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DRDet: Efficiently Making Data Races Deterministic
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SUMMARY  Strongly deterministic multithreading provides determin-
ism for multithreaded programs even in the presence of data races. A com-
mon way to guarantee determinism for data races is to isolate threads by
buffering shared memory accesses. Unfortunately, buffering all shared ac-
cesses is prohibitively costly. We propose an approach called DRDet to
efficiently make data races deterministic. DRDet leverages the insight that,
instead of buffering all shared memory accesses, it is sufficient to only
buffer memory accesses involving data races. DRDet uses a sound data-
race detector to detect all potential data races. These potential data races,
along with all accesses which may access the same set of memory objects,
are flagged as data-race-involved accesses. Unsurprisingly, the impreci-
sion of static analyses makes a large fraction of shared accesses to be data-
race-involved. DRDet employs two optimizations which aim at reducing
the number of accesses to be sent to query alias analysis. We implement
DRDet on CoreDet, a state-of-the-art deterministic multithreading system.
Our empirical evaluation shows that DRDet reduces the overhead of Core-
Det by an average of 1.6X, without weakening determinism and scalability.
key words: determinism, data-race detection, alias analysis, static analy-
sis

1. Introduction

For shared-memory multithreaded programs, the execution
order of synchronization operations and shared memory ac-
cesses varies across different executions, even if the same
input is given. Nondeterminism makes multithreaded pro-
grams hard to develop, test, verify and debug. Determinis-
tic multithreading systems [1] eliminate nondeterminism by
deterministically scheduling the synchronization operations
and shared memory accesses.

Unfortunately, it is costly to guarantee the determinism
of frequent shared accesses. One of the common approaches
is to isolate the execution of threads and then enforce inter-
thread communication at the deterministic points [2]-[8].
The isolation is implemented by buffering the shared stores
and redirecting loads from global memory to local buffer.
The frequent buffering, redirection and committing makes
the overhead of deterministic multithreading prohibitively
high.

To avoid such inefficiency, weak determinism [9], [10]
assumes that programs are data-race-free. According to
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data-race free assumption, no shared access needs to be
buffered. Thus, weak determinism is much more effi-
cient than strong determinism. Data-race-free assumption
is based on the insight that data races are rare. However,
considering that it is hard for developers to avoid introduc-
ing data races, we argue that ignoring data races may lead to
harmful results.

In this paper we present DRDet, a hybrid approach
which efficiently makes data race deterministic. Instead
of enforcing deterministic order on all shared memory ac-
cesses, we argue that it is sufficient to concern ourselves
with data-race-involved accesses. For soundness, data-race-
involved accesses should consist of potential data races and
any other memory operations which may access the same set
of objects. We use a sound static data-race detector to iden-
tify all potential data races. The memory objects accessed
by these potential data races are called data-race-involved
objects. Then, we use alias analysis to detect all shared ac-
cesses to these objects.

However, the inherent imprecision of static analyses
brings two challenges to DRDet. First, a large fraction of
shared accesses are identified as potential data races due to
high false positive rates of the static data-race detector. Even
worse, too many shared objects are flagged as data-race-
involved due to the imprecision of alias analysis. In bench-
marks we evaluated, almost all shared accesses are identified
as data-race-involved.

DRDet employs two approaches to prune false data-
race-involved accesses. Both approaches attempt to mini-
mize the number of accesses to be sent to query alias analy-
sis. First, we adopt thread specialization [11] to prune false
positives reported by static data-race detector. Having fewer
data race warnings leads to fewer data-race-involved ob-
jects. Thread specialization specializes a program accord-
ing to a statically fixed thread count. It is based on the ob-
servation that in many multithreaded programs, a large frac-
tion of accesses to shared memory are usually indexed by
thread IDs. Static data-race detector usually overestimates
the range of shared accesses due to the inability of distin-
guishing thread IDs by symbolic values. If the thread count
is given, thread specialization may statically assign the con-
crete value to each thread ID. Thus, accesses indexed by
thread IDs can be distinguished much easier.

