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PAPER

Roughness Classification with Aggregated Discrete Fourier
Transform

Chao LIANG†,††,†††a), Wenming YANG†,††,†††b), Nonmembers, Fei ZHOU†,††,†††c), Member,
and Qingmin LIAO†,††,†††d), Nonmember

SUMMARY In this paper, we propose a texture descriptor based on
amplitude distribution and phase distribution of the discrete Fourier trans-
form (DFT) of an image. One dimensional DFT is applied to all the rows
and columns of an image. Histograms of the amplitudes and gradients
of the phases between adjacent rows/columns are computed as the feature
descriptor, which is called aggregated DFT (ADFT). ADFT can be easily
combined with completed local binary pattern (CLBP). The combined fea-
ture captures both global and local information of the texture. ADFT is de-
signed for isotropic textures and demonstrated to be effective for roughness
classification of castings. Experimental results show that the amplitude part
of ADFT is also discriminative in describing anisotropic textures and it can
be used as a complementary descriptor of local texture descriptors such as
CLBP.
key words: aggregated DFT (ADFT), completed local binary pattern
(CLBP), roughness texture classification

1. Introduction

Surface roughness is a key feature of materials because it
relates to a material’s abrasion resistance, fatigue strength,
resistance to corrosion, etc. Real-time roughness evaluation
of castings is key to check whether the product is accept-
able. There are two ways to address the roughness eval-
uation problem. One is to measure the roughness value
accurately, the other is to classify a specimen into a pre-
defined roughness class [1], [2], which represents a range of
roughness values. The most common parameter to describe
roughness values is average roughnesses (Ra), which is the
arithmetic average of absolute values on a straight line.

Traditional instruments for roughness evaluation are
contact profilometers, which use a stylus tracing a straight
line to obtain the profile of the specimen. Contact profilome-
ters are accurate and the measurement precision can reach
up to 10 nanometres. But this kind of methods has three
shortcomings. 1) The specimen and the stylus will abrade
each other. Because the stylus needs to keep contact with
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the specimen while sampling, the specimen will be slightly
scratched and the stylus needs to be replaced periodically.
2) Contact profilometers are expensive. 3) Contact methods
are slow. Because the stylus needs to move from point to
point, it takes about 2 seconds for each measurement, mak-
ing contact methods improper for on-line measurement.

Computer vision based techniques do not need to con-
tact the specimen. Structured light technology is one of
them and the height resolution of structured light technol-
ogy is up to about 0.2 µm. The more precise the structured
light is, the more expensive the device is, and the narrower
the measurement range is. Meanwhile, most structured light
devices are slow, taking about 2 seconds to scan over an
area, making it improper for on-line measurement.

Texture classification is another computer vision based
technique to address the roughness evaluation problem.
Manual comparison against a surface roughness comparator
is a standard way to estimate the roughness level of the spec-
imen. A roughness comparator consists of a range of speci-
mens with pre-defined roughness levels. The test specimen
is classified into one of the predefined classes, which is actu-
ally a classification problem. There exists roughness evalua-
tion methods [3], [4] that use the anisotropic characteristics,
i.e. the scratched stripes, of polished surface. Different from
polished surface, castings surface is isotropic and irregular,
making it more difficult to evaluate their roughness. In this
paper, we focus on roughness evaluation of castings using
texture classification technology for real-time applications.

Texture classification is a hot topic in the last twenty
years. Model based methods, filtering based methods, trans-
form based methods and statistical methods are commonly
used for texture feature extraction.

Model based approaches assume that different textures
are generated through models with different parameters.
Autoregressive model [5], Markov random field [6], [7] are
commonly used models. However, generative models are
more suitable for representation, rather than classification.
And it will be too complicated for the model to represent
textures accurately.

Filter and transform based methods are also called sig-
nal processing methods. Filter based methods use filters,
such as Gabor filter [8], Gaussian and Gaussian derivative
filters [9], to convolve with the image. Responses of the fil-
ters are collected and a feature selection step usually fol-
lows to reduce the dimension of the features. Transforms
such as discrete Fourier transform (DFT) [10]–[13], dis-
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Fig. 1 Flowchart for joint ADFT and CLBP classification.

crete wavelet transform (DWT) [14], [15] transform the im-
age into another space for feature extraction. Most of the
DFT-based methods perform transform in local areas, for
instance, square areas with 3 ∗ 3 pixels.

Statistical methods use first-order, second-order, or
even higher-order statistics of an image as the discriminative
information. Gray level run lengths [16] and Co-occurrence
matrix [17] are representative ones in the early years. E.
Gadelmawla [2] has applied co-occurrence matrix to char-
acterize roughness of polished surfaces. Local binary pat-
tern (LBP) [18] and its modified version [19] use statistics
of differences between adjacent pixels as features. They
are proven to be fast and with high recognition rate for
many widely used data sets. After that, tens of variations
of LBP have been proposed [20]. Local phase quantiza-
tion (LPQ) [21] is another local texture descriptor, which
uses phase information of local two-dimensional DFT and
proved to be blur insensitive.

