†††,
and Hiroyuki TOMIYAMA†, Members

SUMMARY This paper studies mapping techniques of multiple appli-
cations on embedded many-core SoCs. The mapping techniques proposed
in this paper are static which means the mapping is decided at design time.
The mapping techniques take into account both inter-application and intra-
application parallelism in order to fully utilize the potential parallelism of
the many-core architecture. Additionally, the proposed static mapping sup-
ports dynamic application switching, which means the applications mapped
onto the same cores are switched to each other at runtime. Two approaches
are proposed for static mapping: one approach is based on integer linear
programming and the other is based on a greedy algorithm. Experimental
results show the effectiveness of the proposed techniques.
key words: many-core SoCs, application mapping, system-level design,
embedded systems

1. Introduction

The embedded System-on-Chip (SoC) architecture has
shifted from single-core to multi-core paradigm to real-
ize improvements in power/performance efficiency, and it
is now heading towards the many-core era. In order to
fully utilize the high parallelism of the many-core archi-
tecture, mapping of application software onto cores is one
of the important technologies. Especially in embedded
SoCs, application mapping needs to take into account not
only application-level parallelism (inter-application paral-
lelism) but also data parallelism within applications (intra-
application parallelism). One reason is that, unlike scientific
applications, the amount of data parallelism inherent in in-
dividual embedded applications is limited. Another reason
is that many embedded applications are essentially parallel.

This paper proposes two techniques for mapping mul-
tiple applications onto homogeneous many-core SoCs for
embedded systems. The proposed techniques consider both
inter-application and intra-application parallelisms simulta-
neously, and the mapping is determined at a design time.
Additionally, proposed static mapping allows dynamic ap-
plication switching such that the applications mapped onto
the same cores are switched to each other at runtime. When
some applications are not executed simultaneously, sharing

Manuscript received January 9, 2014.
Manuscript revised June 17, 2014.
†The authors are with Ritsumeikan University, Kusatsu-shi,

525–8577 Japan.
††The author is with Kyushu University, Fukuoka-shi, 819–

0395 Japan.
†††The author is with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
a) E-mail: i-tanigu@fc.ritsumei.ac.jp

DOI: 10.1587/transinf.2014EDP7012

of cores brings effective CPU utilization among these appli-
cations. One of the proposed techniques is an exact solution
approach based on Integer Linear Programming (ILP), and
the other is based on a greedy algorithm. In order to maxi-
mize the benefit of the mapping, two techniques decide the
number of cores to be used for each application.

The rest of this paper is structured as follows. Related
works are reviewed in Sect. 2. The static mapping problem
is described in Sect. 3. Application mapping techniques are
proposed in Sect. 4, and Sect. 5 shows experimental results.
Finally, Sect. 6 concludes this paper.

2. Related Work

Application mapping for multi/many-core architectures has
been an important research topic for many years. Recent
studies include [1] which proposes a heuristic algorithm for
static application mapping on multi-core embedded sys-
tems. The work supports application mapping to hardware
accelerators as well as CPU cores, but data parallelism is
not considered. In other words, an application is assigned
a single core. Techniques presented in [2]–[5] take into ac-
count data parallelism within applications (intra-application
parallelism) as well as application-level parallelism (inter-
application parallelism). Their methods perform schedul-
ing and mapping simultaneously, aiming at minimization of
schedule length or pipeline throughput. Our work presented
in this paper is similar to their works in a sense that we try
to find the optimal number of cores for each application.
However, our software model is different from their mod-
els – our models target multiple applications running con-
currently and repeatedly at different execution rates, while
their models take a task graph (i.e., a set of dependent ap-
plications) of a single application and try to minimize the
execution time of a single activation of the application or
to maximize the pipeline throughput. Our software model
is widely applicable, and such embedded system is useful.
Applications may be independent or dependent.

For such embedded systems, we studied static and ex-
clusive application mapping of multiple data-parallel appli-
cations [6]. In our previous research, applications are exclu-
sively mapped onto cores shown in Fig. 1. Exclusive map-
ping means that no two applications use the same cores,
and such mapping takes big advantages in terms of the
runtime overhead as demonstrated in [7]. In this paper,
we propose two static application mapping, which allows

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



2828
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

Fig. 1 An example of exclusive application mapping [6].

the dynamic application switching, including an ILP-based
technique and a greedy algorithm. Contribution of this re-
search is to loose the mapping constraints from previous
research [6]. This paper proposes the new mapping tech-
niques to support dynamic application switching such that
two applications share the same cores. Proposed mapping
techniques introduce the information whether two applica-
tions need to be executed in parallel or not, and realize the
dynamic application switching. Since proposed mapping
handles dynamic application switching at runtime, CPU uti-
lization is improved drastically. Proposed mapping also in-
cludes conventional exclusive mapping. To the best of our
knowledge, this is the first paper which studies the static ap-
plication mapping for such embedded systems.

