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A VMM-Level Approach to Shortening Downtime of Operating
Systems Reboots in Software Updates

Hiroshi YAMADA†a), Nonmember and Kenji KONO††, Member

SUMMARY Operating system (OS) reboots are an essential part of up-
dating kernels and applications on laptops and desktop PCs. Long down-
time during OS reboots severely disrupts users’ computational activities.
This long disruption discourages the users from conducting OS reboots,
failing to enforce them to conduct software updates. Although the dy-
namic updatable techniques have been widely studied, making the sys-
tem “reboot-free” is still difficult due to their several limitations. As a re-
sult, users cannot benefit from new functionality or better performance,
and even worse, unfixed vulnerabilities can be exploited by attackers.
This paper presents ShadowReboot, a virtual machine monitor (VMM)-
based approach that shortens downtime of OS reboots in software updates.
ShadowReboot conceals OS reboot activities from user’s applications by
spawning a VM dedicated to an OS reboot and systematically producing
the rebooted state where the updated kernel and applications are ready for
use. ShadowReboot provides an illusion to the users that the guest OS
travels forward in time to the rebooted state. ShadowReboot offers the
following advantages. It can be used to apply patches to the kernels and
even system configuration updates. Next, it does not require any special
patch requiring detailed knowledge about the target kernels. Lastly, it does
not require any target kernel modification. We implemented a prototype in
VirtualBox 4.0.10 OSE. Our experimental results show that ShadowReboot
successfully updated software on unmodified commodity OS kernels and
shortened the downtime of commodity OS reboots on five Linux distribu-
tions (Fedora, Ubuntu, Gentoo, Cent, and SUSE) by 91 to 98%.
key words: virtual machines, software updates

1. Introduction

Operating system (OS) reboots are an essential part of up-
dating contemporary kernels and applications on our lap-
tops and desktop PCs. In updating a kernel, an OS reboot
is typically invoked to terminate the older kernel and start
the newer one after the update patches are applied. OS ker-
nels are still being developed to improve their performance,
add new functionality, and repair security vulnerabilities.
The Linux Foundation reports that on average 3.83 patches
are applied to the Linux kernel tree every hour between the
2.6.11 and 2.6.30 kernel [1].

An OS reboot is also required for updating applica-
tions. Application updates sometimes involve system con-
figuration changes such as Windows Registry keys and
shared component updates such as glibc and WebKit. To ac-
tivate updates, we commonly conduct an OS reboot, which
is the easiest way to restart all applications. For example, an
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OS reboot is often needed for updates of Internet Explorer
and Safari because they involve changing Windows Registry
keys and updating WebKit.

The downtime during OS reboots, however, severely
disrupts users’ computational activities. While an OS is re-
booting, the user cannot perform his or her computational
tasks. This disruptive downtime is becoming longer and
more costly since there are more and more software updates.
Although announced updates should be applied as soon as
possible since they often fix critical vulnerabilities, the long
disruption caused by the OS reboots discourages users from
rebooting OSes, so they often fail to update software. As a
result, users cannot benefit from new functionality or better
performance, and even worse, unfixed vulnerabilities can be
exploited by attackers. A research literature [2] notes that
“many desktop machines are not rebooted to apply kernel
patches because of the burden imposed by rebooting”.

To eliminate the need for an OS reboot with software
updates, dynamic updatable kernels are effective for apply-
ing patches to the kernels at runtime. However, making the
systems “reboot-free” is still difficult even when using dy-
namic updatable kernels for the following reasons. First,
some of these kernels are designed for fixing bugs in the ker-
nel code region, such as condition misses [2]. Therefore, it is
difficult to manage the semantic changes to memory objects,
such as when adding a new field to a data structure. They
also cannot manage system configuration updates because a
restart of all the processes is not involved. In these cases,
we have no choice but to conduct an OS reboot. Second,
some dynamic updatable kernels require intimate knowl-
edge about the target kernels [3], [4]. To use them, we have
to develop special patches from the original ones. This task
is non-trivial because it requires knowledge about the inter-
nal structures of the target kernels at the source code level.
Lastly, we have to pay a high engineering cost for redesign-
ing and modifying a large part of the target kernel [5]–[7].
This is difficult and often impossible because recent kernels
are more complex and some are closed-source and/or pro-
prietary. We believe that there is room for improvement in
managing OS reboots in software updates.

Our goal is to mitigate the disruption to users’
computational tasks caused by OS reboots to encourage
users to conduct software updates as soon as possible.
ShadowReboot, presented in this paper, is a virtual machine
monitor (VMM)-based approach to shortening downtime of
OS reboots in software updates. ShadowReboot conceals
OS reboot activities by spawning a VM dedicated to an OS
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reboot and systematically producing a rebooted state. In
ShadowReboot, users can run their applications while si-
multaneously rebooting the OS. ShadowReboot engenders
an OS reboot effect by restoring the produced rebooted state
where the updated kernel and applications are ready for use.
It provides an illusion to users that an OS travels forward in
time to the rebooted state.

The main contributions of this paper are as follows:

• We propose ShadowReboot, which offers the following
advantages: (1) It shortens the downtime during soft-
ware updates, thus mitigating the disruption to users’
application activities. (2) ShadowReboot can be used
to apply any patch to the kernels and even to update
system configuration. (3) It does not require intimate
knowledge about the target kernels at the source code
level; we do not have to develop kernel modules or
special patches. (4) ShadowReboot requires no mod-
ification of the target kernels. These features make
ShadowReboot complementary to existing systems and
dynamic updatable kernels.
• We clarify mechanisms required to achieve

ShadowReboot, and show it is applicable to five real
Linux distributions (Fedora, Ubuntu, Gentoo, Cent,
and SUSE). In Sect. 7, we describe how the Linux
distributions have been configured to be suitable for
ShadowReboot.
• We implement ShadowReboot and evaluate a proto-

type on VirtualBox 4.0.10 OSE with the five real
Linux distributions. The experiments also show that
ShadowReboot successfully updates software on un-
modified Linux kernels and the downtime caused by
ShadowReboot is 91 to 98% shorter than that of com-
modity OS reboots on the five Linux distributions.

