
2852
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

PAPER

Automatic Inclusion of Semantics over Keyword-Based Linked
Data Retrieval

Md-Mizanur RAHOMAN†a), Nonmember and Ryutaro ICHISE†,††b), Member

SUMMARY Keyword-based linked data information retrieval is an
easy choice for general-purpose users, but the implementation of such an
approach is a challenge because mere keywords do not hold semantic in-
formation. Some studies have incorporated templates in an effort to bridge
this gap, but most such approaches have proven ineffective because of in-
efficient template management. Because linked data can be presented in a
structured format, we can assume that the data’s internal statistics can be
used to effectively influence template management. In this work, we ex-
plore the use of this influence for template creation, ranking, and scaling.
Then, we demonstrate how our proposal for automatic linked data infor-
mation retrieval can be used alongside familiar keyword-based information
retrieval methods, and can also be incorporated alongside other techniques,
such as ontology inclusion and sophisticated matching, in order to achieve
increased levels of performance.
key words: linked data, keyword, information access, data statistics

1. Introduction

The Linked Open Data [4] initiative, where data are con-
nected in a network-like structure [7] and which was mo-
tivated by the potential for link construction and identi-
fication among various data, has opened new worlds in
data usage. The concept of this storage paradigm deviates
from traditional repository-centric infrastructures to an open
publishing model that allows other applications to access
and interpret stored data [16]. As of September 2011, 295
knowledge-bases consisting of over 31 billion resource doc-
ument framework (RDF) triples on various domains, have
become interlinked via approximately 504 million RDF
links∗.

Efficient and easy-to-use information access over
linked data is now a necessity because these days such
linked data hold vast amounts of knowledge. Usually, ob-
taining information access over a linked data network re-
quires following links [2], [3], [15]. However, simply fol-
lowing links introduces a very basic problem, which is that
the use of a network presentation makes it very hard to find
endpoints, at least within a reasonable cost [1]. As a result,
finding links on linked data is often difficult, especially for
general-purpose users who have very little knowledge about
the internal structure of linked data, such as schema infor-
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mation or structured query language (SQL) type expressive
queries (RQL, RDQL, or SPARQL [24]).

Keyword-based link data access methods are consid-
ered easy to use because of their familiarity [18], [23]. How-
ever, such data access options are different from other tradi-
tional keyword-based data retrieval types because they re-
quire adapting keywords to semantics. Since keywords do
not contain semantic information (specifically ontology in-
formation), a number of researchers have proposed auto-
matic ontology inclusion [28] to bridge that gap. However,
automatic ontology inclusion is a challenge because, in such
cases, the system itself needs to incorporate ontology that is,
as yet, unavailable.

In attempts to resolve the abovementioned problems,
such as link finding and keyword semantics inclusion, re-
cently, a number of other researchers have worked to
incorporate templates into linked data keyword search
schemes [26], [30]. The intuition behind “template” creation
is that it would introduce a defined structure that supports
finding links and their endpoints, as well as templates that
could fill the semantic gaps that result when keywords alone
are used. However, current template-based linked data re-
trieval studies have yet to provide concrete guidelines for
template construction, ranking, and merging, all of which
are required for effective adaptation of templates to linked
data retrieval. In this work, we will propose a guided frame-
work on template construction, ranking, and adaptation for
use with keyword-based linked data access that uses internal
data statistics for template management.

Our template management technique relies on keyword
order. In it, templates are constructed for “adjacent key-
words”. More specifically, for each keyword, any other key-
words that are ordered before and after are considered to
be adjacent keywords. For keyword-based information re-
trieval, our primary assumption is that users will enter key-
words in the word order of a natural language sentence. That
is, instead of inputting keywords randomly, they will input
them in an order that conforms to the natural language struc-
ture of a sentence. Michael A. Covington supported this
assumption in his work [9] where he showed that major lan-
guages such as Chinese, English, and French almost never
allow variations in the word orders that make up sentences.
A word order-based information retrieval approach is also
common in contemporary semantic search research. For ex-
ample, Unger et al. and Yahya et al. used a language parser

∗http://www4.wiwiss.fu-berlin.de/lodcloud/state/

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



RAHOMAN and ICHISE: AUTOMATIC INCLUSION OF SEMANTICS OVER KEYWORD-BASED LINKED DATA RETRIEVAL
2853

to determine the word order of their natural language ques-
tions [30], [34].

Above a keyword-based linked data information re-
trieval perspective, our proposal contributes in the follow-
ing ways: i) by considering linked data’s data structure and
internal statistics, we devise templates into which we can
embed linked data’s missing semantics, ii) by observing the
linked data’s internal statistics, we propose a template rank-
ing strategy that can be used to identify a strong potential
template (from among other templates) and that can be used
to construct a possible SPARQL query, and iii) by introduc-
ing a template merging strategy, we guide the scalability of
our proposed retrieval framework for any number of key-
words. Our proposed framework can automatically create
templates from keywords without considering schema or on-
tology information through the use of an automatic linked
data retrieval approach, and we further hypothesize that the
inclusion of such information will effectively improve the
system’s performance.

The remainder of this paper is divided as follows. In
Sect. 2 we describe works related to this study, while in
Sect. 3 we propose guidelines on template construction and
management for query questions that contain two keywords.
In Sect. 4, we extend our proposed guidelines for query
questions that contain more than two keywords. In Sect. 5
we show the results of implementing our proposal through
experimental results and discussion. Section 6 concludes
our work.