3. Static Application Mapping Problem

3.1 Many-Core Architecture and Application Models

In this paper, we assume homogeneous many-core architec-
tures with shared memory such as the SMYLEref architec-
ture [8]. It is also assumed that the execution time of an
application does not depend on the physical position of the
application unless the application is assigned the same num-
ber of cores.

We assume embedded systems where multiple appli-
cations run in parallel. The applications are repeatedly ex-
ecuted at runtime in a cyclic way. Their execution can be
periodic, aperiodic or sporadic, and their execution repeti-
tion rates may differ between applications. We implicitly
assume that the applications are independent of each other.
It is still possible to apply this work to dependent applica-
tions, but the obtained mapping results may not be optimal
depending on how much the applications communicate with
each other.

3.2 Dynamic Application Switching

In this work, applications are mapped onto cores in a static
way. Static mapping means that application mapping de-
cision is made at design time, and the applications never
migrate over the cores at run time. Also, our mapping sup-
ports dynamic application switching, which means the ap-
plications mapped onto the same cores are switched to each

Fig. 2 An execution example of exclusive application mapping (w/o dy-
namic application switching).

Fig. 3 An execution example of dynamic application switching.

other at runtime. Since some applications may not be exe-
cuted simultaneously, sharing of cores brings effective CPU
utilization among these applications. Therefore, proposed
static mapping tries to utilize the cores to share with appli-
cations exclusively executed.

Figure 2 and Fig. 3 show execution example of exclu-
sive mapping [6] and mapping supporting dynamic applica-
tion switching proposed in this paper, respectively. X-axis
means the execution time, and Y-axis means the core ID. As
shown in Fig. 2, no two applications share the same cores
because the applications are exclusively mapped. The exclu-
sive mapping is necessary when applications are guaranteed
to be executed in parallel. However, when specific applica-
tions are guaranteed to be never executed in parallel, these
applications can share the same cores. This is a big oppor-
tunity to improve CPU utilization, but previous research [6]
does not take into account this opportunity at all. The dy-
namic application switching proposed in this paper exploits
the opportunity to share the same cores. When we prelimi-
narily know the following two applications never execute in
parallel, the execution shown in Fig. 3 is available.

• Applications 1 and 2
• Applications 1 and 3

These information becomes the input of the mapping prob-
lem. Comparing the two mapping results shown in Fig. 2
and Fig. 3, the dynamic application mapping obviously
achieved higher throughput, and CPU utilization is drasti-
cally improved. Notice that proposed mapping techniques



TANIGUCHI et al.: STATIC MAPPING ON EMBEDDED MANY-CORE SOCS
2829

Fig. 4 Tiles.

Fig. 5 Tiling example.

are applicable not only periodic execution, but also aperi-
odic or sporadic execution.

3.3 Problem Description

In order to describe a mapping problem, we introduce a con-
cept of tile. A tile is a set of cores on which a single appli-
cation can be mapped. Figure 4 shows an SoC with four
cores. For simplicity without loss of generality, we assume
that each application may use one, two or four cores. In this
case, the 4-core SoC has the following seven ways of tiling.

• Tile 1: Core 1
• Tile 2: Core 2
• Tile 3: Core 3
• Tile 4: Core 4
• Tile 5: Cores 1 and 2
• Tile 6: Cores 3 and 4
• Tile 7: Cores 1, 2, 3 and 4

For easy understandings, Fig. 5 also shows the above men-
tioned tiling examples. We say that two tiles are overlapped
if those tiles have at least one identical core. In case of
Fig. 5, Tiles 1 and 5 are overlapped, but Tiles 3 and 5 are
not overlapped. Apparently, if two applications need to run
in parallel, the tiles of the two applications must not be over-
lapped.

