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PAPER

Reducing Speech Noise for Patients with Dysarthria in Noisy
Environments

Woo Kyeong SEONG†, Ji Hun PARK††, Nonmembers, and Hong Kook KIM†a), Member

SUMMARY Dysarthric speech results from damage to the central ner-
vous system involving the articulator, which can mainly be characterized
by poor articulation due to irregular sub-glottal pressure, loudness bursts,
phoneme elongation, and unexpected pauses during utterances. Since
dysarthric speakers have physical disabilities due to the impairment of their
nervous system, they cannot easily control electronic devices. For this rea-
son, automatic speech recognition (ASR) can be a convenient interface
for dysarthric speakers to control electronic devices. However, the per-
formance of dysarthric ASR severely degrades when there is background
noise. Thus, in this paper, we propose a noise reduction method that im-
proves the performance of dysarthric ASR. The proposed method selec-
tively applies either a Wiener filtering algorithm or a Kalman filtering al-
gorithm according to the result of voiced or unvoiced classification. Then,
the performance of the proposed method is compared to a conventional
Wiener filtering method in terms of ASR accuracy.
key words: dysarthric speech recognition, noise reduction, Wiener filter,
Kalman filter

1. Introduction

Automatic speech recognition (ASR) has been developed as
a user interface for electronic devices such as smart phones,
home appliances, car navigation systems, and so on [1]. In
fact, the performance of modern ASR systems is quite satis-
factory, and thus a considerable number of applications have
been actively deployed in real-world environments. Fur-
thermore, several attempts have been made in recent years
to bring the convenience of ASR to disabled people who
have severe constraints to their body movement, allowing
only a narrow scope of physical activity [2]. In particular,
some of these attempts have been focused on people with
dysarthria who have paralysis of the articulator as well as
most other parts of the body due to damage to their central
nervous system. However, the performance of ASR systems
degrades when it is applied to dysarthric speech. This is be-
cause dysarthric speech has particular characteristics, such
as irregular sub-glottal pressure, loudness bursts, phoneme
elongation, unexpected pauses during utterances, and pro-
nunciation variations [3].

Diverse approaches have been proposed to improve the
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performance of dysarthric ASR systems [4]. However, most
such approaches have focused on ASR in a clean environ-
ment. Thus, their performance was limited when the ASR
system was deployed in real-world applications. To alleviate
the effect of background noise on dysarthric ASR, various
kinds of noise reduction methods, including spectral sub-
traction [5], minimum mean square error log-spectral ampli-
tude (MMSE-LSA) [6], and Wiener filtering [7], have been
applied to noisy dysarthric speech.

However, since these noise reduction methods have
been developed for non-dysarthric speech rather than for
dysarthric speech in noisy environments, they do not reflect
the various characteristics of dysarthric speech [8]. Specif-
ically, dysarthric speech is often accompanied by the im-
precise articulation of consonants rather than vowels [9]. In
addition, unvoiced consonants sound very similar to back-
ground noise, when compared to voiced consonants or vow-
els [10]. Thus, noise reduction methods such as Wiener fil-
tering are apt to remove or highly distort unvoiced conso-
nants.

In order to mitigate this problem, we have developed
a noise reduction method based on Wiener filtering [11],
where noise power for given frame is estimated differently
depending on the classification of the frame as either a con-
sonant or a vowel frame. This has been referred to as the
consonant/vowel (CV)-dependent Wiener filter [11]. While
the CV-dependent Wiener filter achieved better noise re-
duction performance than a conventional Wiener filter, its
performance would be further improved if each consonant
frame could be classified as an unvoiced or a voiced conso-
nant frame.

Hence, in this paper, we newly propose a noise reduc-
tion method by incorporating the classification of phonemes.
In other words, the proposed method first classifies each
frame of noisy dysarthric speech to either a voiced or
an unvoiced frame by using the pitch strength clustering
method [12]. After that, voiced frames are further classi-
fied to either vowels or voiced consonants by using a vowel
onset time estimated from the linear prediction (LP) residual
signals. Even though voiced consonants have acoustic char-
acteristics similar to vowels, Phatak and Allen found that
the acoustic characteristics of consonants critically changed
by small manipulation, thus humans tended to misrecognize
consonants rather than vowels in noisy environments [13].
Based on this finding, we can apply a Wiener filter to the
vowel or voiced consonant frames, where a noise power
spectrum is estimated differently depending on the conso-
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nant/vowel classification. In other words, we make a noise
power spectrum for a consonant frame underestimated com-
pared to that of a vowel frame in order to reduce spectral
distortion by Wiener filtering. By doing this, we can prevent
the consonant frames from being distorted by noise reduc-
tion techniques. On the other hand, an unvoiced consonant
is pronounced by coarticulating the shape of oral cavity, the
position of the tongue, and the lip without vocal cord vibra-
tion. Thus, an unvoiced consonant can be represented by
an autoregressive (AR) model [14] excited with white noise.
From this reason, we apply an AR-based Kalman filter [14]
to unvoiced consonant frames.

