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Point-Manifold Discriminant Analysis for Still-to-Video Face

Recognition

Xue CHEN'Y, Nonmember, Chunheng WANG', Member, Baihua XIAO', Nonmember,

SUMMARY In Still-to-Video (S2V) face recognition, only a few high
resolution images are registered for each subject, while the probe is video
clips of complex variations. As faces present distinct characteristics un-
der different scenarios, recognition in the original space is obviously in-
efficient. Thus, in this paper, we propose a novel discriminant analysis
method to learn separate mappings for different scenario patterns (still,
video), and further pursue a common discriminant space based on these
mappings. Concretely, by modeling each video as a manifold and each
image as point data, we form the scenario-oriented mapping learning as a
Point-Manifold Discriminant Analysis (PMDA) framework. The learning
objective is formulated by incorporating the intra-class compactness and
inter-class separability for good discrimination. Experiments on the COX-
S2V dataset demonstrate the effectiveness of the proposed method.

key words: face recognition, still-to-video, discriminant analysis, point-
manifold distance, scenario-oriented

1. Introduction

Face recognition from a single still image has been exten-
sively studied for over a decade. Recently, the usage of cam-
eras has contributed to a rapid increase in the availability of
video resources. Typically, vast amounts of videos are con-
tinuously acquired to monitor government compounds, mil-
itary installations, commercial sites, and private premises.
As a result, video-based face recognition (VFR) applica-
tions have become an emerging topic. Based on the type
of the gallery set, we can classify VFR into two categories:
Video-to-Video (V2V) face recognition and Still-to-Video
(S2V) face recognition [1].

In the V2V scenario, video resources are available for
both the gallery and probe set. Similar to image(s)-to-
image(s) recognition, most existing approaches extract the
same type of features for the two sets and then perform
recognition by comparing them directly. Wang et al. [2]
used a second-order statistic, covariance matrix, to model
the video sequences, and exploited Log-Euclidean Distance
for explicitly mapping and recognition. Li et al. [3] modeled
face dynamics using identity surfaces, and performed recog-
nition by matching the face trajectories constructed on the
identity surfaces. Moreover, hidden Markov models have
also been applied to model the video information by learn-
ing the statistics dynamics over time in each video [4].
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Face recognition from still images is another important
category for VFR, which is named as S2V face recognition.
Typical application of S2V is the mug-shot matching which
includes the recognition of faces in drivers licenses, pass-
ports, credit cards etc. In this scenario, very few (single,
in many cases) still images per person are enrolled in the
gallery while multiple video clips are captured as the probe,
as shown in Fig. 1. Generally, the enrolled set are captured
under controlled conditions and are of high quality. How-
ever, the probe videos, captured on arbitrary locations, are
of low resolution and even exhibit considerable blur. S2V
face recognition poses a huge challenge due to the great dis-
crepancies of imaging conditions, pose and facial expres-
sion between the still scene and video scene. The differ-
ence brought by these factors could lead to faces of a certain
person even lying in different subspaces, making the S2V
recognition very challenging.

Traditionally, the S2V scenario has been formulated in
frameworks of the subspace methods [5],[6]. In the sub-
space framework, a video is represented as a subspace, and
a canonical angle between the subspace and a still image is
computed as a matching score. Although classic subspace-
based methods could obtain representative face features,
performance degenerates severely when wide differences
exist in the intra-class samples. A natural way to deal with
this problem is to learn a common mapping space for the
polymorphous samples. Typically, Huang et al. [7] pro-
posed an improved LDA [8] to learn projections by using
partial weighting to emphasize cross-scenario images in the
discriminant analysis. One shortcoming of this method is
its reliance on a single mapping to build a common dis-
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Fig.1  Face recognition on the S2V scenario. Each subject is enrolled
with a single still image in the gallery, and the probe covers multiple video
clips under different conditions.
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Fig.2  Anoverview of the PMDA approach. Manifold M; on each video
clip V; is modeled as a set of local models C; in space V, and still images
are denoted as points data P in space S. {Fy, F,} are mapping functions for
space S and V. Shapes represent classes, and colors present scenarios.

criminant space for samples in different scenarios. As data
present distinctly different characteristics towards specific
scenario, it is obviously inefficient to model them in a uni-
form mode.

In this paper, we propose a novel discriminant analysis
method by exploiting separate mappings for different sce-
nario patterns (still, video). Intuitively, scenario-oriented
mappings could model the underlying manifold in corre-
sponding modality more effectively. An overview of the
proposed method is shown in Fig.2. By modeling each
video clip V; as a manifold M; and still image as data point
P, we form the S2V mapping learning as a Point-Manifold
Discriminant Analysis (PMDA) framework. Concretely, the
manifold is modeled as a collection of local consistent mod-
els, e.g., {Cy,C,}. The learning objective is formulated by
compelling the local models towards images of the same
identity, but far from those of distinct identities. Finally,
the scenario-oriented mappings {F, F',} pursue a common
discriminant space where samples from different scenarios
have good clustering property. Performance on the COX-
S2V dataset [7] demonstrates a remarkable improvement
over previous methods.