Note that ShadowReboot does not keep the memory
states of user’s running applications through the restora-
tion of the rebooted state. Although process migration ap-
proaches can be used to move the running applications to the
rebooted state, selecting processes to be migrated is a chal-
lenge because the components linked to the migrated pro-
cesses would conflict with the newer ones in the rebooted
state. The challenge of keeping running applications’ states
across an OS reboot in software updates is out of the scope
of this paper. Fortunately, we can quickly restore the appli-
cations’ states after shadow-rebooting by taking advantage
of the applications’ support that saves their states to disks,
such as a FireFox extension of restoring the contents in each
tab.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes previous approaches, and Sect. 3 presents
key observations and an overview of ShadowReboot. Sec-
tions 4 and 5 describe the design and implementation of
ShadowReboot, respectively. Section 6 discusses limita-
tions and a use case of ShadowReboot. Section 7 details
our experimental results and Sect. 8 describes work related
to ours. Finally, Sect. 9 concludes this paper.

2. Previous Approaches

In this section, we discuss previous approaches that have a
similar goal of managing OS reboots for software updates
before presenting ShadowReboot.

2.1 Dynamic Update Techniques

Dynamic updatable kernels are effective for applying
patches to the kernels at runtime so that we do not need to
conduct an OS reboot. Exploring dynamic updatable tech-
niques for kernels is a hot research topic. Ksplice [2] fixes
kernel vulnerabilities at runtime by safely translating the bi-
naries in the kernel memory. DynAMOS [4] and LUCOS [3]
make use of special patches to dynamically update the target
kernel. K42 [5]–[7] is an architecture of dynamic updatable
kernels.

Although dynamic updatable kernels have been exten-
sively studied, making the system “reboot-free” is still dif-
ficult for the following three reasons. First, the applicabil-
ity of existing dynamic updatable kernels is often limited.
Some of them fix bugs in the kernel code region such as con-
dition misses and array bounds-checking errors. Ksplice [2]
dynamically translates the function code at a safe time when
no thread’s instruction pointer falls within that function’s
text and when no thread’s kernel stack contains a return ad-
dress within that text. Such approaches are designed to ma-
nipulate the text region, not to handle memory objects in
the kernel heap region. Therefore, it is difficult to manage
the semantic changes to memory objects such as adding a
new field to a data structure. Additionally, these approaches
are not inherently suitable for updating non-quiescent kernel
functions that are always on the call stack of kernel threads.
These updates still require rebooting the OS. Also, these ap-
proaches do not manage system configuration changes and
shared component updates since the running processes are
not restarted.

Second, some approaches need intimate knowledge
about the target kernel. To benefit from such approaches,
we have to develop special patches from the original ones.
This task is non-trivial because it requires detailed knowl-
edge on both the target kernel and the original patches at the
source code level. The special patches include a procedure
that checks whether the current kernel state is safe to dy-
namically translate code and memory objects. LUCOS [3]
forces users to implement new functions that can handle ker-
nel memory objects to keep them consistent before and after
the translation. In DynAMOS [4], users have to investigate
how the target functions are called by kernel threads and im-
plement a routine that consistently updates the target func-
tions. As pointed out in [3], developing special patches is a
tedious and error-prone engineering task.

Lastly, we sometimes have to pay high engineer-
ing costs of redesigning and modifying a large part of
the kernels. To incorporate K42’s dynamic updatable
functions [5]–[7] into commodity OS kernels, we have to
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redesign the target kernels in an object-oriented manner.
Modifying commodity OS kernels is difficult and often im-
possible because recent kernels are complex and some are
closed-source and/or proprietary.

To eliminate the need for restarting applications in their
updates, application-level dynamic update techniques have
been widely explored [8]–[11]. These techniques dynam-
ically update applications at runtime, but have limitations
similar to the dynamic updatable kernels described above;
some of them cannot handle semantical updates and others
require the source code of the target applications. In addi-
tion, their applicability to kernel updates is obscure because
kernels are much more complex than applications.

2.2 Cluster Environments

Techniques of managing OS reboots have been traditionally
explored in cluster computing environments. A typical ex-
ample is a cluster rolling upgrade. This technique prepares
a spare node that is used by applications when the OS is
rebooted on the original node. An administrator shifts the
applications from the original node to the spare node, shuts
down the original node for software updates, then shifts the
applications back to the original.

However, it is not reasonable to apply this model to
a single machine such as a desktop PC or laptop. This is
because rolling upgrades require a spare machine. To use
the rolling upgrade model, a desktop PC or laptop user has
to prepare a spare machine only for software updates.

To help cluster rolling upgrades, some approaches per-
form process migration. Autopod [12] migrates processes
from the original node to the spare one to mitigate the
impact of OS reboots on the services. MicroVisor [13]
conducts process migration between two virtual machines
(VMs) connected to a shared network storage such as an
NFS server and a SAN. An administrator runs applications
in one VM and maintains the kernel in the other VM. When
maintenance finishes, the applications running on the older
kernel in the first VM are migrated to the newer kernel in
the second VM. Finally, the first VM is discarded.

Although these approaches successfully hide the down-
time of kernel maintenance, process migration is not suit-
able for system configuration changes and shared compo-
nent updates. Since migrated processes run with the con-
figuration of the older OS, their states remain older on the
newer OS. If the libraries linked with the migrated pro-
cesses conflict with ones in the newer OS, the processes
may not run correctly, or even worse, crash. An adminis-
trator has to determine which configuration or component
is updated, and carefully choose the processes that can be
migrated to avoid configuration mismatch of processes be-
tween the older and newer OS. This is quite difficult partic-
ularly for proprietary OSes such as Windows since update
behavior such as with Windows Updates is unknown even
to the administrators.

Fig. 1 ShadowReboot and current approaches.

2.3 Summary

From the above discussion, we believe that there is an im-
portant room for managing an OS reboot in software up-
dates. In this work, we explore a way to manage down-
time of OS reboots, overcoming the limitations of current
approaches. Figure 1 summarizes the relationship between
ShadowReboot and current approaches. ShadowReboot is
complementary to these approaches. Suppose that a soft-
ware update is announced. If a dynamic updatable kernel is
running, we first try to dynamically apply the update. If the
update cannot be applied or the running kernel does not sup-
port dynamic updatable features, we invoke ShadowReboot.
If the update still cannot be applied, we finally conduct a
normal OS reboot.

3. Key Observations and ShadowReboot

ShadowReboot allows users to keep their applications run-
ning while the OS is rebooting. To produce an OS reboot
effect successfully, ShadowReboot introduces a directory
view and constraints based on file accesses patterns of users’
applications and OS reboots. In this section, we describe
key observations behind ShadowReboot, its overview, and
its semantics.