In general, the execution time and energy consump-
tion of an application depend on the number of cores which

Fig. 6 Normalized performance on different number of cores [6].

the application uses. Figure 6 shows the normalized per-
formance of eight application programs from the SPLASH-
2 benchmark suite executed on the Graphite cycle-accurate
multi-core simulator [9]. For each program, we changed the
number of cores from 1 to 256, and measured the number of
execution cycles. The graph shows that eight programs fea-
ture different performance scalability curves. For example,
the performance of ocean contiguous scales up nicely until
128 cores, but it drops at the point of 256 cores. Barnes
continuously scales up to 256 cores, but the performance
improvement is relatively lower than ocean contiguous.
Cholesky does not scale up at all.

As we see in Fig. 6, different applications present dif-
ferent performance scalability curves, meaning that the op-
timal number of cores to be assigned depends on the appli-
cation. In addition, we have to remind that the total number
of cores is limited. For example, let us consider a scenario
where we need to map barnes and randix onto a 64-core
SoC. Of course, we cannot allocate 64 cores to both of the
two applications because we have only 64 cores in total. In
this case, assigning 32 cores to each application is a natural
solution.

In the example above, we used the normalized perfor-
mance as a metric for application mapping, but in practice
we need to consider other factors such as energy consump-
tion. Hereafter, for generality, let gain be a metric which
indicates not only performance, but also energy consump-
tion and other important factors.

Let gaini, j indicate the gain of i-th application when
the application is assigned j cores. We assume that gaini, j

for each application is given prior to application mapping.
Then, the static application mapping problem is defined as
follows: Given gaini, j for each application and the total
number of cores available, determine the number of cores
for each application so that the total gain is maximized.



2830
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

4. Static Application Mapping Techniques

4.1 An ILP-Based Technique

In order to obtain optimal results of static application map-
ping with dynamic switching, this section explains an ILP-
based technique.

Let gaini, j be the gain of application i in case it is
mapped to tile j. Then we introduce a decision variable
mapi, j: mapi, j takes 1 if application i is mapped to tile j,
otherwise 0. Then, the object of this problem is to maxi-
mize following function:

maximize:
∑

i

∑

j

mapi, j × gaini, j (1)

In order to describe feasibility of the mapping result,
we introduce two symbols: paralleli1,i2 and overlap j1, j2.
paralleli1,i2 indicates whether two applications need to be
executed in parallel or not. paralleli1,i2 takes 1 if applica-
tions i1 and i2 need to be executed in parallel, otherwise
0. overlap j1, j2 indicates whether two tiles are overlapped or
not. overlap j1, j2 takes 1 if tiles j1 and j2 are overlapped,
otherwise 0. Then we call the mapping is feasible (not over-
lapped) when following formula becomes true for all com-
binations of applications and tiles.

∀(i1, i2, j1, j2),
(
paralleli1,i2 = 1

)→((
mapi1, j1 · overlap j1, j2 = 0

)
(2)

∨
(
mapi2, j2 · overlap j1, j2 = 0

))

Now we assume that applications i1 and i2 are never exe-
cuted in parallel (paralleli1,i2 = 0). Then the applications i1
and i2 can be freely mapped to any tiles. On the other hand,
we assume that applications i1 and i2 need to be executed
in parallel (paralleli1,i2 = 1). Then the applications i1 and
i2 are respectively mapped to the tiles j1 and j2 only if the
tiles j1 and j2 are not overlapped (overlap j1, j2 = 0). If the
tiles j1 and j2 are overlapped (overlap j1, j2 = 1), mapi1, j1

or mapi2, j2 takes 0. Therefore, the feasible mapping is ob-
tained.

Additionally, following formula becomes true.

∀i,
∑

j

mapi, j = 1 (3)

Solving the ILP formulation by ILP solver, we obtain
the optimal mapping result. However, it takes long time to
solve the large-scale problem, and effective mapping algo-
rithm is necessary.

4.2 A Greedy Algorithm

This section describes proposed mapping algorithm to solve
the same problem formulated by ILP in our previous sec-
tion. The proposed mapping algorithm is based on simple

Table 1 Example of overlap j1, j2.

Tile j1
Tile j2 1 2 3 4 5 6 7

1 1 0 0 0 1 0 1
2 0 1 0 0 1 0 1
3 0 0 1 0 0 1 1
4 0 0 0 1 0 1 1
5 1 1 0 0 1 0 1
6 0 0 1 1 0 1 1
7 1 1 1 1 1 1 1

Table 2 Example of gaini, j.