2. Phoneme Classification for Noise Reduction

In this section, we describe phoneme classification for the
proposed noise reduction method. First of all, we calculate
the pitch strength, p(l), voiced centroid, cv(l), and unvoiced
centroid, cuv(l), for the speech segment starting from the l-th
to (l + N − 1)-th sample, respectively [12]. In this paper, N
is a frame length and it is set to 160 at a sampling rate of
8 kHz. Then, the voiced/unvoiced classification at the l-th
sample is performed by computing the ratio defined as

R(l) =
p(l) − cuv(l)
cv(l) − cuv(l)

. (1)

Consequently, the l-th sample is declared as voiced if R(l) >
0.5. Otherwise, it is declared as unvoiced. After performing
the sample-by-sample decision over all the samples within
a frame, the frame is declared as voiced or unvoiced if the
number of voiced samples is greater than that of unvoiced
samples or vice versa.

Next, for a voiced consonant or vowel frame, CV clas-
sification is carried out [11]. To this end, a vowel onset time
position is first estimated from LP residual signals. In other
words, the first order difference (FOD) of LP residual at the
n-th time sample of the m-th frame, FOD(n; m), is defined
as

FOD(n; m) =
E(n; m) − E(n − 1; m), 1 ≤ n ≤ N − 1

(2)

where E(n; m) is the squared error signal obtained from
the p-th order LP analysis. That is, E(n; m) = (s(n; m) −∑p

i=1 αi(m)s(n − i; m))2 where s(n; m) and αi(m) are the n-th
sample of clean voiced speech and the i-th LP coefficient
at the m-th frame, respectively. Then, by searching the lo-
cal maxima of FOD, we determine whether one of them is
greater than a pre-defined threshold, which is set to 0.5 in
this paper. If there exists a local maximum, which implies
that the m-th frame includes a vowel onset time, then this
frame is declared as a vowel frame. On one hand, if the
m-th frame does not include any vowel onset time but it
is included within 10 frame intervals after the previously
detected vowel onset frame, it is also declared as a vowel
frame. Otherwise, the m-th frame is declared as a voiced
consonant frame.

3. Proposed Noise Reduction Method Depending on
Phoneme Class

This section proposes a noise reduction method depending
on phoneme class. As shown in Fig. 1, we first classify each
frame of noisy dysarthric speech to either a voiced or an
unvoiced frame, where voiced frames are further divided
to vowels or voiced consonants. Then, as shown in Fig. 2,
we apply a Wiener filter to the vowel or voiced consonant
frames. Notice here that we make a noise power spectrum
for a consonant frame underestimated compared to that of a
vowel frame in order to reduce spectral distortion by Wiener
filtering. Otherwise, we apply a Kalman filter to the un-
voiced consonant frames.

3.1 Wiener Filtering for Vowels and Voiced Consonants

Let xV (n; m) be a noisy voiced frame that can be represented
as

xV (n; m) = sV (n; m) + w(n; m) (3)

where sV (n; m) and w(n; m) are the n-th sample of clean
voiced speech and background noise at the m-th frame, re-
spectively. The frequency domain representation of (3) is
given by

XV (k; m) = S V (k; m) +W(k; m) (4)

where XV (k; m), S V (k; m), and W(k; m) are the k-th spectral

Fig. 1 Block diagram of the proposed phoneme class dependent noise
reduction method for dysarthric speech in noise.

Fig. 2 Block diagram of the Wiener filtering method for vowels and
voiced consonants.
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component of xV (n; m), sV (n; m), and w(n; m), respectively.
Next, in order to construct a Wiener filter, the noise

power spectrum, PW (k; m), is estimated differently accord-
ing to the CV classification result, such as

PW (k; m) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PW (k; m − 1)D(η(k; m − 1)) for a voiced

consonant

PW (k; m − 1) for a vowel

(5)

where D(·) is introduced to control a noise power spectrum
of a voiced consonant frame and it is defined as D(x) =
1/{1 + exp(−a(x + b))}. It was found from the prelimi-
nary experiment that 0.2 ≤ a ≤ 0.3 and 3 ≤ b ≤ 8 in
D(·) were proper for improved ASR performance. In par-
ticular, a = 0.25 and b = 5 provided a good compromise
between spectral distortion and ASR performance. More-
over, η(k; m − 1) in (5) indicates the a priori signal-to-noise
ratio (SNR) of the k-th frequency bin at the (m−1)-th frame,
which is recursively estimated as [15]