Second, we propose a new buffering strategy called
loads-in-quantum (LIQ) to reduce the number of accesses
need to be buffered. A quantum is the execution phase be-
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tween two consecutive commit points. Existing buffering
strategies [2]-[8] buffer all shared memory accesses. Unlike
previous work, LIQ only buffers the stores of data races, as
well as loads which (1) happen after the data-race stores and
(2) access the same objects in the same quantum. Although
LIQ reduces the number of buffered accesses, it results in
a relaxed memory consistency model. We discuss if LIQ
violates the correctness and determinism of programs.

Same as existing buffering strategies, LIQ is imple-
mented by compile-time instrumentation. We design a
compile-time instrumentation algorithm based on LIQ. Al-
though static analyses which we use are imprecise, our al-
gorithm effectively reduces the number of instrumentation
points.

Our primary contributions are as follows. First, we pro-
pose a new approach to reduce the overhead of determinis-
tic multithreading. Our approach is based on sound static
data-race detector and alias analysis. Second, we imple-
mented DRDet on CoreDet [2] and evaluated the effective-
ness of DRDet using the SPLASH2 [12] benchmark suits.
Our evaluation shows that DRDet improves the performance
of CoreDet by 1.6x on average. We find that our two opti-
mizations significantly reduce the number of dynamic in-
strumentation points.

The remainder of the paper is organized as follows.
Section 2 reviews strong determinism and static data-race
detection. Section 3 describes the approach we use to
prune false data races. In Sect.4, we describe the loads-
in-quantum buffering strategy in detail. Section 5 describes
the implementation of DRDet and our experimental results.
Section 6 surveys related work and Sect. 7 briefly summa-
rizes the conclusions.

2. Background

In this section we summarize some topics which are relevant
to DRDet, including strong determinism and static data-race
detection.

2.1 Strong Determinism

Strongly deterministic multithreading not only guarantees
the deterministic order for synchronization, but also pro-
vides determinism for shared memory access interleavings.
A common approach to provide strong determinism is iso-
lating the execution of threads and committing shared mem-
ory modifications at deterministic points.

Store buffering is a popular mechanism for isolating
threads. As illustrated in Fig. 1, store buffering divides exe-
cution into bulk-synchronous quanta. During an individual
quantum, stores to shared memory are buffered, and loads to
shard memory are redirected to thread-local bufter. Buffered
data are committed deterministically at the end of quanta.

Contrary to weak determinism, the overhead of strong
determinism is prohibitively high. One of the reasons is that
all memory accesses are buffered. CoreDet applies escape
analysis to remove instrumentation on accesses which are
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Fig.1  Threads isolation through store buffering.

provably thread-local. According to the evaluation by Das
et al. [13], escape analysis reduces 19.8% dynamic number
of instrumentation on average. However, even with escape
analysis, the overhead of CoreDet is still roughly 1.2x-6x.

2.2 Static Data-Race Detection

DRDet uses RELAY [14] static data-race detector, which
can scales to millions of lines of code. RELAY is a lockset-
based data-race detector. A lockset is a set of locks held
by program at a program point. A lockset analysis stati-
cally computes the lockset of each program point. If two
accesses from different threads to the same shared object
(1) may happen concurrently, (2) at least one access is a
write, and (3) the intersection of the locksets at each point is
empty, then a data-race warning is generated.

RELAY uses Steensgaard [15] and Andersen [16] flow-
insensitive, context-insensitive, and field-insensitive points-
to analyses, which are scalable to large programs. However,
these analyses are very conservative.

3. Pruning False Data Races

In this section, we briefly analyze the false positives pro-
duced by RELAY, then we summarize thread specialization
which specializes a program for improving the precision of
static data-race detection. We refer to [11] for the details.

3.1 False Positives

As mentioned in Sect.2, the employment of conservative
points-to analyses is one of the main sources of false pos-
itives. Considering the tremendous research efforts on
points-to analysis over the years, in this paper we mainly
focus on other sources except points-to analysis.