The rest of this paper is organized as follows. Sec-
tion 2 details the proposed method. Experiments and results
are presented in Sect. 3, while our conclusions are drawn in
Sect. 4.

2. Point-Manifold Discriminant Analysis

In this section, we first give a primary formulation of S2V
face recognition problem. Then, we describe the PMDA
algorithm and how it leads to scenario-oriented discrimina-
tive mappings for effective face recognition. At last, face
recognition is performed by matching the closest part of two
modes in the learned embedding space.

2.1 Problem Formulation

In S2V face recognition scenario, there is generally only one
high resolution still image enrolled for the gallery while a
set of low resolution video clips are available for probing.
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Formally, let S = {s1,s2,...5n,) be the gallery set con-
taining Ny still images, where s; is the still image of the
i person. Correspondingly, assume V = {V|,Va,..., Vy,}
be the query set containing Ny video clips, where V; =
{vi1,0)2,.. -’Uj,Nv,} denotes the ;™ query video and Ny, is
the number of video frames in V;. In this way, the iden-
tity recognition of video V; from the gallery S performs the
following algorithm A:

>

A

~

= arg i=1r,r21,1..r.1,NJ d(s;, V), (1)
where d(, ) defines the distance between image s; and video
clip V;. Obviously, an effective image-video distance mea-
sure is the critical link for S2V recognition.

Typically, the underlying structure of high-dimensional
observation data, whose variations are controlled by only a
few factors, can be modeled by a low-dimensional mani-
fold [9], [10]. In this paper, we just consider a relative ideal
condition, where the facial appearance variations are just
caused by common factors of pose, expression or lighting
changes. In this situation, it is natural to assume that sequen-
tial frames of video V;, which generally contain relative sim-
ple condition changes, distribute on a simplified nonlinear
manifold M;. Moreover, as local linearity property holds
everywhere on a global nonlinear manifold, it is rational to
model the manifold as a collection of approximate linear lo-
cal subspaces [10],[11], e.g., M; = {C_]',],ng,...,cj"NMj}.
Here, Ny, denotes the number of local models, which is far
smaller than the sample number Ny, on manifold M;, in
most cases. Thus, the image-video distance d(s;, V;) mod-
eled by the Point-Manifold distance d(P;, M) can be further
converted to a concrete form:

d(si, Vi)s—p.vom, = d(Pi, M)), (2)

where manifold M; models the video clip V;, and point P;
denotes the still image s;.

With the statement above, the PMDA approach trans-
forms to learning a discriminating embedding space, which
can better distinguish the Point-Manifold data clusters with
different class labels and enhance the within-class local
compactness. Specially, as the within-class data in still
scene S and video scene V present distinctly different char-
acteristics, it is very necessary to apply separate mappings
for point data in S and manifold data in V respectively, in or-
der to model the data distribution in corresponding modality
effectively. In this way, face recognition in the scenario-
oriented embedding space can be expressed as:

Aci=arg min d(Fy(P), FM)sorvom, ()

where F; and F, are the mapping functions for scene S and
V respectively.

2.2 Constructing Local Consistent Models

The idea of extracting local models from manifold has been
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exploited in several methods. They often tend to adopt well-
designed clustering algorithms along with complicated con-
straints to guarantee explicit linearity for local models [11],
[12]. Particularly, in a strict linear space, data in a cluster
distributes on a plane in the feature space. However, in our
algorithm, we just need a set of submodels to model the local
statistic characteristics on a nonlinear manifold effectively.
For example, for a video sequence covering continuous head
pose changes, each of the local models is trained to represent
the image frames set with a certain pose. Generally, minor
range of deviation is allowed among the internal images. In
this setup, we don’t need samples in a local model distribute
strictly on a plane. Instead, those around the plane are also
considered. In this way, the strict linearity is not exactly
required for our clustering algorithm. Therefore, in this pa-
per, we adopt the linearity criterion as relaxed constraints
for constructing local models .

The basic idea of our linearity constrained clustering
(LCC) algorithm is that, in the first level, all samples are
initiated as a singleton cluster. Then, in each new level, two
seed points are selected by the furthest geodesic distance,
and two new local clusters expand from them respectively
according to relaxed linearity constraints. Finally, we are
able to obtain a series of local models hierarchically, associ-
ated with different local characteristics. Following the nota-
tions of Sect. 2.1, we give a detailed implementation of the
LCC algorithm. For a video clip V; = {v;1,vj2,.. .,v‘,-,ij}
modeled as manifold M;, we aim to extract a collection of
local models, denoted as:

M; = {Ci1,Cjas . Cjny ) 4
NMj
—_ O (D () —
Cj,l - {Uj,l’vj,z""’Uj,NC/,‘,}’ ZNCN - ij, (5)
=1

where Ny, is the number of local models, and Nc,, is the
number of samples clustered in model C ;.

