
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015
1449

PAPER

The Enhanced Encapsulation Architecture to Improve TV
Metadata Encoding Performance by Schema Optimizing
Mechanism∗

Bongjin OH†a), Member, Jongyoul PARK†, Sunggeun JIN††b), and Youngguk HA†††, Nonmembers

SUMMARY We propose simple but efficient encapsulation architec-
ture. In the architecture, clients can better decode Extensible Markup Lan-
guage (XML) based service information for TV contents with schema di-
gest. Our experimental results show the superiority of the proposed ar-
chitecture by comparing the compression ratios and decoding times of the
proposed architecture and the existing architectures.
key words: TV contents guide, XML encoding, metadata encapsulation,
schema optimization

1. Introduction

Extensible Markup Language (XML) based service descrip-
tions are widely used by many international digital broad-
cast standards thanks to their extensibility and readability.
For this reason, many TV broadcasting service providers
adopt XML to deliver their contents. Meanwhile, TV-
Anytime (TVA) is one of the most commonly employed in-
ternational digital broadcast standards to encode the con-
tents. Accordingly, in the TVA standards, schemas and
contents delivery models are defined between a server and
clients depending on various types of communication me-
dia. The documents described by the TVA schema are called
TVA descriptions [1]–[3]. For proper services, the TVA
descriptions are divided into independent sub-descriptions,
i.e., fragments, and are encapsulated into containers to be
provided to clients.

Actually, it has been always necessary to reduce the
load of Internet traffic if possible. Besides, recent prolifera-
tion of smartphones has brought us an urgent need to reduce
the amount of Internet traffic than before for the following
reasons. (1) First of all, it is necessary to save the charges
while we are enjoying mobile Internet services. Typically,
the charges by network service providers are in proportion

Manuscript received April 9, 2014.
Manuscript revised November 12, 2014.
Manuscript publicized May 22, 2015.
†The authors are with ETRI, 161 Gajeong-dong, Daejeon,

305–350 Korea.
††The author is with Daegu University, 201 Daegudaero, Daegu,

712–714 Korea.
†††The author is with Konkuk University, 1 Hwayang-dong,

Seoul, Korea.
∗An earlier version of this paper was published in Proc.

ICCE’11, 2011.
a) E-mail: bjoh@etri.re.kr
b) E-mail: sgjin@daegu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2014EDP7113

to the amount of traffic. (2) TV broadcasting services are
in services all day long. It implies that the traffic for TV
broadcasting services may occupy a large portion of traf-
fic load. Therefore, network service providers also need to
reduce the amount of traffic. For this purpose, we try to re-
duce the TV traffic load by designing an efficient encoding
architecture.

Typically, Efficient XML Interchange (EXI) or Gnu-
ZIP (GZIP) has been utilized to convert the TVA descrip-
tions into encoded binary information during encapsulation
process. Especially, the EXI encoding scheme is adopted
as a reference because it is known to have the best per-
formance among other encoding schemes including Binary
MPEG format for XML [4]–[8]. Nevertheless, as detailed
later, there is a room for improvement for the EXI encoding
scheme.

In other words, we find a schema consisting of redun-
dant attributes and elements, which are used to generate
TVA descriptions at a server. From the finding, we can op-
timize the schema by pruning the redundant parts. For this
purpose, we design an efficient encapsulation method for the
EXI improvement method, called schema digest. The ex-
periment results will show that the proposed method signif-
icantly improves the encoding performance compared with
the existing EXI.

This paper is organized as follows: Section 2 provides
related work. Section 3 describes the proposed architecture
in detail. Section 4 explains experimental results, and Sect. 5
shows a reference system using the proposed mechanism.
Finally, Sect. 6 concludes this paper.

2. Related Work

2.1 TV-Anytime

TVA specifies the schema to describe details of service and
contents guide for digital TVs and Personal Video Recorder
(PVR) services. TVA defines several elements for a descrip-
tion of service and contents as shown in Fig. 1. TVA element
tree can be expressed as an acyclic tree composed of the el-
ements. The elements for Electronic Program Guide (EPG)
are confined to fields related to Service Information (SI),
Program Location (PL) and Program Information (PI), and
are painted gray in this figure. That is, if a service provider
wants to provide users with an EPG for only digital live TV

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



1450
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

Fig. 1 TVA element tree composed of metadata for contents guide.

services, then they have only to transmit metadata which
contains the fields related to three tables to display EPG
for a TV contents guide [9]–[11]. In this case, it is recom-
mended to customize the TVA schema according to the ser-
vice provider’s policies because a TVA schema consists of
redundant elements unnecessarily describing broad kinds of
services and contents.