3.1 Key Observations

In ShadowReboot, we exploit the file access patterns of
commodity OSes during their reboots in software updates.
We checked the directories and files accessed during the
OS reboots after software updates. To obtain the names,
we started monitoring the file accesses when an OS shut-
down operation is triggered after a software update is com-
pleted. We continued to monitor the file accesses until the
OS displays a login prompt. We ran five Linux distribu-
tions: Fedora Core 10 (fedora), Ubuntu 9.04 (ubuntu),
Gentoo Linux 2007.0 (gentoo), CentOS 5.3 (cent), and
OpenSUSE (suse). Their configurations are in default. For
the five Linux distributions, we applied a kernel patch to
each kernel and updated each glibc library.
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Fig. 2 An overview of ShadowReboot.

The results from the five Linux distributions show that
during each reboot they all access the administrative files
but never the user files in /home. All the Linux distribu-
tions frequently access files in /lib in their boot phase be-
cause almost all the daemon processes are linked to the glibc
shared library whose files are stored in /lib/. In addtion, the
files in /etc are often accessed because the configuration files
are conventionally in /etc. Each Linux distribution performs
slightly different file accesses due to the configuration dif-
ference. For example, fedora accesses /lib/libselinux.so,
while gentoo does not. This is because gentoo does not
support the selinux service that fedora does.

These results indicate that files accessed during OS re-
boots tend to be in administrative directories that cannot
be modified without an administrative privilege. In other
words, almost no files in user directories, such as files in
/home directories, are accessed. The characteristics of the
file access patterns give us the following points. Even if we
heavily modify files in the user directories while the OS is
simultaneously rebooting, the modification does not inter-
fere with the reboot activity. Moreover, the modification of
files in administrative directories by service processes such
as Linux daemons and Windows services does not disturb
common users’ applications. This motivates us to execute
the users’ tasks and an OS reboot in parallel.

3.2 ShadowReboot

ShadowReboot leverages system virtualization. Virtual ma-
chine monitors (VMMs) are a software layer on which exist-
ing OS kernels can be executed without any modification. A
new feature implemented inside a VMM becomes available
to all the guest OSes running on it. System virtualization
is commonplace in desktop PCs and laptops as well as data
centers.

An overview of ShadowReboot is shown in Fig. 2.
ShadowReboot executes users’ tasks in parallel with the
OS reboot. To create the context of an OS reboot,
ShadowReboot spawns a VM dedicated to an OS reboot,
called a reboot-dedicated VM. It has a copy of the
virtual disks of the original VM and identical resources
such as memory and registers. In ShadowReboot, an OS
is rebooted on the reboot-dedicated VM after software

updates are applied, while the user is executing applica-
tions on the original VM. After the OS reboot is completed,
ShadowReboot takes a snapshot of the reboot-dedicated
VM. ShadowReboot enables the user to restore the snap-
shot state at a convenient time, providing the directories
in a manner described in Sect. 3.3. This design also al-
lows us to treat a given update as a blackbox since the con-
cealed OS reboot refreshes the software component in the
same way as the normal OS reboot. Due to this advan-
tage, ShadowReboot does not require analysis of the up-
date patches and is applicable to existing updates such as
Windows Updates.

We note that applications that save some files dur-
ing their shutdown phase need to be terminated before
ShadowReboot execution in order to keep their behavior
consistent across ShadowReboot. ShadowReboot can be
performed in a conservative way if the users do not know
if such applications create and/or write some files in their
shutdown phase. In this case, we restore the snapshot gen-
erated from the reboot-dedicated VM after the original VM
shutdown has been complete since all applications are ter-
minated during the shutdown. Although this conservative
ShadowReboot guarantees consistency of such applications,
downtime gets longer. If an end user know the running
applications can behave correctly without their termination
phases, the user does not need to wait for the OS shutdown,
performs ShadowReboot if he or she wants to do.

3.3 ShadowReboot Semantics

3.3.1 Challenge

The parallel execution of the applications and OS reboot
poses a challenge: how can we to maintain disk consistency
in a rebooted state? Since files can be modified simultane-
ously by both activities of the applications and OS reboot,
we may fail to produce a reboot state users expect. For ex-
ample, when the service processes have been launched in
the concealed OS reboot before the user’s task modifies the
configuration files on the original VM, their running states
in the produced rebooted image are based on the files be-
fore modification. Another problem is that computational
results saved by the applications are overwritten when the
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concealed OS reboot activity modifies the files. As a re-
sult, some data that the user does not expect would be saved
in the application’s files. Although we can solve this prob-
lem by carefully tracking service process and users’ task be-
havior, semantically maintaining consistency is complicated
and may require users’ interaction like fsck, which would
discourage users from employing ShadowReboot.

3.3.2 ShadowReboot Directory View

To cope with this problem, ShadowReboot builds directo-
ries in the restored VM by appropriately selecting directo-
ries from the original and reboot-dedicated VM. Specifi-
cally, ShadowReboot selects the user-specified working di-
rectories in the original VM to preserve the user’s compu-
tational results during the OS reboot. The other directories
including administrative directories come from the reboot-
dedicated VM. This directory view is based on the fact that
user’s non-administrative applications tend to modify only
their own working directories, which are typically stored
in the user directory, while reading the shared libraries and
system configuration files stored in administrative directo-
ries. Also, the view allows us to maintain the consistency
between the service processes’ states and the accessed files
such as configuration files since the service processes access
the administrative directories in the reboot-dedicated VM.

For example, suppose a user is executing a video
player or a word processor during shadow-rebooting. He
or she can use these applications as usual even under the
ShadowReboot constraints since they edit files in user’s
directories and typically read administrative files such as
shared libraries. At this time, the user cannot conduct ad-
ministrative tasks such as system configuration changes due
to the constraint in order to maintain the consistency be-
tween the configuration and the service processes states
saved in the rebooted image. In the context of the OS re-
boot, the kernel and service processes are ready for use. Af-
ter the OS reboot, ShadowReboot returns the consistent re-
booted state with user’s expectations, providing its directory
view; it preserves user’s computational results in the work-
ing directories and administrative files whose contents are
consistent with the running service processes.