Firstly, both Euclidean distance matrix Dg € R
and geodesic distance matrix Dg € RN are computed
for all the pair-wise samples {v,,,v,} in V;. Specially, the
geodesic distance is computed as the Euclidean distance
sum of a sequence of neighboring points on the data distri-
bution, which form a path between the two points [9]. Then

the ratio matrix R is obtained by:
R, vp) = DG (U, Un)/ DE(Um, Un). (6)

Referring to the definition above, the geodesic distance Dg
is computed based on a path on the data distribution. Natu-
rally, as the curvature of the distribution is greater, geodesic
distance between the two points gets larger. Yet, Euclidean
distance D just involves computing the linear distance of
two points directly. In this way, greater curvature of the dis-
tribution leads larger ratio R. Namely, matrix R could well
reflect the non-linearity degree of a cluster. Besides, matrix
H e RFM holding the k—NNs’ indices of all the samples
in each column is also constructed on V.

To preform LCC, we first select two furthest seed

NV], ><NV/.
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points {v;,v;g} from V; by geodesic distance matrix Dg,
and then initialize two new clusters {C;, C;r} with them.
So, V; is left exclusive of {v;;,v;r}. Secondly, as neighbor-
ing samples have similar statistic property, we collect the
K-NN set {v j,c}f= , for each point in C};; as candidate. Next,
we only have to check the candidates by the linearity con-
straint for constructing new local models, without traversing
all the samples in the training set. Concretely, if v; satisfies
simultaneously:

Vjc € Vj, @)

R@je,vj) <6, Vo eCip, (8)

v;. will be added into Cj;. The second step is performed
repeatedly for the gradually expanding C;; until no candi-
dates can be added. Thus, V; is left exclusive of those points
added into Cj;. Next, if V; is not empty, same operations
will be executed on the Cj; else, C;g with only the seed
point merges with C;; as a holistic cluster, and clustering
ends. Furthermore, if the clustering doesn’t end, we select
two furthest seed points from the left V; by geodesic dis-
tance matrix again, and then repeat the series of operations
above, until V; is empty. Clearly, as samples satisfying the
linearity constraint lie approximatively on a plane and so
have similar statistic property, the local clusters constructed
hold good characteristic consistency. Further, they can also
be used to model the local statistic characteristics on a non-
linear manifold effectively.

Note that, the threshold parameter 8 in Eq. (6) reflects
the linear perturbation degree of local models. A small 6 im-
plies more local models and better linear preserving in each
model, and vice versa. As we just use linearity constraints
as an auxiliary for the k—NN criterion to improve the local
consistency of our clustering algorithm, strict linearity is not
exactly required. Therefore, we just use the relaxed linearity
constraint (R < 6) to construct local models for applications,
where 0 is a constant that is a little larger than 1.

Moreover, referring to the implementation of LCC, we
can figure out that, compared with Euclidean distance based
clustering methods such as k-means [1], [13], the LCC could
better guarantee the local consistency in the aspect of region
locality and characteristics consistency, and further make
more meaningful clusters to model the local statistic prop-
erty of the manifold, in most cases. An auxiliary illustration
is shown in Fig. 3. Samples of local models from k-means
may be on different manifold subspaces and present diver-
siform characteristics, while results from the LCC are more
aligned with the fact.

2.3 Learning Scenario-Oriented Discriminant Mappings

Classical LDA supposes data of each class are generated
from a single normal distribution and seeks a uniform map-
ping for all the classes [14]. However, in the S2V scenario,
each class contains two types of data, low resolution video
frames and high resolution still images. To model the data
distribution in corresponding modality effectively, we ex-
ploit separate mappings for the still scene and video scene
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Fig.3  Constructing local models. Manifold M covers three local sub-
spaces {C1,Cp,C3}. Data points {Py, P3, P4} lie on Cy, and {P;, P4} on
Cy. Pj, P3 are equidistant from P;. Generally, P,, P3 on different sub-
spaces are clustered as one local model with Py by k-means. However, as
geodesic distance d(Py, P4, P2) is obviously larger than Euclidean distance
d(Py, P2), LCC will cluster Py into C; but P; into C» respectively.

respectively. Concretely, by modeling each video as a man-
ifold, we formulate the scenario-oriented mapping learning
as a Point-Manifold Discriminant Analysis framework. The
optimization objective is formulated by incorporating the
intra-class compactness and inter-class dispersion for good
discrimination.

2.3.1 Separability-Compactness Based Constraints

PMDA shares similar motivation with traditional discrim-
inant learning methods in characterizing the within-class
compactness and between-class separability for optimiza-
tion. Differently, instead of operating directly on samples,
this algorithm constructs the constraints upon manifold local
models. Based on the introduction of local models above,
we formulate the manifold based discriminant analysis in-
volving compactness and separability constraints as follows.