Application i
Tile j 1 2 3 4

1 10 20 5 10
2 10 20 5 10
3 10 20 5 10
4 10 20 5 10
5 20 40 10 15
6 20 40 10 15
7 20 80 15 30

greedy, and selects the better tile for each application to in-
crease gain as much as possible. The initial solution is a
solution such that each application is randomly assigned to
each unique core, and any overlap is not allowed to keep fea-
sibility of the initial solution. Thus the tiles such that each
core is only assigned must be prepared in the set of tiles.
Then proposed algorithm is described as follows:

1. The initial solution is generated.
2. Following procedures are iterated until all applications

are updated only once.

a. Find a combination of the application and the tile
to earn the largest gain increment. Then the up-
dated mapping must keep its feasibility.

b. Finish finding new mapping, and decides the se-
lected tile as the mapping results for the applica-
tion.

3. Output the mapping result.

Since the algorithm iterates the update for each appli-
cation, the complexity of the algorithm becomes O(Ntile ·
N2

appl), where Ntile and Nappl means the number of tiles and
applications, respectively. Notice that the proposed algo-
rithm keeps feasibility of the mapping results. Therefore the
number of cores must be more than the number of applica-
tions in order to obtain the feasible initial solution.

For easy understanding, we demonstrate the proposed
algorithm. Now we assume a 4-core SoC with the tiling
shown in Fig. 5. Then overlap j1, j2 is extracted as shown in
Table 1. Since Tile 1 and Tile 5 are overlapped, overlap1,5

and overlap5,1 take 1. On the other hand, overlap1,6 and
overlap6,1 take 0 because Tile 1 and Tile 6 do not share any
cores. We also assume four applications, and gaini, j and
paralleli1,i2 are defined in Table 2 and Table 3.

Figure 7 shows mapping procedures by the proposed
algorithm. Step 1 in Fig. 7 shows an initial solution, and
each application is assigned to each unique core. In order to



TANIGUCHI et al.: STATIC MAPPING ON EMBEDDED MANY-CORE SOCS
2831

increase gain as much as possible, the algorithm checks the
largest gain increment for each application. For Application
1, changing the mapping from Tile 1 to Tile 5 brings the
largest gain increment (gain1,5 − gain1,1 = 10) keeping the
feasibility of solution because two applications executed in
parallel are not mapped on overlapped tiles. For example,
Application 1 mapped on Tile 6 and Application 3 mapped
on Tile 3 are not executed in parallel. For Application 2,
mapping to Tile 7 brings the largest gain increment (gain2,7−
gain2,2 = 60) keeping the feasibility because Application
2 is not executed with any other applications in parallel as
shown in Table 3. However, Application 3 and 4 are not
changed the mapping to Tile 5, 6 or 7 because Application
1, 3 and 4 are executed in parallel, and given tiles do not
allow to increase the gain under the constraint. Then the
mapping of Application 2 is changed from Tile 2 to Tile 7
like Step 2 in Fig. 7.

In the same way, the mapping of Application 1 is
changed from Tile 1 to Tile 5 like Step 3 in Fig. 7. No-
tice that Application 3 and 4 are not updated the mapping as
mentioned before, and the mapping result in Step 3 in Fig. 7
becomes the output.

Table 3 Example of paralleli1,i2.

Application i1
Application i2 1 2 3 4

1 0 0 1 1
2 0 0 0 0
3 1 0 0 1
4 1 0 1 0

Fig. 7 Example of mapping algorithm.

5. Experiments

In order to demonstrate the efficiency of proposed mapping
techniques, we compared the results obtained by the ILP-
based technique and the greedy algorithm. Notice that the
ILP-based technique obtains optimal results. The ILP prob-
lem was solved with IBM CPLEX12.5, and all experiments
were performed on Intel Xeon (2.0GHz, 16cores/32thread)
and 128GB memory machine.

We prepared three sets of application programs based
on the SPLASH-2 benchmark suite. Benchmark set 1,
2, and 3 include 4, 8, and 16 application programs, re-
spectively. Benchmark set 1 includes lu non contiguous,
ocean contiguous, ocean non contiguous, and water −
nsquared from the SPLASH-2 benchmark suite. Bench-
mark set 2 includes eight application programs shown in
Fig. 6. Benchmark set 3 includes the same two programs
for each application program.