3.3.3 Constraints

To successfully produce a consistent rebooted state with
users’ operations, ShadowReboot enforces constraints on
the original and reboot-dedicated VM. One constraint forces
applications running on the original VM to modify only the
working directories specified in advance, which is used af-
ter the restoration of the produced snapshot. This means
that the constraint prevents the applications from updat-
ing files in the other directories that are discarded after
the restoration. Although the user cannot perform admin-
istrative tasks such as system configuration changes dur-
ing this time, ShadowReboot allows them to execute non-
administrative tasks such as web browsing and text editing.

To avoid conflicting with the applications running on the
original VM, ShadowReboot also imposes a constraint that
forbids the concealed OS reboot to modify the files in the
applications’ working directories. When file operations per-
formed in the original VM or reboot-dedicated VM violate
the constraints, ShadowReboot notifies the user of the vio-
lation and destroys the reboot-dedicated VM. After that, he
or she can try ShadowReboot again or perform a normal OS
reboot.

We can mitigate the constraints with knowledge of
the applications. Specifically, we can do this by ignoring
updates of directories defined in advance. Even if some
files are modified simultaneously by both VMs, file con-
tents are consistent with user’s file operations and service
processes’ states in the restored VM. For example, ser-
vice processes sometimes cache their data into a directory
such as /var/cache. Another example is that some processes
temporally save their results in some directories such as
/tmp. The updates in these directories can be ignored during
ShadowReboot.

Another way to mitigate the ShadowReboot constraints
is to configure applications to redirect their file writes to user
directories. By doing so, we can bring the modified files to
the restore VM. For example, if application’s log files in the
system directory are frequently updated, we can keep the
updates across ShadowReboot by changing the applications’
configuration to write their log files in user directories.

Specifically, we found three types of files for which the
constraints can be mitigated: temporary files, state files, and
log files. Temporary files include cache files such as files in
/var/cache and temporal results such as files in /tmp. Even
if these files are updated in the original VM and discarded
through the restoration of ShadowReboot, the restored VM
can consistently start, as described above. State files include
pid files such as /var/run/yum.pid and /var/run/anacron.pid,
and lock files such as /var/lock/makewhatis.lock and
/var/lock/subsys/vsftpd. Since these files depend on the
states of running service processes, we do not track updates
to them in the original VM since they are appropriately gen-
erated in the reboot-dedicated VM. Log files include appli-
cation’s logs such as /var/log/messages. The update of log
files is a main cause of violations of constraints. To solve
this problem, we reconfigure logger services to switch their
log file to files in a working directory just after spawning a
reboot-dedicated VM. By doing so, we can avoid the con-
straints violation and preserve logs containing events hap-
pened in the original VM. On the basis of these points,
we can configure the five Linux distributions to be shadow-
rebootable, as described in Sect. 7.

Note that configuration changes for end users to
make their system shadow-rebootable can be avoided com-
pletely in some scenarios. One compelling use case of
ShadowReboot is in a cloud computing platform. The cloud
provider can provide a selection of operating system images
with the ShadowReboot configuration changes already ap-
plied. Such a scenario completely eliminates the need for
the user to do any OS configuration themselves. This means
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that the user can benefit from ShadowReboot even if he or
she is a novice.

4. Design Details

Designing ShadowReboot poses several questions: (1) how
can we efficiently spawn a reboot-dedicated VM? (2) how
can we appropriately restore directories from the original
and reboot-dedicated VM? (3) how does ShadowReboot
check whether the applications and the concealed OS reboot
follow the constraints? To solve the first question, we de-
sign a VM fork, which is a technique for forking a running
VM, that is semantically based on the familiar process fork.
Against the second question, we introduce unrollback vir-
tual disks whose contents are never rolled back by snapshot
restores. Our solution for the last question is to monitor-
ing file accesses in the original and reboot-dedicated VM
to check whether each VM violates ShadowReboot con-
straints. In this section, we describe our solutions in details.

While none of the above techniques is new, the novelty
of our work is that it encompasses all of them in achieving
its goals; mitigating the disruption to users’ computational
activities caused by OS reboots in software updates by short-
ening their downtime.

Note that this paper mainly focuses on basic mecha-
nisms required for ShadowReboot, as described Sect. 1. Au-
tomatic execution of VM fork and snapshot saving/restoring
is attractive to encourage users to use ShadowReboot. Al-
though we manually invoke VM fork and snapshot opera-
tions in the current prototype, we believe that this can be
executed automatically by preparing processes issuing hy-
percalls. For example, we achieve automatic VM fork invo-
cation by modifying an updater to issue a hypercall to fork
the VM after completing the update. On the other hand,
we achieve automatic snapshot saving by preparing a last
launching service process during OS boots that issues a hy-
percall to save snapshot. Also, we do automatic snapshot
restoration by preparing a process issuing a hypercall for
snapshot restoration. This process is executed by users or
after all other processes are stopped.

4.1 VM Fork

We need an efficient approach to creating a reboot-dedicated
VM. A naive approach is to run a new VM instance with
the same configuration as the original VM. However, at ev-
ery announcement of software updates, we have to create
a new VM instance, copy the image of the VM, boot the
OS, update the software, and conduct an OS reboot. How-
ever, this is tedious and may discourage users from updating
software. Although these procedure can be automated with
an engineering cost to avoid the tedious task, time during
which the original and new VMs run in parallel is long; the
new VM is active while booted, updated and rebooted. This
long time provides more opportunities for applications to vi-
olate ShadowReboot constraints. We should make this time
as short as possible.

To create a reboot-dedicated VM efficiently and make
its active time as short as possible, we introduce a VM fork
that forks a running VM, borrowing an idea from previous
research [14], [15]. The semantics of the VM fork are sim-
ilar to those of the familiar process fork; users issue a fork
call to the VMM that creates a child VM. The child VM
inherits the runtime state of the parent VM such as memory
and registers. It then proceeds with an identical view of the
system. The child VM has its own independent copy of the
OS, virtual disk, network interface card (NIC), and snap-
shot. The state updates of the child VM are not propagated
to the parent.

To avoid network configuration conflicts between par-
ent and child VMs, we employ a way to drop in/out packets
of child VM until its shutdown is completed. And the shut-
down completion, new MAC addresses are assigned to the
child VM. This way is simple but imposes limitation that
the child VM cannot inherit network services. For example,
we cannot use networked storage services such as NFS; the
child VM cannot detach these services in a correct manner.