TVA descriptions are transmitted to clients using a
TVA delivery protocol which consists of fragmentation,
encoding, encapsulation and transmission steps. Sub-
descriptions of TVA descriptions are called fragments. They
are encapsulated into containers after being compressed by
a selected encoding mechanism. The containers are trans-
mitted to clients through unicast or multicast transport pro-
tocols. The server should notify clients of the encoding en-
vironment before transmitting the encoded fragments, for
proper decoder operation [1]–[3]. This paper proposes an
encapsulation architecture using customized schema in or-
der to provide only descriptions which are adaptive to each
service provider for schema-based encoding algorithms.

2.2 EXI Encoding Method

The EXI encoding method uses a grammar generated from
the schema when TVA fragments are encoded [2], [4], [5].
An exemplary EXI automata graph for an XML schema is
shown in Fig. 2.

An EXI-encoded stream consists of event codes, en-
coded values, and an EXI header. Event codes are assigned
to each direct link among nodes comprising the schema au-
tomata. Whenever a source node moves to a target node
according to an input token of TVA fragments, the mapped
event codes are inserted into the EXI-encoded stream. Ta-
ble 1 shows the events code allocated to the links of above
exemplary EXI automata.

The number of links toward target nodes from a spe-
cific node determines the length of the event codes repre-
senting those links. The codes for the events are encoded
with binary number. In fact, each TVA fragment consists
of events, i.e., tokens, triggering node transitions so that we
can assume set T of the tokens generating a TVA fragment.

Fig. 2 Exemplary EXI automata and schema.

Table 1 The Events Codes of Exemplary Automata

If a node contains a specific token t (∈ T ), the code length
for the token t is determined by the number of links toward
target nodes at the node. Therefore, given N is the number
of target nodes directly connected from a source node, we
can derive the code length (= L(t)) of a token t at the source
node by:

L(t) =
⌈
log2 N

⌉
, (1)

Then, we can obtain the total size of EXI-encoded frag-
ment:

size = H +
∑
t∈T

L(t) +
∑
t∈T

encode(valuet), (2)

where H is EXI header and encode(valuet) is the encoded
values of token t. From Eqs. (1) and (2), we can recognize
that the size of a TVA document consisting of multiple frag-
ments is influenced by how to reduce the code length de-
noted with L(t). For this reason, we focus on reducing the
average length of event codes by optimizing EXI automata.

3. Schema Optimization Mechanism

The proposed architecture consists of several components to
optimize TVA schema before TVA fragments are delivered.
The optimized information should be shared between a con-
tents guide server and clients to synchronize the grammar
for decoding fragment.

3.1 Proposed Architecture

The TVA description is analyzed to remove the elements



OH et al.: THE ENHANCED ENCAPSULATION ARCHITECTURE TO IMPROVE TV METADATA ENCODING PERFORMANCE
1451

Fig. 3 Encapsulation architecture with schema optimizing mechanism.

not being used to describe details of contents provided by
service providers. The schema analyzer digests needed el-
ements from the original TVA schema based on tokens in-
putted from the service provider’s descriptions. The schema
optimizer uses the schema digest to generate optimized
schema, and transmits the optimized schema to the EXI en-
coder.

TVA descriptions are fragmented by the fragmentizer,
and then inputted to the EXI encoder to be encapsulated for
delivery. As described in Sect. 2, the schema-based gram-
mar is used to encode the fragments by replacing their ele-
ments with mapped event codes. The size of the grammar
affects the volume of the encoding stream, since the average
length of event codes is determined by the average number
of links among nodes of the grammar. It is clear that the
set of links for an optimized schema is smaller than that of
the complete TVA schema. Therefore, the encoded stream
using optimized schema is always smaller than the origi-
nal TVA schema-based encoding stream. The schema di-
gest should be transferred to the clients for optimizing TVA
schema before encoded fragments arrive for decoding, be-
cause the encoded fragments can only be decoded using the
same grammar as that of the encoder.