2. Related Work

Linked data information access is an active research field
in the linked data research community. Over the past cou-
ple of years, researchers have introduced a range of tech-
niques relating to linked data information retrieval, such as
RDF document retrieval using look-up [29], using sophis-
ticated matching and ranking [12], retrieval via automatic
ontology inclusion [27], [28], [32], retrieval by incorporat-
ing user feedback [19], or retrieval by incorporating natural
language [10], [11], [21].

There have also been some approaches where re-
searchers consolidate benefits from two or more techniques
like faceted search and explicate query [13], [33], or semi-
supervised machine learning techniques that employ user
feedback [19]. Additionally, since keywords provide an easy
and familiar means for data access [18], [23], some stud-
ies have proposed keyword-based linked data retrieval [5],
[8], [36], or have advocated utilizing the advantages of key-
words [6], [17], [20], [28], [35] when creating linked data ac-
cess paradigms.

Our work has also been motivated by the possibilities
of keyword-based linked data access. Using such an ap-
proach, Gheng et al. explored the creation of virtual docu-
ments that provide query-relevant structures on linked ob-
ject detection [8]. Zhou et al. showed a keyword-based
resource mapping and graph construction technique [36],
while automatic ontology inclusion to keywords is another

technique proposed in [17], [28]. Bicer et al. demonstrated
keyword-based index creation and query graph construc-
tion [6], while Han et al. advocated an easy query learning
framework where keywords are fitted automatically to query
construction using a sophisticated matching technique [14].

Thus, it can be seen that the linked data research com-
munity has been working to create easy and effective linked
data search techniques, and that many of their proposals in-
corporate keywords as search options. However, keyword-
based linked data or semantic data retrieval is different from
other traditional keyword-based data retrieval techniques
because it requires the adaptation of semantics to keywords.
Some researchers have previously proposed the inclusion
of templates based on the idea that they could be used to
provide structured frameworks that bridge the gap between
keywords and linked data semantics [30]. However, those
studies failed to create concrete guidelines for template con-
struction, ranking, and merging, all of which are necessary
for the effective adaptation of templates to linked data re-
trieval. For example, Unger et al. proposed a natural lan-
guage based question answering (QA) system for linked
data with Pythia [31]. However, this system is considered
inefficient for template creation because it employs natu-
ral language (NL) tools, which sometime leads to incor-
rect template construction [30]. Furthermore, Pythia itself
is subject to scalability issues that makes this system very
specific to some particular data. In contrast, Shekarpour et
al. proposed a template construction approach that is sim-
ilar to the method discussed in this study, but their method
requires knowledge of schema information, such as instance
or class type information, which they provide manually [26].
Furthermore, their proposed method is only able to handle
queries with two keywords.

3. Two-Keyword-Based Retrieval

In this section, we describe our proposed retrieval frame-
work, primarily by focusing on how we construct a tem-
plate using two adjacent keywords, and then identify the
best template from among many such templates. In nor-
mal use, templates are predefined structures that are used
to perform tasks by setting position holders to specific task
parameters. From a linked data perspective, such position
holders provide a predefined structure in the form of ontol-
ogy (or semantics) that can be used to identify links and
locate endpoints. We describe our approach as a binary pro-
gressive approach, which means that queries are constructed
with resources from two adjacent keywords, and can then be
extended to use more than two keywords. Template manage-
ment for queries with more than two keywords is described
in Sect. 4.

Figure 1 shows the two-keyword-based template selec-
tion process flow. It takes two keywords k1 and k2. Then,
in the next step, the resource manager process collects and
manages resources that are related to those keywords. Next,
the template constructor process constructs a number of
templates and identifies the best among them. Each of these
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Fig. 1 Template selection process flow for two-keyword query questions.

processes will be described in greater detail below.

3.1 Resource Manager

The resource manager process collects and manages re-
sources that are related to the keywords. It starts by taking
two adjacent keywords and then produces keyword-related
resources with their classifications. In the first step, for each
keyword k, it extracts the keyword-related resources (RR(k))
from the underlying knowledge-base (KB). For linked data,
the KB is constructed from the set of resource descrip-
tion framework (RDF) triples that store data using the form
< s, p, o > where s, p, and o are respectively considered as
the subject, predicate, and object component elements in a
RDF triple.

In the second step, for each keyword-related resource
(r), the resource manager calculates three positional fre-
quencies (PFs(r), PFp(r), and PFo(r)). Then, in the third
step, resource manager selects a resource-type (rType(r)).
The resource-type provides the basis of the template con-
struction while the positional frequencies of the resource
guides the process that leads to the identification of the best
template. We will discuss the steps in detail below.

1. Keyword-related resource (RR(k)) for keyword k is a
set of linked data resources that represent keyword k.

RR(k) = {r | ∃ < r, p, o >∈ KB ∧ p ∈ rtag
∧(m(o, k) ≥ α)}

where rtag is a set of resource-representing tags such
as label, name title, prefLabel, etc. and m(o, k) is a
string-similarity function used to select the resource
r that corresponds the keyword k. String-similarity
is calculated between the object o of the RDF triple
< r, p, o > and the keyword k. r is selected for a partic-
ular similarity-threshold value α.