Our VM fork is semantically different from the other
ones [14], [15]. Flash cloning [15] swiftly clones the VM
from the reference image using a copy-on-write technique.
However, this cannot provide stateful runtime cloning; all
new VMs are copies of a frozen template. SnowFlock [14]
is designed to clone VMs to use them temporally to handle
sudden and huge workloads. It discards the state changes of
child VMs when they stop. Our VM fork preserves the disk
changes conducted by a child VM to restore the directories
of the reboot-dedicated VM.

Note that we can use a page reclaiming mechanism
running inside the VMM to efficiently utilize memory in
forking a VM. We run it if there is not enough mem-
ory space to execute a child VM, though the resources in
desktop environments are basically idle [16], [17]. We can
make use of a page sharing technique like memory balloon-
ing [18]. It allows one physical page to be shared with sev-
eral virtual pages whose contents are the same. The page
sharing mechanism reclaims the memory pages of the pro-
cess, which means the number of free memory pages in-
creases. Therefore, we can reclaim the memory pages for a
child VM without needing kernel modules such as a balloon
driver. If we need to share pages more aggressively, novel
sharing techniques [19], [20] can be employed.

4.2 Use of Unrollback Virtual Disks

To build working directories in the restored VM, we lever-
age an unrollback virtual disk that is independent of snap-
shot restoration. Unlike normal virtual disks, unrollback vir-
tual disks do not roll back even if the VM is restored to a
snapshot. By saving files into an unrollback virtual disk in
the original VM, the files are accessible in the VM restored
from a snapshot of the reboot-dedicated VM. We prepare
two policies for the use of unrollback virtual disks: all-copy
and partial-copy. Users can choose the one more suitable
for their environments.
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• All-copy policy: The all-copy policy records update
operations that occur in the working directories of
the original VM during shadow-rebooting, and replays
them on the restored VM. We start monitoring file up-
date operations (including write, remove, and rename)
to the working directories just after a reboot-dedicated
VM is spawned. When the rebooted state is about to
be restored, we mount an unrollback virtual disk on the
original VM, shut down applications, and save the file
update operations into the log in the mounted directory.
After the logging completes and the rebooted snapshot
has been restored, we mount the unrollback virtual disk
again and replay the recorded operations in the restored
VM. We can execute the all-copy policy without any
modification in the existing directory layout. However,
saving and replaying file update operations take longer
as more files are updated.
• Partial-copy policy: The partial-copy policy partially

saves and replays file update operations at the expense
of the use of the existing directory layout. Under this
policy, we assign some working directories to a par-
tition of the unrollback virtual disk. Since an unroll-
back virtual disk keeps its contents through snapshot
restoration, updated files and directories in the parti-
tion remain after the restoration of the rebooted state,
thus accessing them without replaying any file opera-
tion. We monitor file update operations to the other
working directories and log and replay them like the
all-copy policy. A typical partial-copy configuration
of Linux systems is that the mount point of the work-
ing directory (/home/users/work) is assigned to the un-
rollback virtual disk and the other directories’ mount
points are assigned to standard virtual disks. When we
restore the snapshot of the reboot-dedicated VM, the
/home/users/work directory is not restored because its
mount point is assigned to the unrollback virtual disk.

Similar to unrollback virtual disks, some approaches
can protect the files and directories from snapshot restora-
tion. We can protect them by using an additional VM on
which an NFS server is running. The files and directories
that are stored in the NFS server are not affected by snap-
shot restoration. However, this approach requires setting up
a VM and incurs network virtualization overhead that tends
to cause a large performance penalty. We can also pro-
tect the files and directories by sharing them with the host
OS. Although they are not rolled back by snapshot restora-
tion, users sometimes want isolation between the VMs and
the host to protect the host against VMs compromised by
viruses or malicious attacks.

We need to carefully configure a guest OS so that the
OS does not mount the partitions of the unrollback vir-
tual disks in its boot phase. Common file systems read
their metadata, such as super blocks, from disks only once
when the partitions are mounted. After a file system has
been mounted, it manages its metadata in memory and only
writes updates to the disks. When we take a snapshot of the

reboot-dedicated VM after the unrollback virtual disks’ par-
titions have been mounted, the restored file system states
are inconsistent with the disk contents. Since the restored
file system objects are not reflected on the disk updates con-
ducted on the original VM after the OS mounts the partitions
on the reboot-dedicated VM, the user cannot access the up-
dated contents.

4.3 File Access Monitor

To notify a user of the violation of the ShadowReboot
constraints, we have developed a mechanism that checks
whether or not user’s tasks and the OS reboot follow the
constraints. The mechanism consists of two processes. One
monitor runs on the reboot-dedicated VM and monitors file
accesses to the working directories to detect file updates vi-
olating ShadowReboot constraints. The other monitor runs
on the original VM. It monitors file operations to user-
specified working directories to log them in order to realize
the all-copy and partial-copy policies. It also monitors file
accesses to the other directories to detect the violations of
the constraints. When a violation is detected on a VM, the
process notifies the user and requests the VMM to destroy
the reboot-dedicated VM.

The file access monitor also helps us set up our system
configuration to be shadow-rebootable. Since the file ac-
cess monitor checks whether or not the system follows the
constraints through shadow-rebooting, we can configure the
service processes and our applications to be suitable for the
constraints, based on the checks. We believe that the file
access monitor makes it easier to configure the VM to be
shadow-rebootable.

5. Implementation

We implemented a prototype of ShadowReboot on
VirtualBox 4.0.10 OSE [21] and Linux. VirtualBox is an
open-source VMM for x86 hardware, where we can execute
OSes such as Windows and Linux without any modification
to them. Our prototype consists of three modules: vmm-
module, guest-module and host-module. The vmm-module
is a part of VirtualBox. It provides and performs VM fork
and unrollback virtual disks. The guest-module is a process
running on the guest OS. It executes the file access moni-
tor. The host-module runs on the host Linux executing the
VirtualBox. The host-module requests the VMM to fork a
VM and take/restore a snapshot. It exchanges network mes-
sages with the guest-module, which requests a VM fork. We
describe implementation issues of the VMM-module and
guest module in this section.

5.1 VMM Module

To implement the VM fork, we use online snapshot func-
tionality. Online snapshot functionality enables us to take a
snapshot without the downtime of the VM. When a snap-
shot of a VM is taken, VirtualBox produces two files. One
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contains the current memory image of the VM. The other
is a delta disk file for preserving the current state of the vir-
tual disk. When a VM fork is requested, the vmm-module
first registers a new VM instance for a child VM and sets
the same hardware configuration as the target VM such as
memory size and virtual disks. Next, it takes a snapshot of
the target VM and sets the child VM’s memory state to the
memory image and creates delta disk files for each virtual
disk. After that, the new VM is launched as the child VM.