Assume the training setbe 7 = {s; e SUV; e V},1 <
i < Ng, where S = {s; € R% }f\fl is the still images set

as denoted in Sect. 2.1, and V = {V;, V,,..., Vi, } holds the
corresponding video clip V; = {v;; € R }szv’1 for each person

iin §. ds and dy are the sample dimensions. Given the

Ne,
manifold M; = {Ci,l}?ff ,Ciy = {vgf:n}mi"{ on video clip V;

and point data P; on still image s;, we can simply define
the distance between local model C;; and point P; by their
sample average v;; , §; :

d(Ciy, Pp) = |Iviy —5sill, )

NCi,l

Vi,l = Ui,m’

and s; = s;. (10)

Referring to the property of linear space, samples can be re-
constructed linearly by other samples from the same linear
subspace. As some local parts of faces of varying poses or
expressions change severely, it’s hard to use images of one
pose (expression) to reconstruct linearly that of another pose
(expression). Yet, face images of similar poses (expressions)
have similar appearance. Referring to the principle of image
reconstruction, they can be used to reconstruct faces under
the same condition linearly. Based on this, we can suppose
that face images lying on a linear plane have similar poses
(expressions). Namely, the local models obtained by the
LCC hold good local characteristic consistency. In this situ-
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ation, the sample average could capture the data property of
the local model effectively. For a special case, face images
can be largely changed on a linear space by global illumi-
nation changes, but they are also clustered as a local model
by the LCC. In this condition, the sample average may not
precisely represent the appearance characteristic of the data
cluster. However, we think that the less accurate model ap-
proximation is just enough for the proposed method. Since
faces with severe illumination changes lie on a linear space
and could reconstruct each other linearly, the facial texture
and structure information of these images are very similar.
Just the image intensity changes linearly with a lighting off-
set. In this situation, the sample average is still able to cap-
ture the typical facial texture and structure information in
these faces. The following discriminant training then make
still images close to video frames, which hold similar fa-
cial texture and structure information with the sample aver-
age, and the learning results can still obtain good intra-class
compactness and inter-class discrimination. Above all, it
is suitable to use the sample average to represent the local
models form the LCC in the proposed method. Coinciden-
tally, similar model approximation is also adopted in [12].

Next, we denote the transforms for still scene S and
video scene V by Fy(0,) € R¥*4 and F,(0,) € R**% re-
spectively, where 6 and 6, are the mapping parameters, and
d’ is the mapping dimension of transform matrixes. Then,
the intra-class compactness term J,, and inter-class separa-
bility term J, in the new space are computed as :

1 Ny Nu;

Ju(0:.6) = 5= > D I~ Fusill, (1)
W=l =1

N, NMj
1 _ 5
WOs00= -3, Y, )R- Feslf, (12

i=1 j=12,Ny:j#i I=1

where N, and N, are the number of pairs from the same
class and different classes respectively. Here, we use the
sample centers V= {V,‘J}ﬁ”{i of the local model set {C i,l}ﬁl‘:"
to represent the video clip V;, and compare them with still
images in the transformed space.

A common problem of applying discriminant learning
in the S2V scenario is that the number of still images in
the training set is much smaller than that of video frames
in total, and the discordance would cause serious bias for
the following scenario-oriented training. Similar problem
is also discussed in [7],[15]. From Eqgs. (11), (12), we can
see that the local model number is much smaller than that
of the total frames in each video clip (Ny; < Ny,), so our
algorithm could effectively alleviate the number discordance
between still scene and video scene, by modeling the video
frames set as a set of local models.

To better discriminate the samples from different
classes, we should compel the video frames towards the still
images with the same identity, but far from those of distinct
identities. Based on this principle, the objective function of
PMDA arrives at the following optimization criterion:
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gnanj = Ju(bs,0,) — a = Jp(6y,0,), (13)
where « indicates the nonnegative tradeoff parameter.
2.3.2  Solving the Optimization Model

To solve the problem in Eq.(13) with a simply matrix
derivation, we reform it in the following way. Let § =
[51,52,...8n,] € REXNs collect all the still images for N
person, and vV, = [Vii,Vio,...,Vin, | € R&*Nyv; collect the
Ny, local model centers of video V; for personi, 1 <i< Ng,
then V = [Vl,\_/z,...,VNS] € RW*Nm represent the whole
local model matrix for all the Ng person. In addition, we
set:

Sn 1 5i=L8i, .. 5] RIS N (14)
Viz [\717’ VT, " _ITVS]’ \7[* - V/ViGRdVX(Nm*NM,')’ (15)

St=[sh, 5], sl 1 5] =180 sl €RENN - (16)

§=[51,5,..,

where V/V; indicates a residue matrix of removing the i
submatrix V; from matrix V. Then, we cast the objective
function in Eq. (13) into a simplified form:

o 1 — o @ i -
IIVI},%J_N,‘,”FUV F Sl NbIIFUV FSTR, (17)

where ||D||12p stands for the Frobenius norm of matrix 0.

We adopt the gradient descend algorithm for optimiz-
ing the model above. According the matrix theory, the
derivation of function J(6y,6,) with respect to parameters
{65, 8,} can be computed as:

2 _
0J0F, = ~—(FSN'ST=F,V§T)
2 i
—Fi(FsSNiST —F,Vist, (18)

2 L
8J|OF, = N—(F,)V—FSS)VT
2 _ _
SV - F sV (19)
Ny

where O denote the transposition of matrix O, and N €
RNs*Ns and N* € RVs*Ns are diagonal matrixes with the
i diagonal element as Ny, and (N, — Ny,) respectively.
Finally, the parameters {F';, F,} are updated according to:

F, = FS—T]X((,)J/aFS),
Fy,=F,—nX(dJ/0F,), (20)

where 77 is the learning rate, namely the step size of param-
eter updating at each iteration. A too large rate leads the
updating unstable, while a too small rate makes the con-
vergence too slow. So, choosing a proper learning rate is
vital for gradient descent. In our experiments, we adjust the
learning rate 1 according to the gradient value dJ/dF, so
that the increment of gradient 1 X (0J/9F) is comparative to
the original value F and the parameter updating is stable.
However, the gradient descent algorithm is likely to
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converge to a local minimum for many optimization prob-
lems. To discuss the rationality of using the gradient de-
scent method to solve our problem in Eq. (17), we introduce
another optimization method, the eigenvalue decomposition
method [15], [16] for auxiliary illustration. The eigenvalue
method proposed by [15] is derived analytically and obtains
the accurate analytical solution of Eq. (13) by a two-stage
eigen-decomposition algorithm. It involves no iterative up-
dating operation. Moreover, the analysis and demonstra-
tions in [16] provide detailed proofs ensuring that the eigen-
value method efficiently achieves the global optimal solu-
tion of problems like Eq.(13). Here, Eq.(17) is the ma-
trix form of Eq.(13), which are equivalent to each other.
Namely, the eigenvalue method ensures to get the global op-
tima of Eq. (17) equivalently. Therefore, we introduce the
eigenvalue method as the standard reference to check the
convergence performance of the gradient descent method
towards Eq. (17). Specially, our experimental results show
that the recognition rates from the eigenvalue method are
almost the same with that of the gradient descent method.
This result, to some extent, indicates that the gradient de-
scent method converges to the global minimum of Eq. (17)
and it is reasonable to use the gradient descent method for
optimizing in this paper.

2.4 Recognition Algorithm by PMDA

According to the description in Sect.2.1, S2V face recog-
nition comes down to calculating the similarity of a point
and a set of local models in the mapping space. Given the
scenario-oriented mapping matrixes {F;, F,}, we can obtain
the following projection expressions for still image s; and

— N,
local model centers V; = {v j’l}l:ﬁ/ll/ of video clip V;:

‘l/l‘ZFSXSl', i=1,2,...,N5, (21)
rj,leUXVj’l, l=1,2,...,NM/., (22)
where R; = {r;1,72,..., rj,NM,} is the model based projec-

tion of V;. Typically, when two sets with the same identity
contain images taken from different conditions but with a
certain overlap, to match them as the same class, the most
effective solution is to measure the similarity of their most
common parts [17]. Therefore, we define the S2V distance
by matching the closest parts of two modes as:

dwR)=_ min d(y.r;) (23)
J

325eees

Finally, the recognition of video clip V; in Eq.(3) is per-
formed in a tractable way:

Aci=arg min dyiR)syv,-%, (24)

3. Experiment

To evaluate the proposed PMDA, we perform face recog-
nition experiments on the COX-S2V database [7]. The in-
troduction of the database and experiment setting is shown
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Table 1  Environment setting of the four videos. For Viewpoint, Illumi-
nation and Expression, ”v/” means the setting is fixed; ” x  indicates the
setting is varying. For Resolution, ”+/” means without degradation; > X
means with degradation.

Videol | Video2 | Video3 | Video4
Viewpoint v v X X
Illumination X X X X
Expression X X X X
Resolution X vV X vV

in Sect.3.1. The model parameters are analyzed detailedly
in Sect. 3.2. At last, we give the evaluation in Sect. 3.3 and
comparison with other methods in Sect. 3.4.

3.1 Database and Experiment Setting

COX-S2V is a dataset designed for the real-world Still-to-
Video face recognition research, released by [7]. The dataset
consists of high resolution still images and four low resolu-
tion videos of 1000 subjects. Table 1 gives the shooting con-
dition of the videos. In particular, video 1 and 3 are more
blur than video 2 and 4 for further shooting distance. To
clearly show the characteristics of different videos, we pro-
vide some specific frames for each type of video in Fig. 4.
According to the protocol in [7], we use the still images and
video clips of 300 persons for training, and that of the rest
700 persons for testing. During testing stage, the still im-
ages serve as the gallery, and videos serve as the probe. The
rank-1 recognition rate is used to test the performance.

All images are scaled to 96 x 120 pixels firstly. The
pixel descriptor is used for the baseline assessment. To
explore the potentiality of the proposed PMDA, we use
local phase quantization (LPQ) and Gabor magnitude [18]
to compose the complementary phase-magnitude descrip-
tor for face representation. For LPQ, we set the local win-
dow size and the low frequency coefficient as 7 x 7, 1/7 re-
spectively. For Gabor, we use 40 Gabor wavelets with 5
scales and 8 orientations. The Gabor kernel’s size, the fre-
quency parameters k., f*, and the parameter o are set to
31 x 31,1.0, V2, and 2 respectively. Before training, we
apply Principal Components Analysis (PCA) [19] on all the
descriptors, and the target dimension is set as 1400 compro-
mising between discrimination preserving and noises com-
pression.

Parameters selection is a key issue. For the model con-
structing, the number of kNN candidates is set to 5. For
the discriminant training, we set learning rate n=0.01 when
using LPQ descriptor, and 7=0.0001 when using Gobor de-
scriptor. The matrix pair {F, F,} are initialized using unit
matrix. Besides, the trade-off parameter « is set to 0.5 for
equal weights of compactness and separability constraints.