Besides the imprecision of points-to analysis, there are
two other main sources of false positives. First, arrays are
treated as aggregates. RELAY claim that all accesses to the
same array are accesses to the same memory object, even
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1: void *worker() { 7: void *worker_CLONEO() { 13: void *worker_CLONEL() {
2: 8: 14:
3: for (inti=0; i< range; ++i) 9: for (inti=0; i< range; ++i) 15: for (inti=0;i<range; ++i)
4: results[my_id][i] = compute(i); 10: results[0][i] = compute(i); 16: results[1][i] = compute(i);
5: } 11:  } 17: }
6: } 12: } 18: }
(a) (b)
before thread specialization after thread specialization

Fig.2  Thread specialization specializes a program with thread count two.

they actually access different elements. Figure 2 (a) shows
an example. RELAY reports data races on results in line 4.
Actually, the program divides the array results into multiple
portions and assigns different portion to each worker thread.
Thus, different threads would not access the same element in
the array results. Second, RELAY does not account for the
happens-before relationships due to folk-join and barriers.
For example, multi-threaded programs usually do initializa-
tion before forking worker threads. Shared accesses during
initialization would never conflict with any other accesses.

3.2 Thread Specialization

Thread specialization leverages the insight that in most mul-
tithreaded programs threads access data according to the
ID they are assigned. If we can statically fix thread IDs,
then it would be easier to distinguish the objects accessed
by each thread. In order to fix thread IDs, we have to fix
the thread count at first, since in most programs thread IDs
range from zero to the value of thread count. Given a thread
count, thread specialization transforms the program into a
simplified version. The simplified version has simpler con-
trol and data flows, which drastically improves the precision
of static data-race detection. Note that the simplified pro-
gram is equivalent to the original one once the given thread
count is enforced. Since the analysis depends on the given
thread count, we have to re-analyze a program once a new
thread count is given. We argue that it is reasonable based
on following insights: (1) the number of cores in the state-
of-the-art commodity hardware is small (less than sixty four,
usually) and (2) all benchmarks we evaluated achieve peak
performance when the thread count is less than or equal to
core count.

The process of thread specialization includes two steps.
It first specializes the control flow by cloning functions
which are reachable by worker threads. Every thread gets its
own clone of the reachable functions, so that every statement
can only be executed by one single thread. Thus, threads
are statically distinguishable. Second, it specializes the data
flow by fixing the ID assigned to each thread and replacing
the ID variable with the fixed value. Step one makes it im-
possible that an access races with itself, since every access
is only executed by one particular thread. Step two makes

inferring of accessing ranges more accurately, since the ID
is replaced with constant value.

Figure 2 (b) shows the result of thread specialization
on the program of Fig.2(a). Function worker is cloned
twice, assuming that the given thread count is two. In
worker_CLONEQO, the variable my_id, which is the index
of array results, is replaced with constant 0. Similar to
worker . CLONEO, my_id in worker_.CLONE] is replaced
with constant 1.

Now, line 4 in Fig. 2 (a) is transformed into two distinct
statements in Fig. 2 (b) (line 10 and line 16). Each state-
ment is mapped to only one active thread, so it is impossible
for accesses in any statement to race with itself. Besides,
since the indices of the first dimension between two state-
ments are different, we can determine that the access ranges
of each statement do not overlap. Thus, two accesses to re-
sults provably do not race with each other. As a result, the
false positives on results are pruned.

4. Loads-in-Quantum Buffering Strategy

According to traditional buffering strategies, all shared
memory accesses should be buffered. We narrow it down
to buffering data-race-involved accesses, which consist of
data races and any other accesses to the same set of objects.
However, due to the inherent imprecision of alias analysis,
the amount of alias accesses remains large, even though we
prune a large fraction of false positives via thread special-
ization. In order to leverage thread specialization we have
to design a new buffering strategy.

In this section, we first give the basic correctness and
deterministic criteria which a buffering strategy should obey.
Then we propose our buffering strategy and discuss why it
does not violate the correctness and deterministic criteria.
Finally, we describe our compile-time instrumentation algo-
rithm, which implements the buffering strategy.

4.1 Correctness Criterion

For accesses to the same memory object, if a store S is
buffered, then all loads between S and the next store must
be buffered, namely these loads must read value from buffer.
Similarly, if S directly writes value to shared memory, then
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Fig.3  Anexample of buffering strategy.

all loads between S and the next store must read value from
shared memory. Considering that in buffering based deter-
ministic multithreading all buffered values are committed at
quantum boundaries, we define the basic correctness crite-
rion as follows.