2. The positional frequencies (PFs(r), PFp(r) and PFo(r))
for the resource r are three different frequencies of r in
the KB. Since r can be any of the three subject, pred-
icate and object component elements in a RDF triple,
subject, predicate, and object positional frequencies for
r are respectively defined as follows:

PFs(r) = | {< r, p, o >| ∃ < r, p, o >∈ KB} |
PFp(r) = | {< s, r, o >| ∃ < s, r, o >∈ KB} |
PFo(r) = | {< s, p, r >| ∃ < s, p, r >∈ KB} |

3. The resource-type (rType(r)) for resource r is a classi-
fication that classifies r as either a predicate-type (PR)

or non-predicate-type (NP) resource.

rType(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

PR iff(PFp(r) > PFs(r))
∧(PFp(r) > PFo(r))

NP otherwise

3.2 Template Constructor

The template constructor process constructs templates and
identifies the best template. It constructs templates for two
adjacent keyword-related resources on the basis of their
resource-types and then identifies the most suitable template
from among all those constructed.

Before defining a template, we will introduce the term
“triple-pattern” (tp(r1, r2)), which is a pattern constructed
for two keyword-related resources. The third column of
Table 1 contains triple-patterns. A triple pattern picks
triples from the KB. In a triple pattern, a variable resource,
which starts with a question mark (i.e., ?), matches any
resource in the KB and selects the matched triples. Tem-
plate (tmp(r1, r2)) is set of triple-patterns i.e., tmp(r1, r2) =
{tp1(r1, r2), tp2(r1, r2), . . .}.

The fourth column of Table 1 shows a graphical il-
lustration of each triple-pattern. A template accumulates
a set of triple-patterns. Triple-patterns are constructed by
considering resource types of participating resources. The
second column of Table 1 shows such consideration by the
name “condition”. Here, it can be seen that templates are
constructed by maintaining two set of conditions i.e., i)
rType(r1) = PR ∧ rType(r2) = NP, and ii) rType(r1) = NP ∧
rType(r2) = NP. However, for other two possible conditions
sets, such as, for rType(r1) = NP ∧ rType(r2) = PR, we con-
struct templates by swapping r1 and r2, and for rType(r1) =
PR ∧ rType(r2) = PR, we use modified templates (described
in Sect. 4.3). The fifth column of Table 1 shows closeness
of a triple-pattern which indicates how closely r1 and r2 are
attached.

Since a template (resp. triple-pattern) is constructed
according to the structure of an RDF triple, it is assumed
that the template incorporates linked data semantics and can
able to retrieve the required information. For example, for
keywords k1 = spouse and k2 = Barack Obama, it is as-
sumed r1 ∈ RR(spouse) and r2 ∈ RR(Barack Obama), and
rType(r1) = PR and rType(r2) = NP, which fits into the
triple-pattern <?s1, r1, r2 > and retrieve the required infor-
mation.

Each template holds multiple triple-patterns and each
keyword generates multiple keyword-related resources.
Therefore, to determine the best template (which we call
a perfect template (pe f Tmp(k1, k2))) for each two adjacent
keywords k1 and k2, we need to identify the best triple-
patterns among the templates that can incorporate the largest
amount of the linked data semantics. By calculating the re-
latedness of each triple-pattern towards the KB, we can then
pick the best triple-pattern and select it as the perfect tem-
plate.
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Table 1 Templates for r1 ∈ RR(k1) and r2 ∈ RR(k2).

3.2.1 Selection Criterion of Triple-Pattern Relatedness

Resource frequency plays a prime role in measuring triple-
pattern relatedness. We are motivated by this frequency-
based approach from the classical term frequency (TF) cal-
culation. From a document-based information retrieval per-
spective, the TF of a term measures its importance over a
particular document. From a linked data information re-
trieval perspective, we replace terms with keyword-related
resources. Therefore, to conform a TF-like triple-pattern
relatedness calculation, we hypothesize that the more fre-
quently keyword-related resources appear in an underlying
dataset, the greater its potential for use in retrieval [22].

In a triple-pattern relatedness calculation, we con-
sider the following: i) how similar triple-pattern’s keyword-
related resources are in representing the keywords, ii) how
frequent a triple-pattern is, and iii) how frequently the triple-
pattern’s keyword-related resources appear in the triple-
patterns.

Therefore, the relatedness value of each triple-pattern
towards the KB is calculated using following statistics:

1. String-similarity value m(o, k) between the resource
r and the given keyword k: this r is the subject com-
ponent element of < r, p, o > where p ∈ rtag.