3.2 Optimizing TVA Schema

TVA schema consists of three types of definitions, i.e.,
(1) basic type definitions, (2) complex type definitions and
(3) element definitions. The schema analyzer generates a
schema digest by analyzing a service provider’s TVA de-
scriptions. Then, the schema optimizer regenerates the TVA
schema with only those types and elements included in the
schema digest.

The schema analyzer configures an element tree com-
posed of basic types and complex types described in the
TVA schema. Visit flags are allocated to all nodes of the
element tree with false for their initial values, as shown in
Fig. 4.

Fig. 4 Diagram of TVA analysis to find elements being used.

Fig. 5 Schema digests with depth 4 of TVA schema with nodes set as
true in the analyzed tree

The schema analyzer gets tokens sequentially from
TVA descriptions, and traverses the element tree from the
root node to child nodes according to the input tokens. The
visit flags of the nodes are set to true when the nodes are
visited at least one time, so the nodes with a false visit flag
at end time will finally be removed from the original TVA
schema.

The schema analyzer traverses the analyzed element
tree by shallow traversal algorithm, and the bits for nodes
with a true visit flag are set to represent the mapped elements
that should be included in the optimized schema. The child
nodes of a parent with bits set to off are skipped during the
traversal as well as omitted from the bit flag array because it
is impossible to describe elements without describing their
parents in TVA descriptions.

As shown in Fig. 5, the length of a bit flag array for ele-
ments to describe EPG with depth 4 is only 19 bits. The pre-
pared schema digest is transmitted to a schema optimizer for
optimizing the original TVA schema. Then, the schema op-
timizer regenerates a TVA schema using only the elements
with true flags of the bit flag array.



1452
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

The digest should be shared with clients to allow them
to decode binary fragments based on the same schema. TVA
defines the TVAInitMsg table to notify clients with hints of
decoding fragments such as encoding algorithm, buffer size
etc. The bit flag array is stored to the TVAInitMsg table, and
transmitted to clients before anything else.

3.3 Analysis of Proposed Architecture

We do not consider the schema digest for the derivation of
the efficiency for two reasons as follows: (1) the amount of
the schema digest is negligible compared with total docu-
ment size. In detail, the schema digest sizes are about 100
bytes depending on the fragments. However, fragment sizes
could be longer than tens of kilobytes and the total docu-
ment size including multiple fragments is typically longer
than hundreds kilobytes. (2) The schema digest is trans-
ferred only once at initial service time. Therefore, its in-
fluence is negligible considering total document size for the
entire service. Keeping the reasons in mind, we continue
to derive the effect factor of the proposed encapsulation ar-
chitecture for encoding rate of event codes is determined as
follows:

E f =
∑
t∈T

Lo(t)
/∑

t∈T
L(t), (3)

where Lo(T ) = L(T )−Lr(T ). Lr(T ) is the number of links of
the node t removed in the optimized schema but which exist
in the original schema. If Lo(T ) is replaced with L(T ) −
Lr(T ), then E f is defined as follows:

E f =
∑
t∈T

(L(t) − Lr(t))
/∑

t∈T
L(t)

= 1 −
∑
t∈T

Lr(t)
/∑

t∈T
L(t). (4)

Therefore, if Lr(T ) = L(T ) then E f = 0, and this means that
there are no event codes in the encoded stream for the opti-
mized schema. If Lr(T ) = 0 then E f = 1, and this means that
there are no improvements in the optimized schema. There-
fore, it is valid that 0 ≤ E f ≤ 1 for any case of removed
links in the optimized schema for encoding rate.

Decoding performance is also one of the important is-
sues for user terminals because most user terminals are low-
end devices. The grammar to decode tokens should be cre-
ated before decoding input tokens in the EXI mechanism.
Therefore, the decoder creates functions of all the gram-
mars which can be selected from the current node because
the decoder has no information about which grammar will
be selected for the next tokens. The decoder processes the
selected grammar according to the input token, and moves
to the next node after destroying grammars created for the
previous node. The number of nodes which can be moved
to from the current node plays a big role in determining the
total decoding time. The effect factor for decoding perfor-
mance is described as follows:

Ed =
∑
t∈T

(Lo(t)×(Pc+Pd)+Pe)
/∑

t∈T
(L(t)×(Pc+Pd)+Pe)

= 1−
∑
t∈T

(Lr(t)×(Pc+Pd)+Pe)
/∑

t∈T
(L(t)×(Pc+Pd)+Pe),

(5)

where Pc, Pd, and Pe are the processing time to create, de-
stroy and decode grammars at every node moved by token
t. Therefore, it is clear that 0 ≤ Ed ≤ 1 for any case of
removed links in the optimized schema for decoding perfor-
mance according to the same kind of inference as that of the
encoding rate.