Correctness criterion: In a quantum, if a store is
buffered, then all the accesses which happen after the store
and access the same object in the same thread must be
buffered.

The basic correctness criterion is sufficient to guaran-
tee correctness in strong determinism. Considering accesses
in the same thread, if a store is buffered, the accesses (ei-
ther stores or loads) which happen after the store must be
buffered for consistency. Accesses in other quanta do not
need to be buffered since buffered data are committed to
shared memory at the boundary of quantum. It is correct
that the accesses which happen before the buffered store di-
rectly access the global memory, as long as the address has
not been buffered yet. Correctness of programs is indepen-
dent of inter-thread buffering decision, since threads are iso-
lated. Taking Fig.3 as an example, if store S2 is buffered,
then load L1 must be buffered while store S1 does not have
to. Whether or not to buffer store S3 and load L2 does not
depend on the status of store S1 and S2, since S3 is in other
quantum and L2 is in other thread.

4.2  Deterministic Criterion

Traditional buffering strategies believe that all data races
should be buffered. However, we argue that, for a data race,
buffering one of the stores is sufficient to make the data
race deterministic. If two accesses of the data race reside
in different quanta, the global synchronization between two
quanta makes the data race deterministic, thus no buffering
is needed. If they reside in the same quantum, buffering
one store is sufficient to introduce a deterministic happens-
before relationship to the data race. The other access does
not need to be buffered, since it always happens before the
buffered store. For example, load L2 in Fig.3 races with
store S1 and store S3. S1 and L2 are in the same quantum.
Buffering S1 results in that L2 always happens before S1.
S3 and L2 are in different quanta, thus the race between S3
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and L2 is eliminated by the global barrier between quanta.
We summarize the basic deterministic criterion as below.

Deterministic criterion: In a quantum, at least one of
the stores in a data race must be buffered.

4.3 Buffering Strategy

We design the loads-in-quantum (L1Q) buffering strategy to
reduce the amount of buffered accesses. For each data race,
LIQ operates in two steps. Step I, LIQ buffers store(s). Step
II, LIQ buffers all loads which happen after the stores and
access the same object in the same quantum.

LIQ does not violate correctness and deterministic cri-
teria. First, according to deterministic criterion, buffering
data-race store(s) makes data race deterministic. Second,
according to correctness criterion, we should buffer follow-
ing stores and loads. In fact, stores which happen after the
data-race store access the same object as the data-race store
does, so they are data races too. Thus, these stores will
be buffered in other rounds anyway. It is sufficient to only
buffer loads which happen after the data-race store in step
II. Taking Fig. 3 as an example, stores S1, S2 and S3 access
the same object. S1 and S2 reside in the same quantum. S3
is in the next quantum. We do not take into account S2 in
step II because S2 is a data-race store and will be buffered
in other round. S3 resides in other quantum, thus we do not
have to take into account S3 in current round.

4.4 Compiler-Time Instrumentation

We implement a compile-time instrumentation algorithm
based on LIQ. Although the idea of LIQ is simple, it is chal-
lenging to deal with the imprecision of static analyses which
we employ. The sources of imprecision are (1) potential data
races, (2) may-alias analysis, and (3) conservatively inferred
quantum boundaries. During compile time, the algorithm it-
erates over all potential data-race stores. Before detecting
loads dominated by these potential data-race stores in the
same quantum, DRDet has to infer the quantum boundaries
at first. For each potential data-race store, DRDet conser-
vatively assumes that the quantum starts from the location
of the store. In this quantum, DRDet enumerates all loads
which are dominated by the store and may access the same
object as the store does. DRDet performs a breadth-first
traversal of basic blocks in the inter-procedural CFG of the
quantum. The traversal starts with a budget of full quan-
tum size and computes the remaining budget according to
the amount of work in each basic block. The traversal ends
when the budget is exhausted or encountering an external
call.