2. Frequency of triple-pattern f qT P(tp(r1, r2)): this
counts the number of RDF triples associated with the
tp(r1, r2).

3. Frequency of resource r w.r.t. triple-pattern
f qR(r, tp(r1, r2)): this is the positional frequency of the
resource r in the KB where the position (subject, pred-
icate or object) of r is guided by tp(r1, r2).

f qR(r, tp(r1, r2))=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PFs(r) if r is on sub ject
in tp(r1, r2)

PFp(r) if r is on predicate
in tp(r1, r2)

PFo(r) if r is on ob ject
in tp(r1, r2)

Final relatedness f Rel(tp(r′, r′′)) of triple-pattern
tp(r′, r′′) is defined as

f Rel(tp(r′, r′′))= m(o′, k1) ∗ m(o′′, k2)
∗ f qT P(tp(r′, r′′))∗ f qR(r′, tp(r′, r′′))
∗ f qR(r′′, tp(r′, r′′))

3.2.2 Selection of the Perfect Template

We select the perfect template (from the all triple-patterns
of all possible templates) by considering two parameters:
closeness and relatedness. We first select closeness value
1 type triple-patterns with relatedness values greater than
zero, sort them by their relatedness values, and then choose
the highest related triple-pattern as the perfect template. If
no closeness value 1 type triple-patterns with relatedness
values greater than zero can be identified, we then consider
the highest relatedness valued closeness 2 type triple-pattern
to be the best triple-pattern, and select it as the perfect tem-
plate. In any case, if we identify several best possible triple-
patterns (because of identical relatedness and closeness val-
ues), we pick one at random as the perfect template. Consid-
ering the above, it can be seen that the template selector pro-
cess can provide a perfect template for two given keywords.
For a two-keyword query question, this perfect template re-
lated SPARQL query is then used to identify our intended
result.

4. More-than-Two-Keyword-Based Retrieval

In this section, we will describe how we extend previous
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Fig. 2 Template selection process flow for query question with more than two keywords.

two-keyword-based template management to handle queries
with more than two keywords and show how, we use pair of
keywords and pair of templates to find the merged template.
Figure 2 shows this merged template selection procedure.
It starts with the template constructor generating perfect
templates for each two adjacent keywords. Next, the com-
parator process takes each two adjacent perfect templates
and determines whether it should retain them by designat-
ing one as the retained template (RT) and finding a not re-
tained keyword (NRK) from the other perfect template. The
refiner process then selects some RTs as refined-RTs and
generates modified templates from the NRKs. Finally, the
merger template merging process produces the merged tem-
plate. We will describe each process in detail below.

Throughout our description, we will use a question “In
which films directed by Garry Marshall was Julia Roberts
starring?”, for which we devise keywords {k1 =Film,
k2 =director, k3 =Garry Marshall, k4 =Julia Roberts,
k5 =starring} as a running exemplary question and execute
our proposed framework over DBpedia† KB.

4.1 Template Constructor

This process selects all perfect templates for each two ad-
jacent keywords and stores them along with their keywords
and weights. For i number of keywords, we get i−1 number
of perfect templates for each two adjacent keywords. For
example, for the running exemplary question, we get four
perfect templates – the first perfect template (pe f Tmp1) for
{k1, k2}, the second perfect template (pe f Tmp2) for {k2, k3},
and so on. In the perfect template selection, if we are un-
able to find any triple-pattern with relatedness value greater
than zero, any triple-pattern identified will be designated as
the perfect template. For the running exemplary question,
we get four adjacent best possible perfect templates as fol-
lows:††.

• pe f Tmp1 = <?s1, o:director, ?o1 ><?o1, ?p2,o:Film>
• pe f Tmp2 = <?s1, o:director, r:Garry Marshall >,
• pe f Tmp3 = <?s1, ?p1, r:Garry Marshall><?s1, ?p2,

r:Julia Roberts >,
• pe f Tmp4 = <?s1, o:starring, r:Julia Roberts >

4.2 Comparator

This process compares each two adjacent perfect templates

†http://dbpedia.org/
††o: is prefix for http://dbpedia.org/ontology/ and r: is prefix for

http://dbpedia.org/resource/

using their closeness values and relatedness values. Using
this process, we designate one perfect template as the RT
and select one keyword from the other perfect template as
the NRK. The RT is selected by the lower depth and higher
relatedness valued perfect templates between the participat-
ing perfect templates. In contrast, NRK is found by the
exclusively associated keyword held by a perfect template
other than RT.

For the running exemplary question, between
pe f Tmp1 and pe f Tmp2, pe f Tmp2 carries lower closeness
and higher relatedness values than pe f Tmp1, we consider
pe f Tmp2 as the first RT (say rt1) and k1 (i.e., Film) as the
first NRK (e.g., nrk1) because k1 is an exclusively associated
keyword in pe f Tmp1.

Since we follow a binary progressive approach, the
comparator process is executed for the adjacent pairs per-
fect templates. Therefore, if the number of perfect tem-
plates is i−1 (see Sect. 4.1), we compare pairs for pe f Tmpj

and pe f Tmp( j+1), where 1 ≤ j ≤ i − 2. This comparison
gives all RTs and NRKs. However, in some cases, RTs and
NRKs might share common keywords. For example, for the
running exemplary question, pe f Tmp2 associates the key-
word Garry Marshall, which also appears as an NRK. Fur-
thermore, pe f Tmp2 appears twice as RTs which also share
common keywords between them. Since we only construct
templates for each keyword once, it is necessary to refine
common keyword-related RTs and NRKs.