To evaluate the roughness in real-time, the speed of fea-
ture extraction and classification is a key point. Because
the utilization of fast Fourier transform algorithm, DFT can
be applied in real-time. D. Tsai et al. selected energy
rings of power spectrum for roughness classification of cast-
ings [1], which evaluate the roughness of a specimen using
two-dimensional DFT. On the other hand, roughness value
can be calculated on a single line of the specimen, which re-
sults in the one-dimensional DFT approach that we propose
in this paper.

We propose aggregated DFT (ADFT) in this paper,
where distributions of one-dimensional DFT coefficients
are utilized. ADFT is a global descriptor, i.e. ADFT cov-
ers a large range of the image to extract the distributions.
We combine ADFT with another state-of-the-art texture de-
scriptor completed local binary pattern (CLBP) [22]. CLBP
mainly captures local information of the texture. The two
complementary features describe the textures in a both
global and local ways and can be computed in real-time.
The flowchart for joint ADFT and CLBP classification al-
gorithm is illustrated in Fig. 1.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the motivations behind ADFT. In Sect. 3, we
introduce the proposed ADFT texture descriptor and give a
brief review of CLBP. Then we discuss the differences be-
tween distinct classifiers and metrics in Sect. 4. Data ac-

quisition equipment, experiments and discussions follow in
Sect. 5. Finally, Sect. 6 concludes this paper.

2. Motivation

As mentioned before, a standard way of surface rough-
ness evaluation is comparing the specimen with a roughness
comparator manually. It is reasonable to utilize texture clas-
sification technology to liberate the workforce and obtain a
more objective result.

Textures of casting images are affected by many fac-
tors, such as roughness of the castings, the material of the
castings and illumination condition, etc.

The illumination condition of production environment
is constant. Therefore, we do not take illumination variance
into consideration. The casting image database used in this
paper are acquired in constant illumination condition to sim-
ulate the product environment.

One of the difficulties is that appearances of casting
specimens with different materials are very different, as
shown in Fig. 2. Specimens with diffuse reflection have a
narrow range of gray value distribution, while gray values
of specimens with specular reflection distribute in a wide
range. As illustrated in Fig. 3, gray values of the one in
Fig. 2 (f) range from 120 to 180 while gray values of the one
in Fig. 2 (n) range from 70 to 255 and there are many pixels
with the greatest value 255. The large intra-class variation
makes it difficult for classification. One solution is to treat
them as two different classes and the other is to use robust
texture descriptors.

In this paper, we propose a robust texture descriptor
based on two observations. First, textures of castings are
isotropic. This is intuitive since that castings are solidified
from liquid steel, and liquid is isotropic. For this reason,
the descriptor does not need to be rotation invariant. Sec-
ond, contact profilometers only sample on a straight line to
evaluate the roughness of a specimen, which means a single
row or column of a casting image is sufficient to evaluate the
roughness of the specimen.

Based on the above observations, we propose ADFT
to extract the global information of casting textures. The
ADFT descriptor consists of two parts, i.e. the amplitude
part (ADFT M) and the phase part (ADFT GP). ADFT ex-
plores features of textures in frequency domain. ADFT M
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(a) Ra 3.2 (b) Ra 6.3 (c) Ra 12.5 (d) Ra 25 (e) Ra 50 (f) Ra 100 (g) Ra 800 (h) Ra 1600

(i) Ra 3.2 (j) Ra 6.3 (k) Ra 12.5 (l) Ra 25 (m) Ra 50 (n) Ra 100 (o) Ra 800 (p) Ra 1600

Fig. 2 Casting textures with diffuse reflection (first row) and specular reflection (second row).

Fig. 3 Histograms of Ra 800 with different materials.

uses the amplitude distribution of DFT of each rows and
columns to describe the texture and ADFT GP uses gradi-
ents of phases between adjacent rows/columns to describe
the texture.

In addition, CLBP is proved to be a robust texture
descriptor that captures local discriminative information.
Combining ADFT and CLBP, the descriptor can capture
both global and local information, and a better classification
result is expected.

3. Roughness Feature Selection

3.1 Global Feature Extraction Using ADFT

ADFT is based on one-dimensional DFT. The DFT of a sin-
gle row / column with N pixels is given by

F(u) = DFT[ f (x)] =
1
N

N−1∑
x=0

f (x) exp

(
− j

2π
N

ux

)
(1)

for u = 0, 1, · · · ,N, where f (·) is the gray value a pixel, and
x is the position of the pixel.