The algorithm is presented in Fig. 4. The input is a set
of all potential data-race stores, and the output is a set of
shared loads which dominated by potential data-race stores.
States are named by a pair of (bb, budget), where bb rep-
resents the current basic block, and budget represents the
amount of remaining instructions in this quantum. Every
time a new basic block is traversed, the remaining budget
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EnumDominatedLoads (PDRS: potential data-race stores) {
dominatedLoads = {}
foreach (s in PDRS) {
initState.bb = s.parentBB()
initState.budget = QuautumSize
worklist = {initState}
while (!worklist.empty()) {
curState = worklist.pop()
curBB = curState.bb
//if current basic block has been visited with a
//bigger budget, no new basic block will be
//introduced, so prune current state
if (curBB visited &&
curState.budget <= curBB.MaxBudget)
continue
else {
curBB.MaxBudget = curState.budget
curState.budget -= curBB.work
worklist.add(SuccessorBB(curBB))
if (curBB has not yet been visited) {
foreach (shared load 1 in curBB) {
if (mayAlias(l,s))
dominatedLoads.add(1)

return dominatedLoads

}

Fig.4 Enumerating dominated loads for every potential data-race stores.

is updated and the shared loads within the basic block are
checked by alias analysis to see if they may assess the same
object. For basic blocks which have been visited before, if
the remaining budget of current state is smaller than or equal
to the max budget this basic block has ever been visited with,
which means current state would not introduce any new ba-
sic block, then current state is pruned. Otherwise, succes-
sors of current basic block is computed and inserted to the
work list.

Figure 5 shows the algorithm for iterating successors
of a basic block. To deal with inter-procedure analysis,
DRDet maintains a call stack which indicates where to re-
turn. When a return instruction is reached, DRDet consults
the call stack to get successors. Note that the analysis does
not start from the entry but the middle of the program, so
the first function does not have the return location in the call
stack. In this case, DRDet treats the entries of all potential
callees of the first function as successors. Callees are com-
puted by consulting call graph and alias analysis.

Since the static analyses which we employ are sound,
our instrumentation algorithm does not introduce any false
negative. First, the soundness of the static data-race detector
guarantees that all data-race stores are instrumented. Sec-
ond, the soundness of alias analysis guarantees that DRDet
instrument all loads which happen after data-race stores and
access the same object.

Although the inherent imprecision of static analyses in-
evitably introduces false positives, these false positives do
not violate the sematic of programs. The reasons are: (1) itis
safe to conservatively buffer redundant loads; (2) all poten-
tial data races are treated as real data races; and (3) DRDet
instruments no store except potential data-race stores.
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SuccessorBB (curState) {
newStates = {}
curBB = curState.bb
//if curBB has no successor, first consult call stack
//then the call graph
if (curBB has no successor) then
if (!curState.callStack.empty()) then
newState.bb = curState.callStack.pop()
newState.budget = curState.budget
newStates.add(newState)
else { //call stack is empty, iterate all callees
foreach(c in callees of curBB.getParent()) {
newState.bb = c.entry()
newState.budget = curState.budget
newState.add(newState)
¥
}

else { //curBB has successors, iterate the successors
foreach (succ in successors of curState.bb) {
newState.bb = succ
newState.budget = curState.budget
newState.add(newState)
¥
return newStates

}

Fig.5 Iterating successors of a basic block.

5. Evaluation

Our main goal in this section is to show that DRDet improve
the performance of deterministic execution without weaken-
ing determinism and scalability. We implemented DRDet on
CoreDet, and compared DRDet with native CoreDet. The
performance and scalability data is shown. Furthermore, we
demonstrate the effectiveness of thread specialization and
loads-in-quantum buffering strategy.

5.1 Methodology

We implemented the idea of DRDet on CoreDet with store
buffering configuration. Programs were analyzed by static
data-race detector for generating data race reports before
being compiled by DRDet. The static data-race detector
we used was RELAY with thread specialization support.
Thread specialization transformed programs according to
the given thread count. RELAY analyzed the transformed
programs to generate data race warnings. Based on these
warnings, DRDet instrumented data-race-involved accesses
during compilation. We reused the runtime of CoreDet to
implement a complete strong deterministic multithreading
system.