η(k; m) = β(m)
P̂S (k; m − 1)
PW (k; m − 1)

+

(1 − β(m))T
[
γ(k; m) − 1

] (6)

where P̂S (k; m − 1) is an estimate of the k-th clean voiced
speech power spectral component at the (m − 1)-th frame.
In (6), γ(k; m) denotes the a posteriori SNR, which is com-
puted by γ(k; m) = PX(k; m)/PW (k; m), where PX(k; m) =
|XV (k; m)|2 is the k-th power spectral component of noisy
voiced speech at the m-th frame. In addition, T [x] is a half-
wave rectifier such that T [x] = x if x ≥ 0, but T [x] = 0
otherwise. The β(m) in (6) is a forgetting factor at the m-th
frame, defined as

β(m) =

√
1 − |EX(m) − EX(m − 1)|

max(EX(m), EX(m − 1))
(7)

where EX(m) is the sum of power spectra at the m-th
frame over all the frequency bins, K, such that EX(m) =∑K−1

k=0 PX(k; m).
Consequently, the transfer function of the Wiener fil-

ter of the k-th frequency bin at the m-th frame, H(k; m), is
estimated as

H(k; m) =
η(k; m)

1 + η(k; m)
. (8)

Then, the k-th spectral component of clean voiced speech,
Ŝ (k; m), can be estimated by Ŝ (k; m) = H(k; m)XV (k; m),
and we obtain an estimate of clean voiced speech, ŝ(n; m),
by applying an inverse discrete cosine transform to Ŝ (k; m).

3.2 Kalman Filtering for Unvoiced Consonants

In order to reduce noise for unvoiced consonants, the pro-
posed method employs an AR model based Kalman fil-
ter [14] as shown in Fig. 3. Let xUV (n; m) be a noisy un-
voiced frame, which is represented in the time and fre-
quency domain as

Fig. 3 Block diagram of the Kalman filtering method for noisy unvoiced
consonants.

xUV (n; m) = sUV (n; m) + w(n; m); (9)

XUV (k; m) = S UV (k; m) +W(k; m) (10)

where sUV (n; m) and w(n; m) are the n-th samples of clean
unvoiced speech and background noise at the m-th frame,
respectively. In (10), XUV (k; m), S UV (k; m), and W(k; m) are
the k-th spectral components of xUV (n; m), sUV (n; m), and
w(n; m), respectively.

The power spectra of clean unvoiced speech and back-
ground noise are estimated as follows. First, the power spec-
trum of background noise, PW (k; m), is estimated by the
weighted sum of a noise power spectrum at the previous
frame, PW (k; m − 1), and a power spectrum of noisy un-
voiced speech at the current frame, PX(k; m) = |XUV (k; m)|2,
by

PW (k; m) = εPW (k; m − 1) + (1 − ε)PX(k; m) (11)

where ε is a forgetting factor for noise spectrum estimation
and is defined as

ε =

⎧⎪⎪⎨⎪⎪⎩1 −
1
m , if m < 100

0.99, otherwise
. (12)

Second, in order to estimate the power spectrum of
clean unvoiced speech, P̂S (k; m), a Wiener filtering formula
is used as

P̂S (k; m) = PX(k; m)
ωη(k; m)

1 + η(k; m)
(13)

where η(k; m) is the a priori SNR defined in (6). In (13),
ω is a weighting factor and it is set to 0.1 in this paper for
reducing noise effect substantially in AR modeling.

Next, PW (k; m) in (11) and P̂S (k; m) in (13) are con-
verted into autocorrelation sequences to extract the AR pa-
rameters. In other words, the autocorrelation sequences of
power spectra, γŜ (τ; m) and γW (τ; m), can be obtained by
using the Wiener-Khintchine theorem [16] as

γŜ (τ,m) =
1
K

K−1∑
k=0

P̂S (k; m)e jkτ; (14)

γW (τ,m) =
1
K

K−1∑
k=0

PW (k; m)e jkτ (15)



2884
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

where τ is time lag for the autocorrelation. Then, the AR
parameters for estimated clean unvoiced speech and noise
signals are indirectly estimated by using Burg’s method [17].
That is,

γŜ (n; m) =
p∑

i=1

ai(m)γŜ (n − i; m) + u1(n; m); (16)

γW (n; m) =
q∑

i=1

bi(m)γW (n − i; m) + u2(n; m) (17)

where ai(m) and bi(m) are the i-th AR parameters for esti-
mated clean unvoiced speech and noise signals, respectively,
at the m-th frame, and p and q are the orders of the AR
models. In this paper, we set p = 8 and q = 8 by tak-
ing into account both computational complexity and model
precision. In addition, u1(n; m) and u2(n; m) are zero-mean
white Gaussian processes.