The values of the two-dimensional matrix paralleli1i2

are randomly decided based on density d, which indicates
the percentage of value 1. d = 100% indicates paralleli1i2 =

1 for any two applications, meaning that all applications
should run in parallel. On the other hand, d = 0% indicates
that all cores are available to every application. Notice that
d = 100% also means any two applications cannot run in
parallel, and this corresponds to the exclusive mapping [6].

In this experiment, we suppose the application is
mapped to neighboring 2n cores. Figure 8 shows tiling ex-
ample for 16 cores. In this experiment, for 16 cores, we
prepared tiles with 1 core, 2 cores, 4 cores, 8 cores, and 16
cores. The number of tiles with 1 core, 2 cores, 4 cores,
8 cores, and 16 cores are 16, 8, 4, 2, and 1, respectively.
Therefore the number of tile for 2n cores is 2n+1−1. We per-
formed the experiment on 2n cores ranging from the number
of applications to 1024 cores.

Table 4, 5, and 6 show comparisons of gain for each
benchmark set. We varied the density d from 0% to 100%,
and the number of cores. “Greedy” and “ILP” mean the re-
sults obtained by proposed greedy algorithm and ILP-based
technique. Notice that “—” mark indicates that the map-
ping result cannot be obtained by out of memory. Table 7

Fig. 8 Example of tiling for 16 cores.



2832
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

Table 4 Comparison of gain (benchmark set 1 (#application=4)).

d = 0% d = 25% d = 50% d = 75% d = 100%
#Cores Greedy ILP Greedy ILP Greedy ILP Greedy ILP Greedy ILP

4 18.4 18.4 9.0 9.0 9.0 9.0 6.1 6.1 4.0 4.0
8 38.7 38.7 18.4 18.4 14.3 18.4 12.7 13.4 10.6 11.0

16 75.0 75.0 38.7 38.7 30.8 38.7 27.3 28.2 24.4 24.4
32 144.7 144.7 75.0 75.0 60.3 75.0 53.7 58.0 48.5 48.5
64 231.0 231.0 144.7 144.7 119.0 144.7 109.3 109.3 100.8 100.8

128 309.1 309.1 231.0 231.0 192.2 231.0 184.1 187.9 172.6 172.6
256 312.0 312.0 309.1 309.1 266.3 309.1 262.4 273.8 250.5 262.0
512 312.0 312.0 312.0 312.0 309.1 312.0 309.1 312.0 309.1 309.1

1024 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0 312.0

Table 5 Comparison of gain (benchmark set 2 (#application=8)).

d = 0% d = 25% d = 50% d = 75% d = 100%
#Cores Greedy ILP Greedy ILP Greedy ILP Greedy ILP Greedy ILP

8 61.8 61.8 29.3 29.7 16.3 21.8 12.8 18.6 8.0 8.0
16 113.7 113.7 57.4 58.8 39.6 43.5 37.9 40.1 23.8 23.8
32 206.4 206.4 107.4 111.5 74.9 83.3 78.3 79.1 49.8 49.8
64 318.5 318.5 195.6 204.5 145.9 157.7 154.2 157.2 104.8 105.0

128 423.6 423.6 316.9 316.9 241.3 261.8 257.0 264.0 182.3 182.6
256 439.0 439.0 422.4 422.4 343.1 381.7 368.7 381.7 272.4 283.9
512 439.0 439.0 438.4 438.4 432.1 435.5 421.6 422.4 391.9 391.9

1024 439.0 439.0 439.0 439.0 439.0 439.0 439.0 439.0 435.4 435.5

Table 6 Comparison of gain (benchmark set 3 (#application=16)).

d = 0% d = 25% d = 50% d = 75% d = 100%
#Cores Greedy ILP Greedy ILP Greedy ILP Greedy ILP Greedy ILP

16 227.4 227.4 65.3 92.2 39.8 67.5 22.0 46.8 16.0 16.0
32 412.9 412.9 168.3 175.8 112.2 131.5 83.4 97.1 47.6 47.6
64 637.1 637.1 314.0 332.8 239.7 250.8 188.2 195.9 111.9 111.9

128 847.3 847.3 514.9 542.3 424.1 436.8 346.9 351.4 210.2 217.8
256 877.9 877.9 723.4 753.5 644.3 654.7 534.0 563.0 328.0 371.8
512 877.9 877.9 855.1 877.9 806.0 833.8 760.9 766.0 538.3 568.9

1024 877.9 — 877.9 — 874.5 — 860.0 — 736.4 —

Table 7 Comparison of runtime [sec] (benchmark set 3 (#application=16)).