We evaluated DRDet using seven programs from
SPLASH-2 [12] benchmark suites: fft, water, barnes, ocean,
radix, lu and fmm. Scaled inputs were selected to insure
that every program runs for at least about a minute with one
thread.

We ran our experiments on an AMD server with a
2.2GHz, 12-core CPU (AMD Opteron 6174) and 16 GB
physical memory, running Linux kernel version 2.6.31.5.
We used LLVM 3.0 [17] as compiler infrastructure. CoreDet
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was ported from LLVM 2.6 to LLVM 3.0 for comparison.
We test the determinism of DRDet by running racey deter-
ministic stress test [18] for 1000 times. During the execu-
tion of racey, we disabled the ASLR (Address Space Layout
Randomization) of Linux. DRDet reports the same results
for all 1000 runs.

5.2 Performance and Scalability

We compared the overheads and scalability of DRDet with
CoreDet, using DMP-B scheme (store buffering). We en-
force the same configuration on DRDet and CoreDet. The
values we choose for granularity and quantum size parame-
ters are optimal on CoreDet.

Figure 6 shows DRDet’s performance results when
thread specialization and loads-in-quantum are enabled.
Each bar shows DRDet normalized to CoreDet with the
same number of threads, showing how much overhead is re-
duced by DRDet. Overall, the speedup over CoreDet for 2,4
and 8 threads range from 1.1x-7.6x, 1.1x-6.4x and 1.1x-5.3x
respectively. The harmonic means across all benchmarks for
2,4, and 8 threads are 1.6x, 1.7x and 1.7x, respectively. The
performance of water is significantly improved because that
DRDet removes almost all access instrumentation.

Figure 7 compares the scalability of DRDet with Core-
Det. Each bar is normalized to the same configuration with
2 threads. Overall, DRDet scales as well as DMP-B scheme
of CoreDet. Note that among three schemes in CoreDet,
DMP-B scales best. We conclude that DRDet improves the
performance of DMP-B without sacrificing scalability.
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Fig.6  Overheads relative to CoreDet with the same numbers of threads.
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Fig.7  Scalability.
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5.3 Effectiveness of Thread Specialization and LIQ

We analyzed the effectiveness of thread specialization and
LIQ on DRDet’s performance. Static data-race detectors
lack the ability to precisely distinguish threads, which re-
sults in a lot of false data races. Thread specialization trans-
forms a multithreaded program into a simplified version ac-
cording to the given thread count. Analysis on the simplified
program generates more precise results (Sect. 3). Loads-in-
quantum buffering strategy tries to buffer as fewer accesses
as possible. To this end, LIQ only checks loads which are
dominated by data-race stores before quantum boundaries
(Sect. 4).

We compared three different sets of optimizations. The
basic optimization uses RELAY to detect potential data
races and then uses alias analysis to detect all accesses to the
same set of memory objects that accessed by data races. The
opt2 optimization introduces thread specialization to prune
false data races, and uses the same buffering strategy as the
basic analysis. Unlike opt2, opt3 buffers accesses according
to LIQ.

Figure 8 shows the performance overhead of DRDet
normalized to CoreDet with different optimizations. All
benchmarks were run with 4 threads. For all benchmarks we
evaluated, the basic optimization contributed quite little to
overall overhead reduction. The harmonic mean of speedup
with opt2 is 1.3x. Thread specialization reduced potential
data races, which led to the reduction of the amount of
data-race-involved memory objects. Thus, accesses to the
pruned objects were ignored by optl. When we further em-
ployed LIQ buffering strategy in opt2, the average speedup
of DRDet is up to 1.6x.

Applications such as water, fmm and barnes benefit
significantly from thread specialization. In these applica-
tions, most of reported data races are accesses on array el-
ements indexed by thread IDs. These false data races are
soundly pruned by thread specialization. In contrast, thread
specialization is ineffective on applications such as fft, lu
and ocean. In these applications, many accesses on arrays
are indexed by thread IDs indirectly. For example, some in-
dices are functions of thread ID. Thread specialization could
not account for such indices.