4. Experimental Results

Table 2 shows the details of an experimental environment
used to evaluate the performance of the proposed architec-
ture. EXIficient 0.6 is used to encode the TVA fragments
with the EXI encoding algorithm. The decoding speed and
encoded stream size are evaluated to show the enhancement
provided by the proposed architecture.

Table 3 shows the list of PI descriptions used to eval-
uate the proposed encapsulation architecture. In this ta-
ble, there are seven PI descriptions used for program de-
tails of some channels of the BBC between 2010.09.02 and
2010.09.08.

First, Fig. 6 shows the measured times required to de-
code the descriptions by using simulator. The proposed
mechanism enhances decoding speed, making it about 30%
faster than the original EXI. The removed links are the key
factor leading to these enhancements, since the proposed
mechanism has a smaller average number of links compared
with the original EXI.

Second, Table 4 shows the reduced bits of elements

Table 2 Experimental environments

Table 3 PI Descriptions Used to Evaluation



OH et al.: THE ENHANCED ENCAPSULATION ARCHITECTURE TO IMPROVE TV METADATA ENCODING PERFORMANCE
1453

Fig. 6 Decoding performance.

Table 4 Event Codes in Optimized Schema with Depth 6

of “20100908BBCRFiveX pi” to show the event code im-
provements in the optimizing schema method. The event
codes are generated by an EXIficient based emulator using
the original TVA schema and the customized schema for SI,
PI, and Schedule of PL.

For example, the BasicDescription element of the orig-
inal TVA schema consists of 20 child elements; however
only 3 elements (Title, Synopsis and Genre) are used in the
BBC’s descriptions. Therefore, the proposed architecture
generates only 2 bits for event codes from the BasicDescrip-
tion element to its child elements (the original schema gen-
erates 5 bits for event codes). As a result, 3 bits will be saved
whenever the migrations from BasicDescription occur, for
every PI fragment.

Figure 7 shows the compression performance. From
Figs. 6 and 7, we can observe that the proposed scheme is
better than EXI in terms of decoding time while it has better
compression performance than GZIP.

5. Implementation

This paper shows a Reference Implementation (RI) of the
service provisioning platform with the schema optimizing
mechanism. Figure 8 shows the diagram for the imple-

Fig. 7 Compression performance.

Fig. 8 EPG RI architecture using schema optimizing mechanism.

mented RI interoperated with Korean IPTV services.
Korean IPTV service providers adopted the TVA as a

standard for their contents guide description, and DVB-SI
Transport Protocol (DVBSTP) [12] as their delivery proto-
col. Nevertheless, DVB-SI [10] based MPEG-2 TS has been
used for the contents guide services. For this reason, DVB-
SI is used to generate the RI stream for implementation. The
SI parser analyzes the input DVB-SI MPEG-2 TS streams,
and an acyclic tree is newly configured with the service de-
scription tables. Event information tables for all service de-
scription tables are extracted from the input DVB-SI stream,
also. Those tables are analyzed by XML generator to gen-
erate TVA fragments. Service description tables are used to
generate SI fragments, and event information tables are used
to generate PI and PL fragments, respectively. The gen-
erated fragments are encoded using the EXI encoder with
optimized TVA schema. They are encapsulated into several
containers to be transmitted to a set-top box.

The decapsulated fragments are decoded using the
same optimized schema as that of the encoder, and stored
into the XML database. An EPG application displays the
contents guide using Java TV API according to a user’s re-
quests. The Java TV interfaces are implemented to extract
information about service channel, program and schedules
from TVA fragments [11], [12].

Figure 9 shows the reference implementations of the
IPTV server and Fig. 10 shows the IPTV set-top box, respec-
tively. The IPTV server consists of (1) service guide server,
(2) provisioning server, (3) stream server and (4) file update



1454
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

Fig. 9 IPTV server RI and web based management UI to configure the
encapsulation and delivery environments.