d = 0% d = 25% d = 50% d = 75% d = 100%
#Cores Greedy ILP Greedy ILP Greedy ILP Greedy ILP Greedy ILP

16 < 0.1 0.5 < 0.1 21.0 < 0.1 11.6 < 0.1 20.6 < 0.1 1.2
32 < 0.1 1.8 < 0.1 15.1 < 0.1 21.2 < 0.1 20.0 < 0.1 5.0
64 < 0.1 7.2 < 0.1 10.9 < 0.1 54.7 < 0.1 38.4 < 0.1 14.7

128 < 0.1 30.0 < 0.1 41.7 < 0.1 90.8 < 0.1 121.4 < 0.1 25.4
256 < 0.1 117.3 < 0.1 162.4 < 0.1 253.2 < 0.1 404.1 < 0.1 285.3
512 < 0.1 461.6 < 0.1 640.8 < 0.1 826.9 < 0.1 1173.7 < 0.1 1109.7

1024 < 0.1 — < 0.1 — < 0.1 — < 0.1 — < 0.1 —

also shows comparison of CPU time for benchmark set 3
under the same condition of Table 6.

First of all, previous ILP-based technique did not ob-
tain the results in all cases because of out of memory. Es-
pecially, for benchmark set 3, ILP-based technique only ob-
tained the results less than one third of all combinations of
density and cores. However, the proposed greedy algorithm
obtained in all cases. As shown in Table 7, runtime for all
cases were less than 0.1 sec. Since the complexity of pro-
posed greedy-based algorithm is polynomial order, the pro-
posed algorithm is practical in terms of runtime.

In terms of the quality of the solutions, the greedy algo-
rithm obtained almost optimal results in most cases. How-

ever, some results have measurable difference between op-
timal results, and relative error was about 15% to 25%. Es-
pecially, in case d = 75% on benchmark set 3, relative error
was more than 50%, and further improvement is necessary.
Notice that the quality of the solution is largely depends on
the initial solution, the set of tiles, etc. Preparing various
tiles brings further opportunity to find a better solution in
greedy-based iteration, and it is expected that the results be
improved more and more. Therefore, the proposed greedy
algorithm is quite practical in terms both of runtime and
quality.

Figure 9 is plotted results of ILP shown in Table 5.
As shown in Fig. 9, smaller density d, which means looser



TANIGUCHI et al.: STATIC MAPPING ON EMBEDDED MANY-CORE SOCS
2833

Fig. 9 Results of ILP-based mapping for benchmark set 2 (#applica-
tion=8).

mapping constraints, brings larger gain for all cases. For
example, in case total number of cores was 64, the case
d = 0% earns more than three times larger gain than the
case d = 100%, the result obtained by the exclusive map-
ping [6]. This means the gain largely increases by allowing
parallel execution and dynamic switching.

6. Conclusions

In this paper, we have proposed static mapping with dy-
namic switching of multiple applications on embedded
many-core SoCs. The mapping techniques proposed in this
paper take into account both inter-application and intra-
application parallelisms in order to fully utilize the poten-
tial parallelism of the many-core architecture. Additionally,
proposed mapping supports dynamic application switching,
which means the applications mapped onto the same cores
are switched to each other at runtime. Two approaches are
proposed for static mapping: one approach is based on inte-
ger linear programming and the other is based on a greedy
algorithm. Experimental results show that the proposed
mapping obtained the results less than 0.1 second for each
case, and the effective and practical mapping is available.

At present, this work does not assume that applications
have deadline constraints. In the future, we will take into
account deadline constraints of individual applications.

Acknowledgments

The authors would like to thank Professor Koji Inoue and
Professor Hiroshi Sasaki for their support to conduct the ex-
periments. This work was in part supported by NEDO.

References

[1] Y. Ando, S. Shibata, S. Honda, H. Tomiyama, and H. Takada, “Fast
design space exploration for mixed hardware-software embedded sys-
tems,” SoC Design Conference (ISOCC), 2011 International, pp.92–
95, 2011.

[2] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A framework for
exploiting task and data parallelism on distributed memory multicom-
puters,” IEEE Trans. Parallel Distrib. Syst., vol.8, no.11, pp.1098–
1116, Nov. 1997.

[3] H. Yang and S. Ha, “Ilp based data parallel multi-task map-
ping/scheduling technique for mpsoc,” SoC Design Conference, 2008.
ISOCC ’08. International, pp.I–134–I–137, 2008.