3.2 Analysis of Model Parameters

The important parameters of PMDA include: linearity de-
gree threshold 6, in the model construction step; the dimen-
sion of mapping space d’, in the discriminant learning step.
To provide a better understanding of the proposed approach,
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Video 2

Fig.4  Examples of the video frames in the COX-S2V dataset. Each row
corresponds to the video frames from Video 1, 2, 3, 4 respectively. We
present two clips of frame sequences for each type of video.
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Fig.5  Analysis of the linearity degree threshold. (a) Average number of
local models on different linearity degrees. (b) Performance with different
linearity degrees.

we give a detailed analysis of these parameters. Experi-
ments are performed on video 2 and 4 as a representative.

3.2.1 Linearity Degree Threshold

In a strict linear space, the nonlinearity degree defined in
Eq. (6) results in 1 for all the pair-wise samples. As we
just use linearity constraints as a auxiliary for the distance-
based clustering algorithm to improve the consistency of
local models, strict linearity is not exactly required. Fol-
lowing, we experiment to search for a relatively relaxed
value for linearity degree threshold 6, which is beneficial for
subsequent discriminant training meanwhile. The threshold
varies from 1 to 1.5, with an interval of 0.05. Experimen-
tal results on the LPQ descriptor are shown in Fig.5, as a
representative.

Subgraph (a) reflects how the threshold influences the
results of local model constructing. Generally, the model
number of video 4 is slightly bigger than that of video 2,



2786

Fig.6  Some results of the learned local manifolds. The images circled
in a dotted box present a local model, denoted by C;,i = 1,2,3. (a) The
local models from a varying-lights video: C; clusters the frames of dark
light; C clusters the frames of bright light. (b) The local models from a
varying-expressions video: C clusters the frames of close eyes; C; clusters
the frames of open eyes. (c) The local models from a varying-views video:
Cy clusters the frames of rightward view; C; clusters the frames of front
view; C3 clusters the frames of leftward view.

for more complicated shooting condition. Similar variations
appear on both of the videos. Just as € is around 1.3, the
results reach a stable level at 2 or 3. As the linearity con-
straints strengthen (6 gets smaller), the algorithm produces
more local models. Particularly, when 6 reduces close to
1, the model number approaches the sample number. How-
ever, as @ grows over a certain value, all the samples are
clustered as a single model. Subgraph (b) shows the in-
fluence to the global performance. As seen, just as € is
round 1.3, the recognition rate reaches the peak. According
to the analysis in Sect. 2.3, a large number of local models
would lead to badly discordance of the sample number in
still scene and video scene, and further serious model bias
for subsequent discriminant learning. Therefore, the accu-
racy decreases severely as 6 approaches 1. Contrastively, as
0 gets bigger, the algorithm tend to use the average of the
video frame set to represent each video clip. Avoiding the
model bias, performance degenerates slightly for losing the
diversity of samples in the simply average operation. Above
all, we set 6 at the value corresponding the model number as
2 and 3 for video V2 (V1) and V4(V3) respectively, namely
6=1.25 for V2 (V1), and 6=1.3 for V4(V3).

Moreover, we also present some results of the learned
local manifolds in Fig.6 to claim the effectiveness of the
proposed linearity constrained clustering (LCC) method. In
Fig. 6, each row shows the learned local models from a
video. The images circled in a dotted box present a local
model. In this paper, we assume that the frames of a video
distribute on a nonlinear manifold and develop the LCC al-
gorithm to learn the local models on a video. As described
in Sect. 2.2, the LCC clusters the frames sequence with sim-
ilar statistic property as a local model. The local model we
obtain is supposed to be a collection of similar frames (with
similar light, expression or view) in a video. From Fig. 6,
we can see that for each video, the frames with similar set-
ting (light, expression or view) are just separately clustered
as a local model in our experiments, which indicates the ef-
fectiveness of the proposed clustering method. Specially,
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Table 2 Accuracy of the proposed PMDA(%).
Videol | Video2 | Video3 | Video4
Pixel 63.23 79.40 19.42 54.31
LPQ 61.25 82.26 27.82 67.86
Gabor 69.35 85.66 29.43 64.35
LPQ+Gabor | 79.02 89.53 38.22 76.64

we just show several typical frames for each model in this
figure for simplicity.

3.2.2 Dimension of the Mapping Space

The original feature has been reduced to 1400 dimension by
PCA before training. In this section, we vary the mapping
dimension from 200 to 1400 by a step of 200 to test which is
more suitable for the S2V facial description. Experimental
results on video 2 are drawn in Fig. 7. As seen, the accuracy
benefits from increasing the mapping dimension. With too
low dimension, performance drops for losing much discrim-
inative information in the mapping operation. However, as
the dimension exceeds 800, the accuracy increment is inap-
parent, less than 0.5% for LPQ and Gabor. The same sit-
uation also appears on the pixel descriptor towards the di-
mension 1000. Moreover, continued growth even leads to
a downward trend of performance. The phenomenon may
arise from that a high dimension makes the model much
too complicated for the current problem, leading the model
overfitting on the small training set while generalizing badly
on the test set. Above all, considering increasing the feature
dimension makes training much more complex, we set the
mapping dimension as 800 for LPQ and Gabor, and 1000
for the pixel descriptor.