7.00
6.00 M optl: RELAY + alias
g g analysis
2 5.00 W opt2: basic + thread
< T .
% E 4.00 specialization
B opt3: opt2 + LI
ge 3.00 | p p Q
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Fig.8 Speedup over CoreDet with different sets of optimizations.
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moptl: RELAY + alias analysis

Hopt2: basic + thread specialization

opt3: opt2 + LIQ
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Fig.9  Proportion of instrumentation points with different sets of
optimizations.

We observe that the effectiveness of LIQ depends on
the results of thread specialization. For example, opt2 re-
sults in a speedup of about 2x on water, while opt3 provides
a 7x speedup. In contrast, for fft, opt2 gains a speedup of
about 1.1x, while opt3 only achieves a 1.2x speedup. Since
LIQ instruments loads which happen after each data-race
store, fewer data-race stores leads to fewer instrumented
loads.

Figure 9 shows the proportion of dynamic number of
instrumented accesses with respect to the total number of
dynamic shared memory operations. In general, the pro-
portions in Fig. 9 for different optimizations are consistent
with the results in Fig. 8. REALY flags a large fraction of
shared memory operations as potential data races. Alias
analysis based on these potential data races identifies al-
most all shared accesses as data-race-involved. On average,
opt2 reduces 15% of dynamic number of instrumentation,
which indicates the benefit of thread specialization. By fur-
ther employ the LIQ buffering strategy, DRDet reduces the
proportion of instrumentation with respect to total memory
accesses down to 36% on average.

Note that for some programs, the reduction of dynamic
instrumentation does not yield a proportional performance
benefit. For example, opt3 reduces 75% of dynamic in-
strumentation points on radix, but only improves the per-
formance by 1.45x. Similarly, opt3 reduces 69% of instru-
mentation on ocean. However, the performance gain is only
about 1.07x. The main reason of the disproportionateness
is that, instrumentation reduction may introduce quantum
imbalance between threads. Recall that CoreDet enforces
global barriers at the end of each quantum, it is essential to
keep load balance between threads. DRDet introduces load
imbalance on some programs because it reduces different
amount of instrumentation for different threads. However,
results in Fig. 9 are consistent with the overhead results in
Fig. 8 in general. This indicates that the benefits of buffering
reduction far outweigh the quantum imbalance it introduces.
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Table1  Analysis time. LOC shows the lines of code in each application.
We show the execution time of program analysis with thread specialization
(SPEC) and the execution time of original RELAY (RELAY). The analysis
time is measured in seconds.

application | LOC | SPEC | RELAY
fft 0.9K 8.45 8.074
water-s 1.9K | 10.306 11.681
fmm 32K | 12.329 12.58

barnes 2.0K 9.683 10.349

ocean-c 40K | 21.399 13.02
radix 0.9K 8.568 8.059
lu-c 0.9K 8.546 8.221

5.4 Analysis Time

Table 1 shows the execution time of DRDet’s program anal-
ysis with comparison to the original RELAY. Overall, like
RELAY, the execution time of thread specialization largely
depends on the size of program. Our results illustrate that
thread specialization incurs negligible overhead, compared
to RELAY. Note that in some cases (e.g., water, fmm and
barnes) thread specialization does not increase but reduce
the analysis time. The key reason is that thread specializa-
tion drastically prunes false positives, resulting in a signif-
icant decrease in the report generation time. Among these
applications, the analysis time for ocean is the largest be-
cause (1) the LOC of ocean is the largest and (2) thread
specialization is relatively ineffective on ocean.