Because the gray levels of images are all real numbers
and because of the conjugation property of DFT, we obtain

|F(u)| = |F(N − u)| (2)

arg[F(u)] = −arg[F(N − u)] (3)

where | · | and arg[·] denote the amplitude and the angle of a
complex number, respectively.

Equation (2) and (3) imply that half of the coefficients
of the amplitude and the angle are enough. Because high fre-
quency components of DFT are more sensitive to noise and
illumination variation, we only reserve the low frequency
components in the proposed descriptor. The zero-frequency
component is also discarded because the mean intensity of
a texture image mainly change with the reflection character-
istics of materials rather than the roughness of a specimen.

Because casting images suffer from heavy noise, it is
difficult to classify roughness textures using a single row /
column. Therefore, we aggregate the DFT coefficients of
each row and column to form a histogram. The more DFT
coefficients we aggregate, the higher the signal-to-noise ra-
tio we gain. ADFT is applied to square images with N × N
pixels, so that DFT of rows and DFT of columns are with the
same frequency resolution and the same number of coeffi-
cients. Consequently, DFT coefficients of rows and columns
can be combined. The ADFT descriptor consists of two
parts, i.e., the amplitude part (ADFT SM and ADFT M) and
the differences of phases part (ADFT GP). We refer ADFT
to the concatenation of ADFT M and ADFT GP in the fol-
lowing of this paper.

We propose two different schemes for the amplitude
part. The first one is simply summating the corresponding
amplitudes of each DFT in each frequency (ADFT SM), as
shown in Fig. 4 and Eq. (4). The second one is computing
the amplitude distributions in each frequency in a discrete
space (ADFT M), as illustrated in Fig. 5 and Eq. (5).

ADFT S M(u) =
N∑

r=1

|Fr(u)| +
N∑

c=1

|Fc(u)| (4)

ADFT M(u, i) =
N∑

r=1

δ (Qi−1 < |Fr(u)| ≤ Qi)

+

N∑
c=1

δ (Qi−1 < |Fc(u)| ≤ Qi) (5)
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(a) Diffuse reflection. (b) Specular reflection.

Fig. 4 Summations of 1D-DFT amplitude of casting textures with specular reflection and diffuse
reflection. The greatest amplitudes of each DFT coefficients are normalized to one for the sake of
illustration.

(a) Amplitudes of DFT coefficients.

(b) ADFT M feature of (a).

Fig. 5 ADFT M feature extraction. If the image size is 256*256 pix-
els, 512 instances of amplitudes are quantized into several bins (5 here)
as the red dashed line in (a) illustrates. Distributions of the amplitudes at
each frequency are estimated by counting the number of data in each bin.
ADFT M is the concatenation of these distributions as (b) shows. In (b),
Mu is equivalent to |F(u)| for u = 1, 2, · · · , N

2 .

where r and c are the row and column indexes. |Fr(·)|
and |Fc(·)| are the amplitudes of DFT for the correspond-
ing row / column. δ(·) is the indicator function. Qi for
i = 0, 1, · · · ,NQ are quantization levels, and NQ is the num-
ber of quantization levels.

Details of the ADFT M feature extraction algorithm
are listed in Algorithm 1. The logarithmic function in the
second step makes amplitudes compact at large values, and
the resulting values distribute in a small range. Therefore,
in the third step, a uniform quantizer performs well. After
aggregation step, the resulting ADFT M descriptor is shown
in Fig. 5 (b), which shows that ADFT is the concatenation of
amplitude distributions. As we mentioned before, high fre-

Algorithm 1 ADFT M feature extraction.
Input:

Casting image I with size N*N
Output:

ADFT feature of the image
1: Perform DFT to each row and column
2: Compute the logarithm of the DFT amplitudes

Amplitudes of DFT coefficients are transformed into
their logarithmic form using the formula log(|F(u)|+1).

3: Quantization
Quantize the amplitudes into NQ levels.

4: Aggregate DFT amplitudes and compute their dis-
tribution
On each frequency of DFT, compute the discrete dis-
tribution of its amplitudes using the 2N data points (N
from row DFTs and N from column DFTs).

quency components are discarded in practice. The algorithm
for ADFT SM feature extraction is the same as Algorithm
1 except for that we compute the summations of amplitudes
in the third step.

ADFT SM and ADFT M are similar descriptors. If the
signal-to-noise ratio of the texture image is low, ADFT SM
is more robust because the summation of multiple ampli-
tudes could improve the signal-to-noise ratio. On the other
hand, ADFT M maintains more discriminative information
than ADFT SM, therefore, ADFT M would outperforms
ADFT SM in most cases.