3.3 Evaluation of the PMDA Approach

At last, we give a global evaluation of the PMDA approach
based on the discussions above. Experimental results on the
COX-S2V dataset are shown in Table 2. Accuracy on the
pixel descriptor gives the baseline performance of the pro-
posed approach, which is quite satisfactory on the difficult
identifying environment. The LPQ and Gabor promote the
performance significantly comparing with the baseline, sug-
gesting that the two descriptors are quite effective for cap-
turing information on the uncontrolled environment. The
last line of Table 2 gives the accuracy derived from fusing
the similarities of LPQ and Gabor with a simple average op-
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Fig.8  An illustration of the extracted features from the blurred videos.
(a)-(b) The first row presents three types of images: the high-resolution
still images (S); the frames from the clear Video 2 (V2); the frames from
the blurred Video 3 (V3). The second row presents the LPQ feature maps
on the corresponding images. (c) The feature space of the clear frames
in Video 2 (V2). (d) The feature space of the blurred frames in Video
3 (V3). The LPQ features of 20 subjects, each of which has 6 images
randomly selected from the corresponding video clip, are projected into a
three-dimension space. Images of the same subject are visualized in the
same color.

eration. The fusing results show remarkable improvement
over that of single descriptor. Actually, LPQ emphasizes the
facial texture information, while Gabor magnitude empha-
sizes the structure information of faces [18]. Accuracy can
be obviously improved by combining the two features, for
their strong complementation to each other.

Moreover, from Table 2, we can find that video 1 and
2 generally achieve better accuracy than video 3 and 4 on
all the descriptors. Specially, performance of video 1 is
worse than video 2, and performance of video 3 is further
worse than video 4. Referring to Table 1, video 1 and 2
are captured under fixed pose, varying lighting and expres-
sion, while video 3 and 4 are under varying pose, lighting
and expression. Video 1 and 3 are more blur than video 2
and 4 for further shooting distance. Based on the condi-
tion differences on the four videos, the performance com-
parisons above indicate that changes in pose and the resolu-
tion degradation are two main factors affecting the recogni-
tion rate. Actually, referring to Fig. 6, local models from
varying-lighting (expression) videos look similar and just
the local image changes a little, while models from varying-
pose videos correspond to different visible parts of a face
and show large differences. In this situation, it is hard to
model the complex variations in the varying-pose local mod-
els effectively for the proposed method by using a single lin-
ear mapping. On the other hand, the resolution degradation
makes the content in an image hard to identify. In this sit-
uation, it is difficult to acquire discriminative information
for different classes. An illustration of the extracted fea-
tures from the blurred videos is shown in Fig. 8. We take the
LPQ feature on Video 3 as an example. Figure 8 (a) and (b)
present the LPQ feature maps of the high-resolution still im-
ages (S), the clear frames (V2) and the blurred frames (V3)
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Table 3  Accuracy of the PMDA optimizing with the eigenvalue decom-
position method [15](%).

Videol | Video2 | Video3 | Video4
Pixel 63.29 79.43 19.57 54.42
LPQ 61.28 82.28 27.85 67.86
Gabor 69.42 85.71 29.43 64.42
LPQ+Gabor 79.14 89.57 38.28 76.71

for two subjects respectively. We observe that the feature
maps in V2 is similar with that of the still images (S), which
both precisely encode the facial texture information. How-
ever, the feature maps in V3 tend to consist of scattered re-
sponse points, which can’t describe the facial texture effec-
tively. Moreover, the comparisons between Fig. 8 (a) and (b)
further show that for two different subjects, the feature maps
in V3 look rather similar. In this situation, it is hard to dis-
tinguish different subjects via the features of the blurred im-
ages. To statistically illustrate this issue, we further present
the feature spaces for the clear frames (V2) and the blurred
frames (V3) in Fig. 8 (c) and (d) respectively. As seen, the
features of the same classes mostly cluster together and the
features from different classes hold certain separability in
V2, while the features from different classes mix together
and the inter-class borders are hard to identify in V3. This
result shows that the extracted features from the blurred im-
ages are inadequate to compose the descriptors to provide
the inter-class discriminative information effectively.

Based on the discussion above, changes in pose and the
resolution degradation are two main factors degenerating the
learning ability of the proposed method. Referring to Table
1, we can figure that video 3 is captured under the worst
condition (varying pose and of low resolution). In this way,
learning on video 3 is much less effective, and video 3 finally
gets the worst performance.