6. Related Work

Deterministic Multithreading. Deterministic multithread-
ing provides two levels of determinism: strong determinism
and weak determinism [9],[10]. Weak determinism avoids
heavy-weight tracking of memory accesses. However, mul-
tithreaded programs are hard to guarantee data-race-free.
There is a large body of work that provides strong deter-
minism [1]-[7], [19],[20], [31], which is commonly imple-
mented by isolating threads and enforcing thread commu-
nication at deterministic points. Store buffering [2]-[8] is
a common mechanism to provide thread isolation. Tradi-
tional buffering strategies usually buffer all shared memory
accesses. CoreDet employs an escape analysis to prune
unescapable accesses. DThreads [21] employs a different
mechanism, which treats threads as processes and lever-
ages OS memory protection to enforce isolation between
threads. Accesses to shared memory are redirected to lo-
cal address spaces, and are merged to global memory at
synchronization points. For many programs, DThreads is
efficient due to avoidance of instrumentation and reduction
of false sharing. However, since synchronization operations
are treated as barriers, DThreads is likely to introduce load
imbalance for programs with irregular synchronization pat-
terns. DRDet isolates threads through store buffering. Un-
like previous work, DRDet’s buffering strategy employs a
number of static analyses to reduce the number of instru-
mentation points. Although the employment of static analy-
ses increases analysis time, we believe it is a worthy tradeoff



CHEN et al.: DRDET: EFFICIENTLY MAKING DATA RACES DETERMINISTIC

for better runtime performance.

There has been previous work to reduce instrumenta-
tion overhead of deterministic multithreading. CoreDet em-
ploys an escape analysis to remove instrumentation on ac-
cesses to thread-local data. Das et al.[13] proposes three
techniques to reduce logging overhead for deterministic ex-
ecution. They prunes three categories of accesses from in-
strumentation, including (1) accesses executed when only a
single thread is running, (2) accesses to multi-threaded read-
only memory and (3) accesses in a loop to arrays whose
address does not change. Unlike [13], DRDet directly tar-
gets at data races. Besides, DRDet does not require any
developer-provided hint.

Stable Multithreading. Stable multithreading [22]-
[24] makes data races deterministic by reusing the recorded
thread interleavings for the same input. Peregrine [23] en-
forces hybrid schedules at runtime for deterministic. A
hybrid schedule consists of mem-schedule, the happens-
before order of memory operations, and sync-schedule, the
happens-before order of synchronization operations. Mem-
schedule is enforced when a code region is likely to con-
tain data races, while sync-schedule is enforced otherwise.
Mem-schedule is computed by schedule specialization [25]
based on the sync-schedule, which facilitates the detection
of data races by simplifying control and data flows. Sta-
ble multithreading is efficient due to enforcing of hybrid
schedules. However, the recorded schedules do not guar-
antee to cover all inputs. If an input gets no mapping sched-
ule in the schedule database, the execution is nondeterminis-
tic. DRDet guarantees determinism for thread counts which
have been analyzed by thread specialization. The set of
thread count is much more small than the set of schedules.

Static Data-Race Detection. A plethora of work has
been devoted to creating precise and scalable static data-
race detectors [14], [26]-[29]. Many of them try to explore
the tradeoff between precision and scalability. RELAY is
sound and scalable to millions of lines of code, which is
suitable for DRDet to detect all potential data races in large
programs.

False Positive Pruning of Static Analysis. RELAY
provides several simple filters to prune false positives. How-
ever, all these filters are unsound. Chimera[30] employs
RELAY to detect potential data races and instruments them
with weak-lock to make program data-race-free. To re-
duce the number of weak-locks, Chimera merges consec-
utive weak-locks by enlarge the region weak-locks protect.
Similar to Chimera, DRDet uses RELAY. However, the op-
timizations in Chimera cannot be ported to DRDet, since
Chimera does not directly prune false positives. Schedule
specialization [25] specializes a program toward a small set
of recorded thread interleavings. Static analysis on special-
ized program produces much more precise results. How-
ever, schedule specialization requires recording a set of
schedules in advance. Contrary to schedule specialization,
thread specialization does not need any information about
schedule. Besides, the set of thread count is much small
than the set of schedules, since every thread count maps at
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least one distinct schedule.
7. Conclusion

In this paper, we propose a novel approach to reduce the
overhead of deterministic multithreading. Our approach
leverages a static data-race detector to detect potential data
races, and uses alias analysis to detect all accesses to the
data-race-involved memory objects. Instrumentation over-
head is drastically reduced by two critical optimizations.

Although DRDet focuses on reducing instrumentation
overhead of deterministic multithreading systems, the idea
of DRDet can be easily ported to deterministic replay or dy-
namic data-race detection.
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