The phase part of ADFT is derived from the isotropic
characteristic of castings. We assume that images of cast-
ings consist of a series of sinusoidal signals, as the DFT
does. Under the assumption that the roughness of the speci-
men is all the same on each row and column, the correspond-
ing amplitudes of each frequency on each row and column
are the same while the phase may differ from each other.
Taking the sinusoidal signal with angular frequency w for
example, these sinusoidal components of the first row and
the first column are given by
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Iw(x, 0) = A × sin(wx + φ0) (6)

Iw(0, y) = A × sin(wy + φ0) (7)

where Iw(·, ·) is the sinusoidal component with angular fre-
quency w of a pixel, x and y are coordinates, and A is the
amplitude of the sinusoidal signal.

Substituting 1 for y in Eq. (7), we obtain I(0, 1) = A ×
sin(w + φ0), and because we assume the amplitude of the
sinusoidal signal with angular frequency w of the second
row is the same as the first row’s, we obtain

Iw(x, 1) = A × sin(wx + w + φ0) (8)

Equation (6) and (8) indicate that the only difference
between the first row and the second row on the sinusoidal
component with angular frequency w is the phase difference
w. The same result holds for other adjacent rows. Because
actual images do not fully satisfy our assumption, sinusoidal
components with small amplitudes are more probably dis-
obeying the above inference. In other words, if the am-
plitude of a sinusoidal component is small, the distribution
of phase differences of this component is nearly uniform as
noise is the main contributor. Because specimens with dif-
ferent roughness values are composed of sinusoidal signals
with different distributions of amplitudes, their distributions
of phase differences should differ from each other. There-
fore, we can use the phase differences as a texture descrip-
tor.

We call this feature ADFT GP because it is the gradi-
ent of phases on the direction perpendicular to the direction
in which DFT is performed. If the frequency is a dominant
one of the image, the difference of phases is stable, other-
wise the distribution will be more even. As the illustrated
in Fig. 6, low frequencies are the majority for castings with
large Ra value, and the gradients of phases are more stable.
We extract ADFT GP by the same way as ADFT , except
for that we quantize the gradient of phases between adjacent
rows/columns here. Different from Fig. 6, we constraint the
gradient to a range from 0 to π, therefore, a smaller num-
ber of parameters are needed to estimate and the model we
obtain is less likely to overfit.

ADFT is robust to illumination change because only
the low frequency parts of DFT are used. At the same
time, ADFT is fast. The feature extraction time of ADFT
is O(NI log NI), where NI is the number of pixels in an im-

(a) Ra 6.3 (b) Ra 800

Fig. 6 Differences of phases between adjacent rows/columns.

age. These two features of ADFT make it proper for online
detection.

3.2 Local Feature Extraction Using CLBP

3.2.1 Review of LBP

Local binary pattern (LBP) [19] is a binary code of the gray
value differences. For each pixel in the image, the binary
code is given by the differences of the gray values between
the neighbors with the central pixel. If the neighbor pixel
is greater than the central pixel, the bit is assigned to 1, and
0 otherwise. Neighbors with gray values The P neighbors
are uniformly distributed on the circle of radius R, and this
kind of LBP is called LBPP,R. For instance, the pattern in
Fig. 7 (c) is LBP8,1 code of Fig. 7 (a). Gray values of neigh-
bors that are not on the grid of the image are interpolated
using bilinear interpolation. It is worth noting that there are
certain independent number of neighbors given the radius of
the circle, e.g. eight independent neighbors when the radius
is one, so that the parameter P is limited by the parameter R.

To make LBP compact and robust, two improvements,
i.e., rotation invariant LBP and uniform patterns of LBP, are
proposed in [19]. The rotation invariant LBP, denoted by
LBPri, transform a binary pattern to its minimum value us-
ing circular shift. For instance, 10000000 and 00001000
are all transformed to 00000001. Uniform patterns are bi-
nary patterns with two or less transitions between 0 and 1.
Non-uniform patterns are grouped to the same bin because
their probability of occurrence are much less than uniform
patterns. Combining the rotation scheme with the uniform
pattern scheme, LBPriu2

P,R is obtained. There are P+2 bins for
LBPriu2

P,R while for LBPP,R, the number of bins is 2P.