To implement unrollback virtual disks, we extended a
type of virtual disk named write-through. Write-through
disks fully support read and write operations like normal
disks. The difference from normal disks is that the state
of write-through disks is not saved when a snapshot is taken
and not restored when a VM’s state is reverted. We extended
the write-through disk so that multiple VMs can connect to
them. When the VM fork is invoked, it creates two delta files
to save the disk updates committed by each VM. When we
take a snapshot of the reboot-dedicated VM and terminate
it, the snapshot is connected to the delta file for the original
VM and the other one is discarded.

5.2 Guest Module

We implemented a file access monitor on Linux with the
i-notify function. The i-notify function allows us to moni-
tor file operations for specified files and directories. When
ShadowReboot is invoked, our file access monitor starts to
record file writes, deletions, and creations to administrative
directories on the original VM. It continues to run until we
restore the snapshot of the reboot-dedicated VM. On the
other hand, it monitors the user-specified working directo-
ries on the reboot-dedicated VM. After the shutdown phase,
it does not monitor files since the the partitions containing
working directories are not mounted. To lower the moni-
toring cost, we do not monitor pseudo file systems such as
/proc and /sys, and device file directories such as /dev.

Also, the file access monitor logs file operations to
user-specified directories on the original VM and memorizes
the operated file names. The file access monitor mounts an
unrollback virtual disk just before the produced snapshot is
restored. For simplicity of the implementation, the current
prototype copies the updated files to a partition in the un-
rollback virtual disk. It copies them to the restored VM
by mounting the unrollback virtual disk in it just after the
restoration. To enhance our implementation, the use of some
tools such as versioning systems is attractive for effectively
managing file update operations.

6. Discussion

Although the prototype is runnable only on Linux platforms,
we believe that ShadowReboot can be applied to other OS
platforms. Our vmm-module can be reused for other OSes
running on the VirtualBox since it is a part of the VMM.
The file access monitor can be implemented with file I/O
monitoring mechanisms supported by the target OS. For

example, Windows supports the filter driver mechanism that
allows us to monitor file system events. One of our future
directions is to implement a file access monitor on Windows,
configure Windows to be shadow-rebootable, and confirm
the effectiveness of ShadowReboot.

We note that ShadowReboot cannot handle all types of
software updates: it fails to manage software updates that in-
volve accessing the directories on unrollback virtual disks.
This behavior violates the ShadowReboot constraints, which
means that our file access monitor detects this violation and
stops shadow-rebooting. In this case, the user needs to con-
duct a normal OS reboot.

Controlling the resource usage of a reboot-dedicated
VM is another challenge. If the reboot-dedicated VM obtru-
sively utilizes computational resources, it interferes with the
original VM so severely that we cannot adequately do our
tasks. To minimize the interference of the reboot-dedicated
VM, we schedule it as a background task and the origi-
nal VM as a foreground task. Many schemes for prop-
erly scheduling foreground and background processes have
been proposed [16], [17], [22]. We can employ these novel
schemes to mitigate the interference of the reboot-dedicated
VM.

We pay attention to a case where the user wants to as-
sign a fixed IP address to the target VM. When the user
does not use a fixed IP address, he or she can enjoy the
network without any consideration since our VM fork pro-
vides the child VM virtual NICs whose mac addresses are
different from the parent ones. When the user wants to
assign the VM a fixed IP address through the OS config-
uration or a DHCP server, we need to extend the current
ShadowReboot. To assign a fixed IP address after shadow-
rebooting, ShadowReboot provides the child VM virtual
NICs whose mac addresses are the same as those of the par-
ent. When a reboot-dedicated VM is rebooted and the guest
OS starts to boot, we take a snapshot before the guest OS
turns on its NICs. Although it takes a longer time until we
can perform our tasks since some services may not finish
launching, the user can obtain a fixed IP address.

7. Experiments

We conducted experiments to examine the effectiveness of
ShadowReboot. In this paper, we investigate the follow-
ing fundamental questions. The first is how ShadowReboot
shortens downtime of OS reboots. The second is whether
our page sharing mechanism shares pages. The third is how
much overhead the file access monitor incurs. The fourth
is how long the disk managements of all-copy and partial-
copy policies take. The fifth is whether ShadowReboot
can successfully produce a rebooted state under real soft-
ware updates. The last is how applications behave through
ShadowReboot.

The experiments described in this section were con-
ducted on a DELL OptiPlex 780DT with a 3.0 GHz Core
2 Duo processor, 4 GB of memory and a 160 GB SATA
disk. Our prototype runs on this machine on which Linux
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2.6.34 runs. To confirm the applicability of ShadowReboot,
we used five Linux distributions, Fedora Core 10 (fedora),
Ubuntu 9.04 (ubuntu), Gentoo Linux 2007.0 (gentoo),
CentOS 5.3 (cent), and OpenSUSE (suse). These OSes
were installed on VMs provided by VirtualBox. Each VM
is assigned one VCPU and connected to a 20 GB normal vir-
tual disk and a 10 GB unrollback virtual disk as a primary
master and slave, respectively. Its memory size was changed
in the experiments. We installed the OSes with their desk-
top configurations. The normal virtual disk was partitioned
by the default install instruction, and the unrollback virtual
disk was formatted manually. In the experiments, the default
system configurations were used.

7.1 Experimental Setup

We configured the five Linux distributions to be shadow-
rebootable with our file access monitor. In addition,
we checked whether installed applications adhere to the
ShadowReboot constraints. These configurations were car-
ried out manually. Developing an automatic configuration
scheme to set the system suitable for ShadowReboot is out
of the scope of this paper.

The configuration details are as follows.