By using the AR parameters, a Kalman filter is de-
signed for estimated clean unvoiced speech and background
noise. From now on, we omit the subscript UV for sUV for
the sake of simplicity. First, the Kalman process and the
Kalman measurement equations in the state-space domain
for speech enhancement are given as

s̄(n; m) = F̄(m)s̄(n − 1; m) + Ḡū(n; m); (18)

x(n; m) = C̄T s̄(n; m) (19)

where T is the transpose operator, and s̄(n; m) and ū(n; m)
are state vectors constructed as

s̄(n; m) =[
s(n − p + 1; m) · · · s(n − 1; m) s(n; m)
n(n − q + 1; m) · · · n(n − 1; m) n(n; m)

]
;

(20)

ū(n; m) =

[
u1(n; m)
u2(n; m)

]
. (21)

In (18) and (19), F̄(m), Ḡ, and C̄ denote a transition ma-
trix, a system excitation matrix, and a measurement matrix,
respectively. Specifically, the transition matrix, F̄(m), is ob-
tained as

F̄(m) =

[
Fs(m) 0

0 Fn(m)

]
(22)

where

Fs(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

ap(m) ap−1(m) · · · a1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; (23)

Fn(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

bq(m) bq−1(m) · · · b1(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; (24)

and the system excitation matrix, Ḡ is represented by

Ḡ =
[

Gs 0
0 Gn

]
(25)

where

Gs =
[

0 · · · 0 1
]T

p×1
; (26)

Gn =
[

0 · · · 0 1
]T
q×1
. (27)

The measurement matrix, C̄ is given as

C̄ =
[

Cs

Cn

]
(28)

where

Cs =
[

0 · · · 0 1
]T

p×1
; (29)

Cn =
[

0 · · · 0 1
]T
q×1
. (30)

Consequently, the estimate of the unvoiced speech sig-
nal, ŝUV (n; m), can be obtained by Kalman filtering as

ŝUV (n; m) = CT
1

ˆ̄s(n|xn; m) (31)

where C1 =
[

CT
s 0 · · · 0

]T
(p+q)×1

, and ˆ̄s(n|xn; m) is an

estimate of s̄(n; m) given the noisy speech vectors from the
first to the n-th frame, xn. Note that the detailed explanation
of (31) is described in the literature [18].

4. Performance Evaluation

In order to evaluate the performance of the proposed noise
reduction method, we applied the proposed method as a pre-
processing step of an ASR system. First of all, we trained
an ASR system using isolated words of 18,240 utterances of
the Korean speech corpus [19]. The acoustic models were
based on triphones, where a three-state left-to-right hidden
Markov model (HMM) with four Gaussian mixtures was
used for each state. For the language model, the lexicon
size was 100 words, and a finite state network grammar was
employed. As a test database, we used 100 utterances of
Korean command words for device control [20]. Each com-
mand word was spoken by 31 dysarthric speakers in mild
and moderate dysarthric groups, containing 18 and 13 par-
ticipants, respectively. In this paper, the degree of dysarthria
was determined according to the percentage of consonants
correct (PCC) index [21] as shown in Table 1. In particu-
lar, we chose two degree of dysarthria classification such
as mild and moderate. Note here that the acoustic models
were trained with non-dysarthric clean speech utterances,
while they were tested with noisy dysarthric speech utter-
ances obtained by artificially adding a babble noise and an
office noise with SNRs of 10 and 15 dB.

Table 2 compares the average word error rates (WERs)
of a baseline ASR system and three ASR systems employing
a conventional Wiener filter [7], the CV-dependent Wiener
filter [11], and the proposed noise reduction method. As
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Table 1 Classification of dysarthric speakers in a testing database ac-
cording to the percentage of consonants correct (PCC) index.

2 Class Mild Moderate

4 Class Mild
Mild-to- Moderate-to-

Severe
Moderate Severe

PCC (%) 85˜100 65˜84.9 50˜64.9 ˜49.9

Male 9 5 4 0
Female 9 4 0 0
Total 18 9 4 0

Table 2 Comparison of average WERs (%) between a baseline ASR
system and ASR systems using the conventional Wiener filter, the CV-
dependent Wiener filter, and the proposed noise reduction method, where
the numbers in parenthesis are WER reductions (%) relative to the baseline
ASR system.