Fig. 7 CLBP8,1, the + and − sign represent 1 and 0, respectively. (a) the
original image. (b) CLBP C, we assume mI is 100 here. (c) CLBP S, it is
the same as LBP. (d) CLBP M, we assume mM is 20 here.
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3.2.2 Review of CLBP

CLBP [22] is an extension of LBP. As shown in Fig. 7 (c),
CLBP S (LBP) only utilizes the sign of the difference be-
tween the central pixel and its surroundings as the discrimi-
native information. Z. Guo found that while the sign is pow-
erful for discrimination, the magnitude of the difference is
still discriminative. CLBP M encodes the magnitude part
that LBP discards in a consistent way as LBP. Magnitudes
less than the mean magnitude of the image (mM) are en-
coded as 0 and the left encoded as 1. CLBP C is a one-bit
pattern that thresholds the central pixel using the mean gray
value of the image (mI). Gray values less than mI are en-
coded as 0 and the left encoded as 1. CLBP is the concate-
nation of CLBP C, CLBP S and CLBP M. For instance, the
pattern in Fig. 7 (a) is 1, 11100000, 11100100. The rotation
invariant scheme and uniform pattern scheme still applies
to CLBP S and CLBP M. As a result, CLBPriu2

P,R contains
2(P + 2)(P + 2) bins.

3.2.3 Roughness Feature with CLBP

We consider CLBP to be the complement of ADFT based on
three considerations: First, as shown in Fig. 2, casting tex-
tures with small Ra value change rapidly while textures with
large Ra value change slowly. As a consequence, more tran-
sitions occur in CLBP S patterns of textures with small Ra
value than in textures with large Ra value. Second, CLBP is
fast. The feature extraction time of CLBP is O(NI), where
NI is the number of pixels in an image. Third, CLBP is gen-
erally a local feature descriptor, while ADFT is global. The
combination of CLBP and ADFT is considered to be bet-
ter than each of them because they capture complementary
information of an image.

4. Metrics for Classification

4.1 Metrics for Histogram Evaluation

To classify a test sample, we need to compute the similarity
(or the distance) between the sample and each model. Ojala
et al. [19] uses Log-likelihood statistic as follows:

L(T,M) =
B∑

b=1

Tb log Mb (9)

where B is the number of bins, Tb and Mb represent the prob-
abilities of the test sample and the model in the bth bin, re-
spectively.

For CLBP [22], the chi-square distance is applied. The
chi-square distance (χ2 distance) between a test sample T
and the model M is

Dχ2 (T,M) =
B∑

b=1

(Tb − Mb)2/(Tb + Mb) (10)

where the usages of symbols are the same as that in Eq. (9).

Log-likelihood measures the similarity between a sam-
ple and a model. The bigger the log-likelihood is, the more
similar the sample and the model are. While the chi-square
distance measures the distance between the sample and the
model, the smaller the distance is, the more similar the sam-
ple and the model are. The main difference between Log-
likelihood and chi-square distance is that they assign differ-
ent weights for small / large probabilities of the model. Chi-
square distance outperforms log-likelihood when the proba-
bility of each bin is small [23]. Since there are 648 bins for
CLBPriu2

P,R , the probability in each bin is small, meaning that
chi-square distance is better than log-likelihood. In this ar-
ticle, we prefer chi-square distance as the metric for CLBP.

Chi-square distance can be viewed as a weighted Eu-
clidean distance (without the final square root operation),
and the weight of small probability is larger than the weight
of large probability. As Euclidean distance is a special case
of lp distance, it is naturally to substitute chi-square distance
with other lp distances as metrics for histogram evaluation.
lp distance is given as follows:

Dlp (T,M) =

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

|Tn − Mn|p
⎞⎟⎟⎟⎟⎟⎠

1/p

(11)

where p is any fixed real number that no less than one.
If large differences of probability need weight more

than small ones, we should select a large p. Specifically,
l4 distance punishes more than l2 distance for larger differ-
ences. For instance, S eg = (1, 0, 0) and Meg = (0.5, 0.2, 0.3)
are two samples of a distribution with three bins. The ab-
solute difference of S eg and Meg is (0.5, 0.2, 0.3), resulting
in Dl4 (S eg,Meg) = 0.5184 and Dl2 (S eg,Meg) = 0.6164. So
that the l4 distance is closer to the dominant difference (0.5)
in the first bin. Consequently, the l4 distance is generally
determined by bins with large probability.

4.2 Metrics for ADFT

ADFT M is the joint distribution of several discrete vari-
ables, where the variables refer to the quantized amplitudes
of each frequency. If all the variables are mutually indepen-
dent, we obtain

log P(M1,M2, · · · ,MN) = log {P(M1)P(M2) · · · P(MN)}

=

N∑
u=1

log P(Mu) (12)

where Mu is the uth amplitude of DFT coefficients.
As mentioned in Eq. (5), distribution of an amplitude

variable is described in a discrete way, i.e. the distribution
is with a histogram form. ADFT M is a concatenation of
all the histograms of each frequency. Under the indepen-
dence assumption, Log-likelihood, chi-square distance and
lp distance still applies to ADFT M. We utilize l4 distance
rather than chi-square distance as the metric for ADFT MAs