• Fedora: We change rsyslog, auditd, and sendmail
configurations to switch their log files on the original
VM just after a VM fork is invoked. To do so, when
the file access monitor launches on the original VM,
it modifies /etc/rsyslog.conf, /etc/audit/auditd.conf, and
/etc/mail-/sendmain.cf so that their files can be stored
into a file in the working directories to preserve the
contents through the restoration. We also configure
the file access monitor to avoid monitoring temporary
and state files. Specifically, it does not monitor di-
rectories including /tmp, /usr/tmp, /var/tmp, /var/lock,
/var/cache, or /var/run.
• Ubuntu: Similarly to fedora, we modify the con-

figuration file of a syslog daemon. Specifically, the
file access monitor modifies /etc/syslog.conf to switch
log files into files in the working directories on the
original VM just after a VM fork is invoked. More-
over, the file access monitor running in the orig-
inal VM does not monitor files in /tmp, /var/tmp,
/var/lock, /var/cache, /usr/tmp, /var/run, or /run. In ad-
dition, the file access monitor ignores file updates to
/var/lib/apt-xapian-index/update-lock and /var/lib/apt-
xapian-index/update-socket, which are state files of the
Ubuntu update system.
• Gentoo: We change a syslog-ng configuration to

switch a log file on the original VM when the VM
fork is invoked. The file access monitor modifies
/etc/syslog-ng.conf for syslog-ng to store log events
into a file in the working directories. Also, the file
access monitor running in the original VM does not
monitor files in /tmp, /var/tmp, /var/lock, /var/cache,
/usr/tmp, or /var/run.

• Cent: We reconfigure sendmail and syslog to switch
the directories where their produced files are stored.
We modify /etc/syslog.conf and /etc/mail-/sendmail.cf
on the original VM. The file access monitor does
not log file operations to /tmp, /usr/tmp, /var/tmp,
/var/lock, /var/cache, or /var/run.
• Suse: Similarly to the other four Linux distribu-

tions, we change rsyslog and postfix configuration
to change log files. The file access monitor modi-
fies /etc/rsyslog.conf and /etc/postfix/main.cf to write
events in files in the unrollback virtual disk. The file
access monitor does not log file operations to /tmp,
/usr/tmp, /var/tmp, /var/lock, /var/cache, or /var/run.

Some applications log their states to files when they
finish. For example, firefox saves its configurations into
the user’s directory. If such applications are running when
a VM fork is invoked, the files are saved in the disks in the
reboot-dedicated VM, which violates a ShadowReboot con-
straint. To avoid this problem, we configured the VM in
such a way that these files on the original VM are used on
the restored VM. Specifically, the file access monitor brings
the files from the original VM with the unrollback virtual
disk. This is because such state files are the latest in the
original VM.

In our investigation, one application (terminal) vio-
lates ShadowReboot constraints by logging a login event to
/var/log/wtmp when it launches. To use this applications
through shadow-rebooting, we need to switch the log files
to a file in the unrollback virtual disk.

7.2 Downtime

To demonstrate that ShadowReboot shortens downtime of
OS reboots, we compared the downtime of ShadowReboot
and normal OS reboots. Our prototype causes downtime
when a snapshot of a rebooted state is restored. We mea-
sured downtime caused by the snapshot restores. We var-
ied the VM memory size: 256 MB, 512 MB, 1024 MB,
2048 MB, and 2560 MB. The maximum memory size the
VirtualBox can assign in our environment was 2560 MB.
We here define downtime as time during which users cannot
operate the system (i.e. time from when snapshot restoration
or shutdown is started to when a log-in screen is displayed.

Table 1 lists the downtimes of ShadowReboot and nor-
mal OS reboots. The results show that the downtime of
ShadowReboot is shorter than that of normal OS reboots.
For example, with 256 MB, the downtime of ShadowReboot
is 98.3% shorter than that of the normal OS reboot in cent.
Even in ubuntu, the downtime of ShadowReboot is 91%
shorter than that of the normal OS reboot. When we as-
signed 2560 MB of memory, downtime of ShadowReboot is
1.42 seconds in gentoo, while that of the normal OS reboot
is 58.21 seconds. ShadowReboot downtime is 2.49 seconds
in ubuntu, which means ShadowReboot is 94% shorter than
the normal OS reboot.

Also, the downtime of restoring a rebooted state tends



2672
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.10 OCTOBER 2014

Table 1 Downtime of ShadowReboot and Normal OS Reboot.

fedora [sec] ubuntu [sec] gentoo [sec] cent [sec] suse [sec]
VM Memory Shadow Normal Shadow Normal Shadow Normal Shadow Normal Shadow Normal

Size Reboot Reboot Reboot Reboot Reboot Reboot Reboot Reboot Reboot Reboot
256 MB 2.49 42.23 2.43 27.47 1.38 55.39 2.42 141.11 3.16 30.95
512 MB 2.56 42.80 2.41 27.63 1.43 54.89 3.32 154.09 4.86 30.71
1024 MB 2.38 44.55 2.46 39.61 1.38 57.82 3.20 132.84 5.12 43.29
2048 MB 2.37 45.03 2.53 43.64 1.43 58.17 3.15 142.83 5.29 56.24
2560 MB 2.39 45.04 2.49 45.49 1.42 58.21 3.35 132.05 5.22 55.99

Table 2 Downtime of ShadowReboot used in a conservative way.

VM Memory fedora [sec] ubuntu [sec] gentoo [sec] cent [sec] suse [sec]
256 MB 9.56 15.82 14.18 25.72 12.36
512 MB 10.55 15.98 14.73 26.32 13.43
1024 MB 10.85 20.57 17.08 32.03 21.85
2048 MB 10.09 19.67 17.93 30.68 23.95
2560 MB 10.94 19.61 17.32 30.97 27.84

Table 3 Overhead of the file system monitor.

W/o File System W/- File System
Overhead [%]

Monitor [sec] Monitor [sec]
grep 24.37 24.52 0.61
make 174.35 176.18 1.05

to be stable even if the memory size is varied, except for
cent and suse. In VirtualBox, the downtime of restoring a
snapshot depends on how much memory a guest OS utilized.
In cent and suse, their daemons utilize the memory in their
boot phase, depending on the memory size of the machine.
For example, readahead early warms the file cache by
accessing files that are frequently used.

Table 2 shows downtime of ShadowReboot used in a
conservative way that restores snapshots after shutdown of
the original VM is completed. The downtime is longer than
one of ShadowReboot shown in Table 1 since we have to
wait for completion of shutdown of the original VM. Com-
pared with normal reboots, downtime of the conservative
ShadowReboot is shorter in all the case.

7.3 Overhead for File Monitoring

To measure overhead incurred by the file system monitor,
we compared execution times of the applications with and
without the file access monitor. We prepared two applica-
tions: grep and make. Grep searches for lines containing
‘shadowreboot’ in the source code and documents of Linux
2.6.29. Make compiles Apache 2.0.64 [23]. We ran these
applications on fedora with 1600 MB of memory, which is
the size recommended by the VirtualBox.