Moreover, to evaluate the optimization algorithm in
our method, we also experiment by introducing the eigen-
value decomposition method [15] to optimize our model.
The recognition performance is shown in Table 3. Com-
paring the results of Table 2 and Table 3, we can get that the
recognition rates of the gradient descent method (Table 2)
are almost the same with that of the eigenvalue method on
all the four videos. Since the eigenvalue method ensures to
get the global optima of Eq. (17) as analyzed in Sect.2.3.2,
the result above, to some extent, indicates that the gradi-
ent descent method converges to the global minimum of our
objective function in Eq. (17). Therefore, it is adequate to
use the gradient descent method for optimizing in this pa-
per. Specially, since the gradient descent method performs
iterates to approach the optimal solution and we apply just
a few iterations (around ten) in our experiments, the perfor-
mance of the gradient descent method in Table 2 is slightly
inferior to the optimal performance in Table 3.

3.4 Comparison Results with Other Methods

We compare the PMDA to state-of-art methods in Table
4. Here, we include the results in [7] from the database
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Table 4  Performance comparison on the COX-S2V dataset (%).
Methods [ Videol [ Video2 | Video3 [ Video4
LDA+Pixel [7] 47.57 68.28 20.00 49.85
LPP+Pixel [7] 47.43 68.57 20.12 49.14
LFDA+Pixel [7] 21.86 44.00 3.29 16.14
CDEF+Pixel [7] 8.14 12.99 6.57 5.00
M-CLAFIC+Pixel [6] 6.36 10.72 3.89 4.27
PaLo-LDA +Pixel [7] 52.43 73.00 22.00 56.71
PMDA +Pixel 63.23 79.40 19.42 54.31
PaLo-LDA+LPQ-+Gabor 65.74 88.25 23.57 72.71
PMDA+LPQ+Gabor 79.02 89.53 38.22 76.64

releaser, including methods such as LDA [8], LPP[20],
LFDA [21]. As the subspace method is closely related in
terms of S2V recognition problem, we also experiment with
the classical modified CLAFIC method [6]. Performence of
conventional discriminant analysis methods, which apply a
single mapping for all the data from different scenarios, are
generally not so good. The classical subspace method (M-
CLAFIC) tends to project the input data (still images) to
the reference subspace build on the videos for classification.
Due to the great discrepancies of cross-scenario data, the di-
rect projection process may not capture the essential features
of intra-class samples in this situation, and the performance
also degenerates to some extent. The best results reported
are from the PaLo-LDA upon the pixel descriptor. With the
pixel descriptor, our approach performs better on video 1
and 2, but worse on video 3 and 4. In complex conditions,
the performance of PMDA may be disturbed by the low-
level expression of the original pixels. Actually, with the
phase-magnitude descriptor, our approach performs signifi-
cantly better than the PaLLo-LDA on all the four videos, with
a large increment of 13.28%, 1.28%, 14.65%,3.93% corre-
spondingly. As seen, advantages on the videos of complex
conditions (video 1,3,4) are pretty obvious.

The Palo-LDA is an improved version from classical
LDA, which uses partial weighting and local weighting to
take the cross-resolution and other variations (e.g., pose, il-
lumination, lighting etc.) into account for discriminative
learning. This method involves weights calculation of all
the pair-wise samples in the training set and a generalized
eigenvalue problem on the scatter matrixes, which are both
time-consuming tasks as the sample number gets large. Yet,
in the PMDA, instead of turning to the weighting skills,
we seek scenario-oriented mappings for the cross-scenario
problem. Comparing with the single-mapping based Pal.o-
LDA, our approach could model the underlying data man-
ifold in corresponding scenario more effectively, and thus
identifies faces in varying scenarios much better. More-
over, our iterative optimization approach effectively avoids
the complicated matrix decomposition of eigen-solvers.

As for the complexity, the PaL.o-LDA mainly involves
weight matrix calculation and eigenvalue decomposition.
Therefore, the two-part computational cost is O(DN? + D3),
where N is the sample number including all the still im-
ages and video frames, and D is the feature dimension. In
the PMDA, learning includes two stages: local model con-
struction and model based discriminant training. Detailedly,
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the clustering based model construction costs O(Ns NoN¢),
where Ny and N are the video frames number and the
model number in each video clip, and Ny is the category
number enrolled. As each category of samples are clustered
independently, this part could be executed in parallel very
efficiently. Using the denotation in Sect.2.3, the cost of
gradient computation during discriminant learning results
in O(D*NsN,,(ds + dy)). In our application, the mapping
dimensions ds, dy are rather small (ds,dy < D), and the
category number Ns and model number N, are generally
much smaller than the sample number N. From this, the
gradient computation in Eqgs. (18), (19) is rather efficient. In
fact, it just needs dozens of iterations (around ten) before the
PMDA converges. Moreover, through experiments, we find
that by choosing a proper learning rate, the objective func-
tion value decreases steadily, and the iterative algorithm is
guaranteed to get a optimal solution finally.

4. Conclusions

We have developed a Point-Manifold Discriminant Analysis
approach for Still-to-Video face recognition. The algorithm
models a video clip as a manifold and a still image as a data
point and learns separate mappings for samples in different
scenario patterns (still, video). The optimization of map-
pings is based upon separability-compactness constraints.
Comparative experiments indicate the proposal’s high ac-
curacy and robustness in the S2V scenario. A limitation of
the PMDA is applying simple linear projections to model
the rich nonlinear variations in facial appearance. Our fu-
ture work will focus on the extension to nonlinear mapping
learning and the exploration of local fiducial features.
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