LIANG et al.: ROUGHNESS CLASSIFICATION WITH AGGREGATED DISCRETE FOURIER TRANSFORM
2775

illustrated in Fig. 5, most of amplitudes are distributed in a
few bins. These bins are more discriminative and robust
because if the number of amplitudes change by one, the rel-
ative change is small. Therefore, we shall select a metric
that large probability weight more than low probability. As
discussed in the previous subsection, l4 distance is proper
for this kind of task. Experiments show that other distance,
such as l5 distance, are of comparative recognition rate as l4

distance.
Theoretically, amplitudes of DFT coefficients are not

independent with each other. The independence assumption
is a simplification which results in fast recognition speed.
To check whether the independence assumption works well,
we also train a tree-structured probabilistic graphical model
(Tree-PGM) [24] for each training sample. Tree-structured
model is a Bayesian network which can capture condi-
tional probabilities of two variables. Experiments on the
roughness database (will be introduced in the next section)
show that using tree-PGM, we can obtain 3.2% improve-
ment of recognition rate. Because Tree-PGM give a similar-
ity as log-likelihood, rather than a distance, it is difficult to
tune tree-PGM with CLBP which uses chi-square distance.
Therefore, we prefer l4 distance as the metric for ADFT M.

For ADFT GP, chi-square distance is applied since that
the distribution of ADFT GP is more even than ADFT M.

4.3 Combination of Metrics

Although ADFT M , ADFT GP and CLBP are all with his-
togram form, we apply different metrics to them. Chi-square
distance is proper for CLBP and ADFT GP , while l4 dis-
tance is proper for ADFT. Different metrics are combined in
a simple way as follows:

D(T,M) =
Nd∑
i=1

λi
Di(T,M)

meanv(Di)
(13)

where λi is the weight of distance metric Di, and meanv(·)
is the average distance between a sample and the nearest v
models in the training set. meanv(·) is a normalization term
that make each distance metric weight nearly the same if λi

is not considered. In our experiment, v is set to 5.
With this combined distance measure, the nearest

neighborhood classifier is used to classify the test samples.
In all our experiments, we fix the weights of ADFT M,
ADFT GP, LBPriu2

P,R and CLBPriu2
P,R to 1, 1, 4 and 4, respec-

tively.

5. Experiments and Discussion

The ADFT texture descriptor is designed for isotropic tex-
tures, especially casting textures that have dominant fre-
quencies. We first introduce the casting texture database
we acquired and then we evaluate the ADFT descriptor on
the casting texture database. Finally, we apply ADFT to
the well-known CUReT database [25], which contains 61

classes of real world textures, to demonstrate the effective-
ness of ADFT.

5.1 Casting Textures Acquisition

All the specimens are taken by a Leica MZ16A stereo-
microscopes, with two Mintron 73K80AHP digital cameras.
The acquisition system for sampling are shown in Fig. 8.
The magnification rate is about 0.4, resulting in the reso-
lution of 770 dot per inch (DPI) in the final image. The two
cameras are nearly parallel to each other, which means their
x-axe are parallel and nearly collinear. Their fields of view
are partially overlapped. The cameras use PAL system and
the image resolution is 640*480 pixels. We keep only the
center area of the images as the texture samples, with the
size of 256*256 pixels. And the two cropped images are
non-overlapping.

There are about 20 LED lights uniformly distributed
under the surroundings of the objective lens. When the
lights are turned on, the objective table are much more
brighter than its surroundings. So that the specimens are
considered to be under uniform luminance. The aperture of
the microscope is adjusted to the minimum to obtain a large
depth of field.

We sample the roughness textures from 7 roughness
comparators, which contain 8 classes of roughness samples
in total. Two groups of roughness textures we acquire are
shown in Fig. 2. There are 253 valid samples, with each
class contains 12 to 42 samples in variety. The average
roughnesses (Ra) of different roughness classes are 3.2, 6.3,
12.5, 25, 50, 100, 800, 1600 µm, respectively.

5.2 Experimental Setup

We compare our ADFT feature with LBP [19], CLBP [22],
VZ-MR8 [9], and VZ-Joint [26], Energy Ring [1], Circular
DFT [11] and Local Fourier Histogram (LFH) [12]. Experi-
mental settings of the last three methods are given below.
VZ-MR8 (10 textons per class) [9]: Images are firstly gray-
scale normalized and then 38 filters are applied to the image.
The MR8 filter bank consists of two rotationally symmetric