[4] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling
technique for mpsoc,” Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09, pp.69–74, 2009.

[5] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T.
Kurc, P. Sadayappan, and J. Saltz, “An integrated approach to locality-
conscious processor allocation and scheduling of mixed-parallel ap-
plications,” IEEE Trans. Parallel Distrib. Syst., vol.20, no.8, pp.1158–
1172, 2009.

[6] J. Kaida, Y. Hara-Azumi, T. Hieda, I. Taniguchi, H. Tomiyama, and
K. Inoue, “Static mapping of multiple data-parallel applications on
embedded many-core socs,” IEICE Trans. Inf. & Syst., vol.E96-D,
no.10, pp.2268–2271, Oct. 2013.

[7] H. Xiao, T. Isshiki, A.U. Khan, D. Li, H. Kunieda, Y. Nakase, and S.
Kimura, “A low-cost and energy-efficient multiprocessor system-on-
chip for uwb mac layer,” IEICE Trans. Inf. & Syst., vol.E95-D, no.8,
pp.2027–2038, Aug. 2012.

[8] M. Kondo, S. Nguyen, T. Hirao, T. Soga, H. Sasaki, and K. Inoue,
“Smyleref: A reference architecture for manycore-processor socs,”
Design Automation Conference (ASP-DAC), 2013 18th Asia and
South Pacific, pp.561–564, 2013.

[9] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C.
Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed paral-
lel simulator for multicores,” High Performance Computer Architec-
ture (HPCA), 2010 IEEE 16th International Symposium on, pp.1–12,
2010.

Ittetsu Taniguchi received B.E., M.E., and
Ph.D. degrees from Osaka University in 2004,
2006, and 2009, respectively. He is currently a
lecturer at Ritsumeikan University, Japan. From
2007 to 2008, he was a Ph.D. researcher at
IMEC, Belgium. His research interests include
system level design methodology, and combina-
torial optimization problems. He is a member of
IEEE, ACM, IEICE, and IPSJ.

Junya Kaida received B.E. and M.E. from
Ritsumeikan University in 2012 and 2014, re-
spectively. His research interests include many-
core architecture and application mapping tech-
niques.



2834
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

Takuji Hieda received Bachelor of Engi-
neering and Master and Doctor of Information
Science and Technology degrees from Osaka
University in 2005, 2007, and 2011, respec-
tively. From 2011 through 2013, he was a re-
search fellow in the Research Organization of
Science and Engineering, Ritsumeikan Univer-
sity. He has been a Research Fellow in the Fac-
ulty of Information Science and Electrical En-
gineering, Kyushu University. His research in-
terests include compiler optimization and design

space exploration for embedded processors. He is a member of IEEE,
IEICE, and IPSJ.

Yuko Hara-Azumi received her Ph.D. de-
gree in computer science from Nagoya Uni-
versity in 2010. From 2010 to 2012, she
was a JSPS postdoctoral research fellow at Rit-
sumeikan University. In 2012, she joined the
Graduate School of Information Science, Nara
Institute of Science and Technology, as an assis-
tant professor. Since 2014, she has been with
the Graduate School of Science and Engineer-
ing, Tokyo Institute of Technology, where she
is currently an associate professor. Her research

interests include system-level design automation for embedded/dependable
systems. She currently serves as organizing and program committees of
several premier conferences including ICCAD, ASP-DAC, RTCSA, and so
on. She is a member of IEEE, IEICE and IPSJ.

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu Uni-
versity in 1999. From 1999 to 2001, he was a
visiting postdoctoral researcher with the Center
of Embedded Computer Systems, University of
California, Irvine. From 2001 to 2003, he was
a researcher at the Institute of Systems & In-
formation Technologies/KYUSHU. In 2003, he
joined the Graduate School of Information Sci-
ence, Nagoya University, as an assistant profes-
sor, and became an associate professor in 2004.

In 2010, he joined the College of Science and Engineering, Ritsumeikan
University as a full professor. His research interests include design au-
tomation, architectures and compilers for embedded systems and systems-
on-chip. He currently serves as editor-in-chief for IPSJ Transactions on
SLDM. He has also served on the organizing and program committees of
several premier conferences including ICCAD, DAC, DATE, ASP-DAC,
CODES+ISSS, and so on. He is a member of ACM, IEEE, IPSJ and IEICE.