Fig. 10 IPTV set-top box RI and EPG UI to analyze the received TV
metadata and display them on the TV Screen.

server. When a user turns on the IPTV set-top box, the de-
vice tries to connect to a provisioning server for the device
provisioning process. During the device provisioning pro-
cess, the applications and configuration files are transferred
from a file update server to the IPTV set-top box. There-
after, the IPTV set-top box receives metadata of the contents
guide from the multicast address defined in the configura-
tion files. The service guide server transmits the containers
of TVA fragments to the multicast address periodically. A
web-based management tool is provided to control service
guide servers.

The web-based tool configures the service guide
servers depending on how the TVA fragments are encap-
sulated, and delivers the containers. Then, it uploads the
configuration file to the file update server. The IPTV set-top
box will download the configuration file for a service guide.
SI and PL fragments are encapsulated into a single container
because their sizes are small enough to be included in one
container. However, the PI fragments are encapsulated into
several containers because a single container cannot accom-
modate all the PI fragments.

The layout of EPG UI consists of (1) vertical channel
list, (2) single row time line, and (3) title of programs for
each channel. The SI fragments are used for the channel list
while PL fragments are used for the time line. Addition-
ally, PI fragments are used for the title and details of each
program, respectively. The EPG UI is launched over Java
based IPTV middleware whenever users want to display the
program schedule of each channel on the screen.

6. Conclusion

In this paper, enhanced encapsulation architecture is pro-
vided for a TVA-metadata-based contents guide delivery
system. The TVA schema optimizing method is used to re-
move links which are not required to encode and decode
service provider’s descriptions. Consequently, the average
length of event codes is reduced, and the size of the en-
coded stream is also reduced compared with the original
EXI algorithm. Moreover, the removed links reduce to-
tal decoding time by removing the time required to cre-
ate and destroy grammars for the removed links. The pro-
posed method achieves an improved decoding performance
20%∼30% better than the original EXI algorithm.

Acknowledgments

This work was supported by the IT R&D program of
MKE/KEIT, [KI10039202, Development of SmartTV De-
vice Collaborated Open Middleware and Remote User In-
terface Technology for N-Screen Service].

References

[1] H. Zhang and S. Zheng, “Personalized TV Program Recommenda-
tion based on TV-Anytime Metadata,” Proc. International Sympo-
sium of Consumer Electronics, LasVegas, USA, pp.242–246, July
2005.

[2] Y.H. Kim, H.-K. Lee, J.S. Choi, and J.W. Hong, “Study on Personal-
ized Data Broadcasting Service using TV-Anytime Metadata,” Proc.
International Symposium on Consumer Electronics, St. Petersburg,
Russia, pp.1–6, July 2006.

[3] B.-J. Oh, Y.-S. Bae, K.-D. Moon, and K.-J. Yoo, “Efficient Re-
transmission Architecture of Digital Broadcast Services over IPTV
Networks,” IEEE Trans. Consum. Electron., vol.54, no.1, pp.65–70,
Feb. 2008.

[4] T. Podlasek, J. Sliwa, and M. Amanowicz, “Efficiency of compres-
sion techniques in SOAP,” Proc. Military Communications and In-
formation System Conference, Wroclaw, Poland, pp.199–210, Sept.
2010.

[5] R. Kyusakov, H. Makitaavola, J. Delsing, and J. Eliasson, “Efficient
XML Interchange in Factory Automation Systems,” Proc. Annual
Conference of the IEEE Industrial Electronics Society, Melbourne,
Australia, pp.4478–4483, Nov. 2011.

[6] Y.-G. Ha, B.-S. Jang, B.-J. Oh, Y.-S. Bae, and E.-H. Paik, “Effec-
tive Encoding of TV-Anytime Metadata Using EXI,” Proc. IEEE In-
ternational Conference on Consumer Electronics, Lasvegas, USA,
pp.455–456, Jan. 2011.