Fig. 8 The casting texture acquisition system.
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and two kinds of anisotropic filters. The symmetric ones are
a Gaussian and a Laplacian of Gaussian. The anisotropic
ones are first order and second order Gaussian derivative fil-
ters. Six orientations of the anisotropic filters are utilized at
three scales and only the maximum responses in each scale
are kept as the features. So that the VZ-MR8 feature is eight
dimensional in total. Filter responses of training samples are
clustered using k-means to produce 10 textons per class, re-
sulting in 10∗Nc textons that partition the feature space into
Voronoi cells. Each filter response of each pixel in a image
is labeled by the nearest texton and a normalized histogram
of the labels are computed for each image as its descriptor.
In the classification stage, the test image is assigned to the
nearest model. And the chi-square distance is utilized as the
metric.
VZ-MR8 (40 textons per class) [9]: The method is just as
above, except that filter responses are clusted into 40 textons
per class.
VZ-Joint 7 × 7 (40 textons per class) [26]: The methodol-
ogy is just as the VZ-MR8 method, except that the textons
are gray values of 7 × 7 image patches.
Energy Ring [1]: Images are firstly transformed using 2D-
DFT. Energies in different rings or circles are extracted as
the feature descriptor.
CircularDFT [11]: Amplitudes of DFT coefficients on cir-
cular neighborhoods are calculated. The means and standard
deviations of each amplitude are extracted as the feature de-
scriptor. And the chi-square distance is utilized as the met-
ric.
LFH [12]: Amplitudes of DFT coefficients on 3×3 window
(the central pixel is excluded) are quantized. A histogram of
these quantized amplitudes are calculated the same way as
ADFT. And as the original pater mentioned, we utilize the
l1 distance for LFH.

5.3 Experiment #1 Roughness Classification

The roughness texture database we acquire contains 8
classes of roughness patterns. In all experiments, half of
the images in each class are selected randomly as train-
ing images and the left as testing images. The recognition
rates listed in Table 2 are the average results over 100 inde-
pendent experiments. Although VZ-Joint 7 × 7 approach
and VZ-MR8 perform well on other databases, e.g., Ou-
tex database [27] and CURet database [25], their recognition
rate on our roughness database are relatively lower. The rea-
sons are that colors of all specimens with the same material
are all similar and the great intra-class. Different from these
two approaches, LBP captures the local feature of the spec-
imens using only the sign of differences between adjacent
pixels, still LBPriu2

8,1 obtains the recognition rate of 86.1%,
which is a little bit lower than VZ-Joint 7 × 7’s 86.2%.
Our proposed ADFT approach obtain the recognition rate
of 88.4%, which outperforms other DFT-based methods. As
an improved version of LBP, CLBP get the highest recogni-
tion rate among single descriptors. Noting that recognition
rate of ADFT M using l4 distance is lower than ADFT M

using Tree-PGM. But to combine ADFT M with CLBP in a
simple way, we prefer ADFT M with l4 distance here.

LBP and CLBP capture local information of the tex-
tures, while the two DFT approaches capture the global in-
formation of the textures in frequency domain, the combi-
nation of them are expected to improve the recognition rate.
And this is also proved by the experimental results. Even
though the performance of energy ring is not well, the com-
bination of energy ring and CLBP still outperforms CLBP.
This fact further demonstrates that global information in the
frequency is complementary with local information such as
CLBP.

The best recognition rate is obtained by the combina-
tion of ADFT and CLBPriu2

25,9, which improves the recogni-
tion rate by 2.6 percent compared with CLBPriu2

25,9. And the
total computation burden is still low, which takes only 0.038
second to extract the combined descriptor. The implemen-
tation of ADFT are in matlab while CLBP is implemented
using C++, further improvements can be achieved by com-
puting DFT of each row and column parallelly. So that the
approach is proper for real-time application.

We utilize different metrics for CLBP and ADFT M
and ADFT GP, and different metrics are combined using
Eq. (13). The reason for this consideration is two-fold. 1) χ2

distance has been proved to be a good metric for histogram
comparison and is widely used for LBP descriptor families.
2) We assume that roughness samples have their dominant
frequencies. Because l4 distance punishes large differences
more than small ones, still, it is proved by experiment that it
is proper for the ADFT M descriptor.

Finally, we list the confusion matrix of ADFT+CLBPriu2
25,9

approach in Table 1. Each row in Table 1 corresponds to one
class of sample that are classified into different classes. For
instance, the first row represents that 99.8% of samples with
Ra 3.2 are classified into the class with Ra 3.2 and the other
0.2% of samples with Ra 3.2 are classified into the class with
Ra 6.3. As we can see the misclassified ones are generally
classified to their adjacent classes, this property makes the
descriptor more proper for production evaluation.

5.4 Experiment #2 Evaluation on the CUReT Database

The CUReT database contains 61 classes of textures. We
follow the setup of M. Varma [9] here, which means that 92

Table 1 Confusion matrix (%) of ADFT+CLBPriu2
25,9.