4.3 Refiner

This process refines previously generated RTs and NRKs
so that the final template will only use each keyword once.
The refiner process eliminate redundancies using two op-
erations: i) eliminating redundant RTs, and ii) eliminating
redundant NRKs. We will discuss the operations in details
in the below:

i) As the first operation, we take a set of RTs along
with their generation order, i.e., rt1 appears first, af-
ter which the second one appears, and so on, from
which we generate a set of refined-RTs. We elim-
inate redundancy between the RTs in order to make
each RT unique. For the running exemplary ques-
tion, since there are two pe f Tmp2s RTs, we first
eliminate one pe f Tmp2 and then identify the unique
RTs as {pe f Tmp2, pe f Tmp4}. After finding a set of
unique RTs, we determine whether the two unique RTs
share common keywords and eliminate any such iden-
tified. For such cases, if there is a shared common
keyword between two unique RTs, we store the most
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Table 2 Modified templates for single resource r ∈RR(k).

recently generated one and eliminate the other one.
For the running exemplary question, the unique RTs
{pe f Tmp2, pe f Tmp4} do not share a common key-
word, so we do not need to eliminate any of them.
At the end of the first operation, the unique RTs that
remain are considered to be refined-RTs. Therefore,
for the running exemplary question, the refined-RTs are
{pe f Tmp2, pe f Tmp4}.

ii) For the second operation, we take a set of NRKs and
refined-RTs and generate a set of refined-NRKs. Each
NRK is checked to determine whether it is already as-
sociated with any of the refined-RTs. Those that are
not are considered refined-NRKs. For example, for
the running exemplary question, we get {Film} as a
refined-NRK as “Film” is not associated with any of
the refined-RTs.

Since it is necessary to use a template for refined-
NRK, we convert each refined-NRK k to its perfect tem-
plate, which is called a modified perfect template (modified-
perTmp(k)). Our earlier template generation was intended
for two keywords, but in this step we modify template gen-
eration for a single keyword (i.e., for each refined-NRK). To
accomplish this, we find keyword-related resources for each
refined-NRK along with their type classifications, and then
construct single-resource-based triple-patterns (modified-
tp(r)s) and modified templates (modified-tmp(r)s), as can
be seen in Table 2.

For each refined-NRK k, we identify the best modified
triple-pattern as the modified perfect template from among
all modified templates that possesses maximum relatedness
value towards the KB. The relatedness of a modified triple-
pattern is counted by considering how many RDF triples are
associated in the KB.

For the running exemplary question, we get <?s1, ?p1,
o:Film> as modified-pefTmp(Film). This single-keyword-
based template also supports template construction when
two adjacent keyword-related resources appear as predicate
type resources (see Sect. 3.2). In such cases, for each predi-
cate type keyword-related resource, we construct a modified
triple-pattern.

As a result, the refiner process generates modified per-
fect templates for all refined-NRKs, and then forwards all
refined-RTs and modified perfect templates to the next pro-
cess.

4.4 Merger

This process, which produces a merged template for all

query keywords, begins after the generation of all refined-
RTs and modified perfect templates. Here, we merge
refined-RTs and modified perfect templates according to the
given keyword order. Template merging can be consid-
ered triple-pattern merging because each individual refined-
RT and individual modified perfect template are nothing
more than single triple-patterns. Therefore, in the following
paragraphs, template merging is described as triple-pattern
merging.

We merge triple-patterns by introducing connectors.
Connectors are merging points where triple-patterns are
merged with one another. We use a triple-pattern’s variable
resource holding subject and object component elements as
connectors. For example, for a triple-pattern <?s1, r1, ?o1>
<r2, ?p2, ?s1>, ?s1 and ?o1 are connectors. Since each triple-
pattern holds multiple connectors, we greedily try to merge
them until we find a valid merged triple-pattern. The valid-
ity of the merged triple-pattern is checked by its SPARQL
query, which determines whether the merged triple-pattern
corresponding to the SPARQL query generates any non-
empty output. To serve this greedy approach, we assign pri-
orities to the triple-pattern connectors and then merge triple-
patterns according those priorities.

4.4.1 Triple-Pattern Connector Priorities

The priorities of triple-pattern connectors will vary depend-
ing on how many connectors each triple-pattern holds. Be-
low is the calculation used to assign priority:

i) For a two-connector based triple-pattern, a connector
that contributes as the RDF triple component element
with a later order keyword-related resource is consid-
ered the higher priority connector, while the other con-
nector is considered the lower priority connector. If
both connectors appear in the same RDF triple com-
ponent, the connector that contributes as the subject
component element of the RDF triple is considered to
be the higher priority connector. For example, for a
triple-pattern <?s1, r1, ?o1 >< r2, ?p2, ?s1 > which is
constructed for two resources of two orderly given key-
words k1 and k2, ?s1 is the higher priority connector
while ?o1 is the lower priority connector because s1 is
associated with the later keyword k2 (through the r2).
In contrast, for a triple-pattern like <?s2, r, ?o2 > where
both connectors appear in the same RDF triple compo-
nent, ?s2 holds a higher priority than ?o2.

ii) For one connector based triple-pattern, the connector
is simultaneously considered both the higher priority
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connector and lower priority connector.

4.4.2 Merging of Triple-Patterns

In the binary progressive approach, we start triple-pattern
merging for the first two triple-patterns by attempting to
merge higher priority and lower priority connectors. If we
can obtain a valid merged triple-pattern, we then consider
this as an intermediate merged triple-pattern. Then, we
merge the next triple-pattern to the connectors of the in-
termediate merged triple-pattern (i.e., come from its con-
stituent triple-patterns).