[7] B. Oh, S. Jin, E. Baek, and K. Yoo, “A schema Digest Based Meta-
data Encapsulation Architecture with Shared String Tables,” Con-
trol and Automation, and Energy System Engineering, Communi-
cations in Computer and Information Science, vol.256, pp.154–159,

http://dx.doi.org/10.1109/isce.2005.1502378
http://dx.doi.org/10.1109/isce.2006.1689515
http://dx.doi.org/10.1109/tce.2008.4470025
http://dx.doi.org/10.1109/iecon.2011.6120046
http://dx.doi.org/10.1109/icce.2011.5722680
http://dx.doi.org/10.1007/978-3-642-26010-0_18


OH et al.: THE ENHANCED ENCAPSULATION ARCHITECTURE TO IMPROVE TV METADATA ENCODING PERFORMANCE
1455

Springer Berlin Heidelberg, 2011.
[8] S. Cho, D. Shin, H. Jo, D. Choi, D. Won, and S. Kim, “Secure and

Efficient Code Encryption Scheme Based on Indexed Table,” ETRI
J., vol.33, no.1, pp.60–70, Feb. 2011.

[9] B.S. choi, J. Kim, S. Kim, Y. Jeong, J.W. Hong, and W.D. Lee, “A
Metadata Design for Augmented Broadcasting and Testbed System
Implementation,” ETRI J., vol.35, no.2, pp.292–300, April 2013.

[10] S. Morris and A. Smith-Chaigneau, Interactive TV Standards, Else-
vier Inc., pp.192–224, 2005,

[11] C. Concolato, “Generation, Streaming and Presentation of Elec-
tronic Program Guide,” Proc. European Interactive TV conference,
Leuven, Belgium, pp.46–49, July 2009.

[12] N.L. Ewald-Arostegui, G. Fairhurst, and A. Yun-Garcia, “A Frame-
work for an IP-Based DVB Transmission Network,” International
Journal of Digital Multimedia Broadcasting, vol.2010, Article ID
394965, pp.1–13, March 2010.

Bongjin Oh received B.S. and M.S. degrees
in computer science from Pusan National Uni-
versity, Busan, Korea in 1993 and 1995 respec-
tively, and the Ph.D. degree from Chungnam
National University, Daejeon, Korea in Febru-
ary 2012. Since 1995, he has been with the Elec-
tronics and Telecommunications Research Insti-
tute (ETRI), where he develops home network
middleware and data broadcasting middleware.
His research interests are home network middle-
ware, data broadcasting middleware, IPTV, per-

vasive computing, and big data analytics.

Jongyoul Park received the B.S. degree
in computer engineering from Chungnam Na-
tional University, Korea, in 1996, the M.S. and
Ph.D. degrees in information and communica-
tion engineering from the Gwangju Institute of
Science and Technology (GIST), Korea, in 1999
and 2004, respectively. From 2001 to 2002,
he was a visiting researcher at the school of
computing, University of Utah. Since 2004, he
has been a Research Staff and Director of Ana-
lytics SW Research Section of Electronics and

Telecommunications Research Institute (ETRI), Korea. His research inter-
est includes IP broadcasting, software middleware, mobile code, distributed
computing, big data and analytics platform.

Sunggeun Jin received B.S. and M.S.
degrees from Kyungpook National University,
Daegu, Korea, in 1996 and 1998, respectively,
and the Ph.D. degree from Seoul National Uni-
versity, Seoul, Korea, in August 2008. In 1998,
he joined ETRI, Daejeon, Korea. Now, he
is an assistant professor at Daegu University.
He has participated in standard developments,
including IEEE 802.11v, IEEE 802.16j, IEEE
802.16m, and IEEE 802.11ad. Dr. Jin has served
as a Technical Program Committee member for

the 2008. IEEE Wireless Communications and Networking Conference,
the 2009 International Conference on Ubiquitous and Future Networks, the
2010 International Conference on Broadband Communications, Networks,
and Systems, IEEE GLOBECOM 2011, and IEEE GLOBECOM 2012.

Youngguk Ha received his BS and MS de-
grees in computer science from Konkuk Univer-
sity in 1993 and 1995 respectively. He received
his PhD degree in computer science from Ko-
rea Advanced Institute of Science and Technol-
ogy (KAIST) in 2006. He worked for Electron-
ics and Telecommunications Research Institute
(ETRI) from 1995 to 2008 as a senior member
of the engineering staff and currently is an as-
sistant professor in the Department of Computer
Science and Engineering at Konkuk University.

His research interests are in ubiquitous computing, home network and ser-
vice middleware, and wireless sensor networks.

http://dx.doi.org/10.1007/978-3-642-26010-0_18
http://dx.doi.org/10.4218/etrij.11.0110.0056
http://dx.doi.org/10.4218/etrij.13.0112.0412
http://dx.doi.org/10.1155/2010/394965