3.2 6.3 12.5 25 50 100 800 1600
3.2 99.8 0.2 0.0 0 0 0 0 0
6.3 0.0 91.2 8.8 0 0 0 0 0

12.5 0 2.9 96.3 0.5 0.3 0 0 0
25 0 0.0 1.1 96.6 2.3 0 0 0
50 0 0 1.4 2.3 95.8 0.5 0 0

100 0 0 0 0.0 0.5 98.5 0.9 0.1
800 0 0 0 0 0 0.4 98.6 1.0

1600 0 0 0 0 0 0 1.4 98.6
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Table 2 Recognition rate and feature extraction time on roughness database.

distance metric recognition rate (%) feature extraction time (s)

Global descriptors

Energy ring χ2 73.3 0.008
ADFT SM l4 86.7 0.018

ADFT M l4 85.6 0.019
ADFT GP χ2 81.3 0.019

ADFT χ2 + l4 88.4 0.024

Local descriptors

MR8(40centers/class) χ2 81.9 0.7
VZ-Joint 7×7(40centers/class) χ2 86.2 6.4

LBPriu2
8,1 χ2 86.1 0.003

CLBPriu2
8,1 χ2 86.6 0.007

CLBPriu2
16,2 χ2 91.8 0.011

CLBPriu2
25,9 χ2 94.0 0.014

CircularDFT χ2 61.0 0.086
LFH l1 76.9 0.023

Global+Local
descriptors

Energy ring+CLBPriu2
25,9 χ2 93.5 0.022

ADFT+LBPriu2
8,1 χ2 + l4 91.8 0.027

ADFT+CLBPriu2
8,1 χ2 + l4 92.5 0.031

ADFT+CLBPriu2
16,2 χ2 + l4 94.7 0.033

ADFT+CLBPriu2
25,9 χ2 + l4 96.6 0.038

Table 3 Classification Rate (%) on CUReT database.

descriptor
number of training samples

46 23 12 6

Global descriptors

ADFT SM 84.57 77.40 69.38 59.55
ADFT M 87.04 79.96 71.72 61.61

ADFT GP 66.69 61.09 55.19 48.26
ADFT 90.75 84.80 77.27 67.88

Local descriptors

LBPriu2
8,1 80.87 74.92 67.60 58.73

CLBPriu2
8,1 95.54 91.15 84.53 74.60

CLBPriu2
16,2 95.62 91.63 85.46 76.05

CLBPriu2
24,5 94.53 90.02 83.36 73.78

CircularDFT 75.56 66.72 57.14 46.51
LFH 77.90 70.63 62.91 54.11

Global
+Local
descriptors

ADFT+LBPriu2
8,1 94.91 90.35 83.61 74.49

ADFT M+CLBPriu2
8,1 96.25 92.51 86.51 77.42

ADFT+CLBPriu2
8,1 96.88 93.41 87.73 78.87

ADFT M+CLBPriu2
16,2 97.03 93.74 88.27 79.87

ADFT+CLBPriu2
16,2 97.28 94.24 89.03 80.74

ADFT M+CLBPriu2
24,5 96.47 93.07 87.79 79.12

ADFT+CLBPriu2
24,5 96.80 93.56 88.18 79.93

out of 205 images of each class are selected and cropped to
200*200 pixels. The images are acquired at different illumi-
nation orientations and view points, and the viewing angles
of the selected images are less than 60°.

Although the ADFT texture descriptor is designed for
roughness classification, we compared it with other ap-
proaches on the CUReT database. All descriptors except

ADFT are announced to be rotationally invariant. As shown
in Table 3, although ADFT is not rotationally invariant, the
recognition rate of ADFT is 90.75% when we use half of
the samples as training samples. The reason for this result
is that we extract ADFT is two directions, which means that
it is invariant if the rotation angle is multiples of 90°. The
high recognition rate of ADFT illustrates that distribution of
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one-dimensional DFT coefficients is a discriminative feature
for different textures. However, ADFT GP performs badly
on CUReT database, which means that ADFT GP is not a
good descriptor for anisotropic textures.

As shown in Table 3, combinations of ADFT and
CLBP always achieve better recognition rates than the cor-
responding CLBP alone does. This result confirms again
that global information in the frequency is complementary
with local information such as CLBP.

6. Conclusion

In this article, we propose ADFT which utilizes the
isotropic characteristics of roughness specimens. ADFT M
and ADFT GP describe textures using the distributions of
amplitudes and distributions of phase gradients, respec-
tively. Both ADFT M and ADFT GP are discriminative for
isotropic textures such as casting images. Combined with
the well-known CLBP descriptor, which captures the local
features of textures, the CLBP+ADFT descriptor captures
texture features in a both global and local way. The fused
feature still can be computed efficiently, which is key to
on-line evaluation of the roughness levels of products. Ex-
periments on CUReT database show that ADFT M is also
suitable for describing anisotropic textures. How to make
the descriptor rotation invariant and make phase information
useful for anisotropic textures will be studied in the future
work.
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