Noise Reduciton Method
Noise Dergee of

Type Dysarthria
Baseline

Conventional CV-Dependent Proposed
Wiener Filter Wiener Filter Method

Babble

Mild 62.39
48.06 40.33 38.23

(22.97) (35.36) (38.72)

Moderate 87.93
82.24 77.85 75.58
(6.47) (11.46) (14.05)

Avg. 73.10
62.39 56.06 53.89

(14.65) (23.31) (26.28)

Office

Mild 60.08
40.08 34.03 30.42

(33.29) (43.36) (49.37)

Moderate 85.08
80.08 76.85 75.08
(5.88) (9.67) (11.75)

Avg. 70.56
56.85 51.98 49.15

(19.43) (26.33) (30.34)

Avg.

Mild 61.24
44.07 37.18 34.33

(28.04) (39.29) (43.94)

Moderate 86.51
81.16 77.35 75.33
(6.18) (10.59) (12.92)

Avg. 71.84
59.62 54.02 51.52

(17.01) (24.81) (28.29)

shown in the table, an ASR system using the proposed
noise reduction method provided the lowest WERs for both
dysarthric groups. In particular, the conventional Wiener
filter and the CV-dependent Wiener filter achieved relative
WER reductions of 17.01% and 24.81%, respectively, com-
pared to the baseline ASR system. By applying the pro-
posed method, we could further reduce average WER, re-
sulting in a relative WER reduction of 28.29% compared to
the baseline ASR system. However, it seemed to be that the
proposed method was less effective for moderate dysarthric
speech than mild dysarthric speech. This was because un-
voiced consonant segments were likely to be classified as
voiced segments in case of moderate dysarthric speech due
to less accurate consonant articulation.

Figure 4 compares the spectrogram of clean dysarthric
speech with those of estimated clean dysarthric speeches by
the CV-dependent Wiener filter and by the proposed noise
reduction method. Note that the speeches were uttered by a
male speaker who was classified as the mild dysarthric class

Fig. 4 Spectrograms of (a) clean dysarthric speech, (b) noisy dysarthric
speech under a babble noise condition of 15 dB SNR, (c) estimated clean
dysarthric speech by the CV-dependent Wiener filter, and (d) that by the
proposed noise reduction method.

Fig. 5 Comparison of spectral distortions between clean dysarthric
speech and noisy speech as well as estimated clean dysarthric speeches by
the CV-dependent Wiener filter and the proposed noise reduction method.

and noisy speech was obtained by artificially adding a bab-
ble noise of 15 dB SNR as mentioned previously. In addi-
tion, the segments marked by the vertical bars represented
the unvoiced consonant segments.

Finally, Fig. 5 compares the spectral distortions [22]
between clean dysarthric speech, as shown in Fig. 4 (a), and
estimated clean dysarthric speeches by the CV-dependent
Wiener filter, as shown in Fig. 4 (c), and that by the pro-
posed noise reduction method, as shown in Fig. 4 (d). As
a reference, we also compared the spectral distortion be-
tween the clean and noisy speeches. Note that the seg-
ments marked by the vertical bars were identical to those
shown in Fig. 4. It was clearly shown from Fig. 4 that for
those unvoiced consonant segments, the proposed noise re-
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duction method provided lower spectral distortion than the
CV-dependent Wiener filter. Consequently, it could be con-
cluded from Figs. 4 and 5 that the proposed noise reduction
method outperformed the CV-dependent Wiener filter, espe-
cially on the unvoiced consonant segments.

5. Conclusion

In this paper, we proposed a phoneme class dependent noise
reduction method to improve the performance of dysarthric
speech recognition in noisy environments. To this end, the
proposed method classified each speech frame to either a
voiced or an unvoiced frame by using the pitch strength clus-
tering method. After that, a voiced frame is further separated
to a voiced consonant or a vowel. Then, we applied a Wiener
filter to the voiced frames by estimating the transfer function
according to the voiced consonant and vowel classification.
Otherwise, we applied an AR model based Kalman filter to
the unvoiced consonants. We carried out the performance
evaluation of the proposed noise reduction method under
simulated babble and office noise conditions for mild and
moderate dysarthric speaker groups. As a result, an ASR
system with the proposed noise reduction method achieved
relative WER reductions of 43.94% and 12.92% for the mild
and moderate groups, respectively, compared to a baseline
ASR system. However, as mentioned in Sect. 4, it was
shown that the proposed method was less effective for mod-
erate dysarthric speech than mild dysarthric speech due to
inaccurate consonant articulation. Thus, we are going on
extending the proposed method to improve a consonant clas-
sification accuracy of moderate dysarthric speech as a future
work.
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