Such iterative triple-pattern merging is continued un-
til we merge the last triple-pattern. However, in intermedi-
ate merged triple-pattern generation, the connector priorities
get updated during each valid merged triple-pattern finding.
Below we describe the priority update process for the con-
nectors of each intermediate merged triple-pattern.

i) Connectors that belong to the lastly merged triple-
pattern hold higher priorities. If the triple-pattern
merged last holds two connectors, the highest priority
goes to the connector that can generate a valid merged
triple-pattern followed by the second connector.

ii) The connectors that remain follow the updated priori-
ties.

For example, for an intermediate merged triple-pattern
<?s1, r1, ?o1 ><?o1, r2, ?o2 > where ?o1 holds the (so far)
highest priority followed by ?o2 and ?s1, and a next triple-
pattern <?s2, r3, r4 > attempting to merge at the connector
?o1 but are unable to generate a valid merged triple-pattern,
but do get merged at the connector ?o2 where they are
able to generate a valid intermediate merged triple-pattern
<?s1, r1, ?o1 ><?o1, r2, ?o2 ><?o2, r3, r4 >, then, in the
new intermediate merged triple-pattern, ?o2 holds the (new)
highest priority followed by ?o1 and ?s1. In this manner,
priority-based merging reduces merging complexity.

Therefore, for the running exemplary question, we ob-
tain a valid merged triple-pattern (or template) as

<?s1, ?p1, o : Fi lm> .
<?s1 , o : d i r e c t o r , r : G a r r y M a r s h a l l> .
<?s1 , o : s t a r r i n g , r : J u l i a R o b e r t s > .

5. Experiment

In this experiment, we use question answering over linked
data 1 and 2 (i.e., QALD-1† and QALD-2††) open challenge
test question sets. Both challenges include the same type of
natural language training and test question sets from DBpe-
dia and MusicBrainz†††.

†http://greententacle.techfak.uni-bielefeld.de/˜cunger/qald/
index.php?x=home&q=1
††http://greententacle.techfak.uni-bielefeld.de/˜cunger/qald/

index.php?x=home&q=2
†††http://musicbrainz.org/

Exemplary question “In which films directed by
Garry Marshall was Julia Roberts starring?”, is a QALD-1
test question (Q#29). Here underlining is used to show the
keywords of the question. The order of the keywords is as
the keywords are appeared in the question.

The DBpedia dataset used in our experiment com-
prises more than 30 million instances, 288 thousand
classes, and almost 50 thousand properties, while the Mu-
sicBrainz dataset comprises almost 4 million instances,
31 classes, and 125 properties. A resource is a class
that appears with ††††type. We call our system, Binary
Progressive Template Paradigm over Linked Data Retrieval
or BoTLRet.

We discarded a few questions, such as questions that
require Boolean type answers, aggregation functions, tem-
poral precedence (such as latest, past five years, etc.) under-
standing, and questions for which resources are not found in
the KB, because they are out of the scope of our research.
We used 78.12% of the QALD-2 DBpedia test questions and
74% of the QALD-2 MusicBrainz test questions.

The QALD-2 test questions were used for our de-
tailed experimental evaluation. In contrast, QALD-1 ques-
tions were used to compare other keyword-based data re-
trieval initiative. In the comparison between BoTLRet and
other keyword-based system, we were able to compare 66%
of the QALD-1 DBpedia test questions because the com-
parison was performed for questions that are executed by
both BoTLRet and other systems. When the other systems
did not execute MusicBrainz questions, only the DBpedia
dataset questions were used. To select keyword-related re-
sources via the resource manager process, we use similarity-
threshold value α = 1. For DBpedia and MusicBrainz
datasets, we manually define rtag as {†††††label, ††††††title}.
We then implement BoTLRet using the Java Jena (version
2.6.4) framework. The BoTLRet hardware specifications
are as follows:

Intel R©CoreTMi7-4770K central processing unit (CPU)
3.50 GHz based system with 16 GB memory. We
loaded DBpedia and MusicBrainz KBs in Virtuoso (version
06.01.3127) triple-store, which was maintained in a network
server. To evaluate BoTLRet, we performed three experi-
ments and analyzed their results. These experiments will be
described in detail below.

5.1 Experiment 1

The first experiment was performed to evaluate how the
BoTLRet performs for two-keyword-based retrieval and
more-than-two-keyword-based retrieval. Therefore, we will
report BoTLRet performance according to the keyword
group, i.e., number of keywords each question holds. Key-
word groups are separated by the number of keywords each
question can hold. For example, the exemplary question

††††http://www.w3.org/1999/02/22-rdf-syntax-ns#
†††††http://www.w3.org/2000/01/rdf-schema#
††††††http://purl.org/dc/elements/1.1/
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Table 3 BoTLRet Recall, precision, and F1 measure grouped by number
of keywords for the DBpedia and MusicBrainz questions.