The result is shown in Table 3. From the result, we
can say that the overhead of the file system monitor is very
small. The i-notify is a lightweight monitoring mechanism
where a monitoring process can run asynchronously with
processes accessing the monitored files. This feature seems
to contribute to this low overhead. The overhead in grep
is 0.61%, while that in make is 1.05%. The reason make’s
overhead is larger than that of grep is that make reads
more library object files in administrative directories that are
monitored by the file access monitor.

Fig. 3 Time for saving/restoring files under all- and partial-copy policies.

7.4 Overhead for File Saving/Restoring

To measure overhead for file saving to and restoring from
unrollback virtual disks, we measured time for saving and
restoring files under all-copy and partial-copy policies. We
used fedora with 1600 MB of memory. We generated files
of various sizes during an OS reboot in the reboot-dedicated
VM. We generated the files in a partition in the unrollback
virtual disk under the partial-copy policy.

The results are shown in Fig. 3. The results reveal that
the all-copy policy takes longer as the file size becomes big-
ger. This is because the all-copy policy copies all the up-
dated files in the working directories to a partition of the
unrollback virtual disk. On the other hand, the partial-copy
policy does not copy the files in the unrollback virtual disk.
When we create 1 KB, 10KB, and 100KB of files, required
times in the all-copy policy are about 200 msec, which are
similar to ones of the partial-copy policy. When the file is
more than 25MB, the required time is longer than one sec-
ond. The time of the partial-copy policy is constant regard-
less of file sizes since the files are created in the unrollback
virtual disk and thus need not be copied.
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7.5 Software Updates

To confirm that ShadowReboot successfully performs given
software updates, we conducted real software updates on
the five distribution. We chose updates including kernel up-
dates, library updates, and window system updates by us-
ing the package system each distribution employs. We con-
ducted 43 updates on fedora, eight on ubuntu, four on
gentoo, 19 on cent, and 24 on suse.

The result is that all of the software was successfully
updated through ShadowReboot. During the OS reboots in
the reboot-dedicated VM, our file system monitor does not
warn of any violations in the updates. It detects a viola-
tion when we update software in cent. This is because
logrotate is triggered by cron on the original VM and
then starts compressing the log files in /var/log. We success-
fully performed the update by invoking ShadowReboot after
the logrotate’s task completes.

7.6 Case Study

To demonstrate how a user’s application behaves through
ShadowReboot, we observed application behavior through
the normal OS reboot and ShadowReboot. We ran a video
player named ffplay, which is bundled in ffmpeg [24].
It plays a MPEG-4 format video at 24 frames per second
(fps) with resolution 854 x 480 on fedora with 1600 MB
of memory. We started ffplay and recorded its fps. Af-
ter 30 seconds had been passed, we performed each reboot.
When the log in prompt appears, we logged in fedora and
restarted ffplay.

(a) OS Reboot

(b) ShadowReboot

Fig. 4 Frames per seconds in ffplay during normal OS reboot and
ShadowReboot.

The results are shown in Fig. 4. From Fig. 4, we can
see that ShadowReboot downtime is shorter than that of the
normal OS reboot. In the normal OS reboot (Fig. 4 (a)),
ffplay stopped its activity at 30 seconds when we con-
ducted the OS reboot. It could not proceed until the OS
reboot completed. After we logged in fedora and executed
ffplay, it restarted playing the video. In ShadowReboot
(Fig. 4 (b)), ffplay could proceed when ShadowReboot
was performed. We rebooted the OS on the reboot-dedicated
VM at the 50 seconds when the VM fork finished and the
reboot-dedicated VM started to run. During the OS reboot,
ffplay continued to decode the video as usual. We took a
snapshot on the reboot-dedicated VM at 99 seconds when a
log in prompt appeared on the reboot-dedicated VM. When
we restored the snapshot, ffplay stopped (at 105 seconds).
It was executed again after we finished logging in. In both
cases, ffplay’s performance was degraded just after we
restarted it. This is because other processes were running
to set up the user’s desktop environment and thus resource
contention occurred.

8. Related Work

Some studies have explored ways to manage downtime of
OS reboots. Phase-based Reboot [25] shortens the down-
time of reboot-based recovery. It takes snapshots every
boot phase such as OS kernel boot and service process boot
phases, and reuses them if the next boot is the same execu-
tion as the previous boot. Since Phase-based Reboot focuses
on reboot-based recovery and reuse of the previous states, it
is not applicable to software updates.

Otherworld [26] hides the kernel termination from the
user-level applications. When a kernel failure occurs,
Otherworld restarts only the OS kernel, keeping the user-
level memory states of the processes. After the OS kernel
has been rebooted, the processes are resumed. However,
Otherworld still has a longer downtime than ShadowReboot.
Furthermore, Otherworld is not applicable to software up-
dates since an OS kernel, which is loaded when the main
kernel is stopped, needs to be set up when it launches.

The shadow driver technique [27] conceals device
driver crashes from user’s applications. When a device
driver crashes, the shadow driver hooks the communications
between the kernel and devices, restarts the crashed driver,
and queues the messages until its restart completes. The
shadow driver transmits the messages to the restarted driver.
This technique also allows us to efficiently update device
drivers [28]. While the shadow driver technique focuses on
device driver restarts, our focus is on OS restarts.

9. Conclusion

This paper presented ShadowReboot, a VMM-based ap-
proach that shortens downtime of OS reboots in software
updates. ShadowReboot provides an illusion that a guest
OS travels forward in time to the rebooted state where the
updated kernel and applications are ready for use. Specif-
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ically, ShadowReboot conceals OS reboot activities from
user’s applications by spawning a VM dedicated to an OS
reboot and systematically producing the rebooted state. Our
experimental results show that ShadowReboot succeeded in
software updates on unmodified commodity OSes and has
91 to 98% shorter downtime than commodity OS reboots on
the five Linux distributions.

One future direction is to exploit cloud environments
for rebooting an OS by combining cloud-aware clone tech-
niques with ShadowReboot. Recent studies [29], [30] have
shown techniques that clone the system states and send the
cloned ones to the cloud platform. By spawning reboot-
dedicated VMs in the cloud, we can perform ShadowReboot
with less local resource contention with the original VM. In
other words, we will build a “Reboot as a Service” platform
that reboots an OS transparently for users and sends the re-
booted image back to them, which will be able to encourage
users to perform software updates more often.
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