DBpedia MusicBrainz

No of Recall Precision F1 Measure No of Recall Precision F1 Measure
Qs (avg) (avg) (avg) Qs (avg) (avg) (avg)

2 51 0.961 0.961 0.961 7 1.000 1.000 1.000
3 13 0.923 0.852 0.857 8 1.000 1.000 1.000
4 6 0.833 0.833 0.833 16 0.875 0.875 0.875
5 5 1.000 1.000 1.000 5 0.800 0.800 0.800
6 - - - - 1 1.000 1.000 1.000

Average 0.946 0.943 0.944 Average 0.918 0.918 0.918

shown in Sect. 5 falls into a “five keyword group” question,
because it holds five keywords. We executed the BoTLRet
system for each group of questions and evaluated their re-
sults in terms of average recall, average precision, and av-
erage F1 measure. Based on the given answers of QALD-
2 test questions, recall is the fraction of relevant answers
that the BoTLRet can retrieve. Precision is the fraction of
retrieved answers that are relevant, and the F1 measure is
the harmonic mean of precision and recall. For each of the
keyword-group questions, we calculated the average preci-
sion and average recall by summing up the individual re-
call and individual precision, and then dividing them by the
number of questions for each group. However, it was im-
possible to calculate the average F1 measure using the same
method because the individual F1 measure cannot be calcu-
lated if the recall of that individual question is zero. In such
cases, we put the individual question’s F1 measure at zero
as well, and then calculated the average F1 measure for each
group of questions.

Additionally, for the DBpedia dataset, the average ex-
ecution costs for two, three, four, and five keyword group
questions were measured as 41.00, 91.74, 134.27, and
164.02 seconds respectively – which is a linearly increased
trend.

Table 3 shows our keyword-group-wise result analysis
for recall, precision, and F1 measure. The bottom of the ta-
ble shows averages for the recall, precision, and F1 measure
for both set of questions. As you can see, the performance of
the "two keyword group" questions indicates that our tem-
plate selection proposal works well.

This also ensures usefulness of triple-pattern related-
ness calculation i.e., f Rel(tp(r′, r′′)) (shown in Sect. 3.2.1).
The performance of the questions for more than two key-
words also validates our template merging policy. There-
fore, we conclude that internal structure of the linked data
and their statistics have more significant impact on template
construction, which can be used potentially over keyword-
based linked data information retrieval.

5.2 Experiment 2

The second experiment was performed to evaluate the ef-
fectiveness of resource classification of our proposal when
selecting valid triple-patterns. To accomplish this, we inves-
tigated the triple-pattern generation approach of BoTLRet

Table 4 Comparison between MTS and BoTLRet systems in terms of
number of triple-patterns used and computational cost.

case Used No of Triple-patterns Computational Cost
by BoTLRet w.r.t. MTS

MTS BoTLRet
PR-NP 49 7 0.142
NP-NP 49 8 0.163

TOT 49 15 0.306

Table 5 Completeness comparison between MTS and BoTLRet.

MTS BoTLRet

Recall Precession F1 Measure* Recall Precession F1 Measure
(avg) (avg) (avg) (avg) (avg) (avg)

DBpedia 0.959 0.956 0.957 0.946 0.943 0.944
MusicBrainz 0.918 0.918 0.918 0.918 0.918 0.918

with an exhaustive system (referred to hereafter as a maxi-
mum triple-pattern system (MTS)), which uses an exhaus-
tive triple-pattern generation approach to compare the per-
formance of BoTLRet and the performance of MTS in result
generation. We then report the primacy of one system over
the other.

In principle, the framework details of both BoTLRet
and MTS are nearly identical. However, in the BoTLRet, we
construct triple-patterns by considering the classifications
of keyword-related resources, while in the MTS, we con-
struct triple-patterns without considering the classification.
Therefore, the MTS considers all possible combinations for
keyword-related resources when constructing triple-patterns
and can be considered to be an exhaustive version of the
BoTLRet.

Next, we compared comparative computational cost re-
quirements between the two systems. Triple-pattern usage
by the BoTLRet system can be divided into three cases:

• PR-NP: Triple-patterns that hold one predicate type
keyword-related resource. Seven triple-patterns belong
to this case.
• NP-NP: Triple-patterns that hold two non-predicate

type keyword-related resources. Eight triple-patterns
belong to this case.
• TOT: Triple-patterns that hold both PR-NP and NP-NP

cases. Fifteen triple-patterns belong to this case.

Since MTS always uses 49 triple-patterns, it is clear
that the BoTLRet system requires less execution time. Ta-
ble 4 shows an efficiency comparison by dividing them into
three triple-pattern cases, i.e., PR-NP, NP-NP, and TOT, be-
tween the two systems. As the number of triple-patterns
used is less for BoTLRet in all the three cases, it is clear
that the computational costs of our method are significantly
lower than that of MTS. We then tested MTS and BoTL-
Ret for recall, precision, and F1 measure while checking for
performance deterioration. Table 5 shows the result of this
comparison for BDPedia and MusicBrainz questions. De-
spite significant reductions in the required number of RDF
triple searches by BoTLRet, we found that the BoTLRet per-
formance was roughly equivalent to that of MTS.
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Table 6 Performance comparison between QALD-2 challenge partici-
pant systems and BoTLRet for DBpedia test questions.

Total answered Recall Precision F1 Measure
questions

SemSek 80 0.48 0.44 0.46
Alexandria 25 0.46 0.43 0.45

MHE 97 0.40 0.36 0.38
QAKiS 35 0.37 0.39 0.38

BoTLRet 75 0.94 0.94 0.94

In BoTLRet, selection of a triple-pattern case (i.e.,
PR-NP, NP-NP, or TOT) could be considered as an over-
head because, in such a selection, BoTLRet requires posi-
tional frequencies, i.e., PFs(r), PFp(r), and PFo(r) (shown
in Sect. 3.1), for each of the keyword-related resources.
However, even with this overhead, the computational cost of
BoTLRet is lower. For example, for a two keyword group
query, if we have m and n number of keyword-related re-
sources, BoTLRet requires a 3 ∗ m ∗ n unit overhead com-
putational cost to decide a triple-pattern case. However,
this helps BoTLRet to reduce the required number of triple-
pattern constructions to either 7 ∗ m ∗ n, 8 ∗ m ∗ n, or
15 ∗ m ∗ n, while, for the same setting, MTS always con-
structs a 49 ∗ m ∗ n number of triple-patterns. Furthermore,
this overhead computational cost can be avoided by intro-
ducing pre-calculated positional frequencies.

Based on the results shown in Tables 4 and 5, we con-
clude that, even with BoTLRet’s quite low computational
cost, the system shows almost the same level of perfor-
mance as an exhaustive system such as MTS. Therefore, it
can be said that BoTLRet fulfills the completeness compe-
tency requirement considering current proposal of template
constructions and their merging.

5.3 Experiment 3

The third experiment was performed to evaluate the per-
formance with other systems. Firstly, we evaluated the
performance comparison between BoTLRet and QALD-2
challenge participant systems, specifically SemSek, Alexan-
dria, MHE, and QAKiS. For BoTLRet, the answered ques-
tions were 75 DBpedia questions that had also been used
in Experiment 1. Table 6 shows a performance compari-
son between the QALD-2 challenge participant systems and
BoTLRet. In the evaluation report†, the challenge partici-
pant systems reported on how many questions each system
answered. Next, for the answered questions, each system re-
ported its average recall, average precision, and average F1
measure. Table 6 columns two, three, four, and five, respec-
tively, show these performance levels. The results are shown
for DBpedia test questions because of their availability.

It can be seen that BoTLRet performs far better than
the other systems. However, it is necessary to mention that
the systems were not fully comparable, because BoTLRet is
a keyword-based system, while the others are natural lan-

†http:/greententacle.techfak.uni-bielefeld.de/˜cunger/qald/
index.php?x=home&q=2

Table 7 Performance comparison between GoRelations and our system
for QALD-1 DBPedia test questions.

Recall Precision F1 Measure

GoRalations [14] 0.722 0.687 0.704
BoTLRet 0.825 0.793 0.801

guage based systems. However, we present this perfor-
mance comparison based on the assumption that if the re-
quired keywords are given to BoTLRet, BoTLRet will work
in a very sophisticated manner. We also acknowledge that
automatic identification of such keywords will further in-
crease complexities. This point will need to be investigated
in our future work.

Next, we sought to compare BoTLRet with other
keyword-based system. However, we were unable to
find any keyword-based system had been evaluated using
QALD-2, although we did find a system called GoRela-
tions [14] which is, in some sense, a keyword-based system
and which used the QALD-1 question set in its evaluation.
Therefore, we compared BoTLRet and GoRalations using
the QALD-1 test question set. Of the 50 questions in the
set, we found that both GoRalations and BoTLRet were able
to execute 33 questions in common, which were then com-
pared for average recall, average precision, and average F1
measure. Table 7 shows that BoTLRet outperformed GoRe-
lations in all three areas.

It was also found that the BoTLRet system performed
well in comparison with other state linked data information
retrieval systems. This indicates, for linked data informa-
tion retrieval systems, the necessity of harnessing the inter-
nal structures and statistics of linked data.

6. Conclusions

Because the use of keywords is a comfortable choice for data
retrieval, numerous researchers have worked to adapt key-
words for use in linked data access. However, because key-
words do not hold required linked data semantics, which are
mandatory when performing linked data retrieval, a num-
ber of researchers have worked on template-based retrieval
techniques that have the potential to bridge the gap between
keywords and semantics. Until now, however, such initia-
tives have suffered from a lack of robust template establish-
ment guidelines.

In this study, we proposed an outline for template con-
struction, ranking, and merging that can be used for auto-
matic keyword-based linked data retrieval. This method uti-
lizes the internal statistics of the data during the template
construction ranking processes. We have also introduced a
template merging technique that makes multi-depth query
construction possible. Because our method relies on the in-
ternal statistics of data, which are calculated automatically,
we believe BoTLRet provides a very promising tool for use
in achieving fully automatic information access of linked
data. We have also introduced a binary progressive process-
ing paradigm that is scalable for any number of query key-
words.
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Other than defining resource-representing tags, i.e.,
rtag (see Sect. 3.1), no special customization is required to
adapt our proposal to a linked dataset. Furthermore, the sys-
tems rtag include labels, titles, etc., which are quite generic
among datasets. Experiments conducted using our proposed
system have shown generally positive outcomes, which in-
dicates that the system provides a functional technique for
use in linked data access.

We presume that our template creation technique could
benefit from use in conjunction with other linked data access
approaches, such as automatic ontology inclusion, feedback
incorporation, and other sophisticated keyword matching
techniques that can provide more appropriate templates, and
hope to explore these possibilities in our future work. As
our work depends on various statistical parameters, we also
presume that the incorporation of off-line processing could
increase the system’s performance. This, we feel, is another
promising area for our future investigations.
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