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Dynamic Macro-Based Heuristic Planning through Action
Relationship Analysis
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SUMMARY The success of heuristic search in AI planning largely de-
pends on the design of the heuristic. On the other hand, previous experience
contains potential domain information that can assist the planning process.
In this context, we have studied dynamic macro-based heuristic planning
through action relationship analysis. We present an approach for analyz-
ing the action relationship and design an algorithm that learns macros in
solved cases. We then propose a dynamic macro-based heuristic that ap-
propriately reuses the macros rather than immediately assigning them to
domains. The above ideas are incorporated into a working planning system
called Dynamic Macro-based Fast Forward planner. Finally, we evaluate
our method in a series of experiments. Our method effectively optimizes
planning since it reduces the result length by an average of 10% relative to
the FF, in a time-economic manner. The efficiency is especially improved
when invoking an action consumes time.
key words: AI planning, heuristic planning, macro, action relationship,
dynamic heuristic

1. Introduction

Searches in automated planning can be guided by extract-
ing heuristics from declarative problem representations [1].
This approach has been commonly and successfully applied
to classical domain-independent planning [2], [3]. In the
idealized h+ heuristic [4], the heuristic estimate for state s
is the cost of an optimal s-plan in corresponding relaxed
tasks, which is an admissible heuristic but NP-hard to com-
pute [5], [6]. The Fast-Forward (abbreviated as FF) planning
system [7] introduces the heuristic hFF , which accounts for
positive interactions between facts, and which achieved suc-
cess at the AIPS-2000 planning competition. Many cur-
rent heuristic functions seek an approximation to the opti-
mal relaxation heuristic h+. Several recent landmark-related
heuristics [3], [8]–[11] have proved to be superior to additive
hmax heuristics [3], [12].

In AI planning, successful heuristic searching requires
appropriate design of the heuristic h. However, since plan-
ners must obtain an estimate for every node in the search
process, computing the heuristic is time intensive. The to-
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tal planning time rapidly increases with problem size be-
cause the number of expanded states in the planning prob-
lem grows exponentially [13]. Although most planners fo-
cus on domain-independent planning, each planning prob-
lem derives from a particular domain. If domain knowledge
is lacking, the heuristic function may be misleading and in-
adequate. To overcome this problem and improve planner
performance, researchers have developed techniques that
extract domain knowledge from the problem itself or from
solved plans.

Macro operator (macro for short), a sequence of orig-
inal operators can be added as a single unit to a domain,
is a form of domain knowledge [14] and the use of macros
has been widely explored. Usually, macros are abstracted
from solved plans based on frequency, furthermore, Macro-
FF [15] learned macros through building abstract compo-
nents, and Adrien [16] presented a method to obtain useful
macros by statistical and heuristic filtering of a domain spe-
cific macro library. In fact, approaches based on operator
relationship analysis [8], [17]–[19] can mine a deeper level
of domain-dependent control knowledge. The landmark is
based on analyzing literals and abstracting information on
particular domains, but without knowing the dependence re-
lationships among the actions. Chrpa [18], [19] investigated
action dependency by analyzing its negative and positive ef-
fects and generated macros based on that. It was proved
that swapping a pair of adjacent and independent actions
still preserved the validity, and the new action sequence π′
still can solve the original planning problem. The authors
then extended their theory to planning optimization [19] but
did not provide a generalized formulation.

After generated, macros should be used to speed up the
future problems. The use of macros can be thought of as
extending the neighborhood of a series of successors visible
from each state to selectively introduce states which hitherto
would only have been visible after the application of several
steps [20]. Directly adding macros to the domain as input
of planners is an efficient method to enhance the domain,
and can be handled by any classic planner without modifi-
cation. However, if the additional macros are chosen poorly,
the performance of the planner will decrease due to the in-
creased branching factor.

With analyzing the relationship between actions and
generating macros, we developed a dynamic heuristic based
on macros. The four contributions of our paper are detailed
below.
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First, we study and extend an approach that investigates
relationships among actions, which is the basic theory for
generating macros. Learning macros based on action rela-
tionship can dig deep information from previous experience.

Second, we propose an algorithm that generates macros
from solved cases. This algorithm imposes a length thresh-
old and frequency restriction to exclude unwanted results
from the domain.

The next key contribution is that we establish a dy-
namic heuristic that reuses the generated macros, and inte-
grate the heuristic and the above developments into a work-
ing planning system called the Dynamic Macro-based FF
(abbreviated as DM-FF) system.

Finally, our proposed approach was subjected to exten-
sive experimental evaluation. We demonstrated the practi-
cal ability of our method; in particular, its ability to opti-
mize planning by reducing the length of the result in a time-
economic manner.

The remainder of the paper is structured as follows.
Section 2 provides essential background information. The
first main part of our approach—deciding how to analyze the
solved case and proposing the algorithm to generate macros
based on the analysis—is presented in Sect. 3. Section 4
presents the dynamic macro-based heuristic and extends our
idea to a state-of-the-art planner. Our method is experimen-
tally evaluated in Sect. 5. The performance of our proposal,
DM-FF, is compared with that of FF. Conclusions and ideas
for future research are presented in Sect. 6.

2. Preliminaries

Generally, the aim of automated planning is to find a se-
quence of actions that transforms the initial state of the en-
vironment into a different state where the goals are met.

Definition 1 A planning task is a 4-tuple Π = 〈V,O, I,
G〉, where

• V is a finite set of propositional state variables, in
which each state is a set of facts that are true at the
current instant;
• O is a finite set of operators; and
• I and G, with I,G ⊆ V , denote the initial and final

states, respectively. The final state is the target state of
the process.

In classical planning, an operator op ∈ O is a triple
op(x1, . . . , xm) = (pre(o), add(o), del(o)), where x1, . . . , xm

are all of the variable symbols that appear somewhere in op,
pre(o), add(o) and del(o) are preconditions and effects of
op.

During execution, operators should be substituted with
ground actions, each of which is an instantiation with pos-
sible constants and is expressed as op(c1, . . . , cm) without
changing the name, where ci belongs to the set of object
constants C.

Correspondingly, an action a, which is any ground in-
stance of operator op, is a triple with the set of elements
(pre(a), add(a), del(a)). And pre(a) is the set of predictions

representing the conditions required for action a. add(a) and
del(a) are the sets of facts that become true and false, respec-
tively, after action a is executed. pre(a) ⊆ s indicates that
action a can be executed in state s. Following the execution,
denoted by a(s), the new state s′ = (s − del(a)) ∪ add(a).

Definition 2 Given a planning task Π = 〈V,O, I,G〉, an
ordered sequence of actions π = 〈a1, . . . , an〉 is a plan for
solving problem Π if and only if consecutive applications
of π = 〈a1, . . . , an〉 from the initial state leads to a state in
which all goals are satisfied, i.e., G ⊆ an(an−1, . . . , a1(I)).

3. Macro Learning through Analyzing Action Rela-
tionship

3.1 Action Relationship Analysis

Our planning algorithm analyzes the reusability of a cer-
tain fragment of action sequence, called as macros, from
the solved planning cases. In this section, we introduce an
approach for analyzing the action dependency relationship
in solved cases, and extend it to more general situations and
describe a sufficient condition for qualification as a macro.

The plan π = 〈a1, . . . , an〉 always implies dependent
and independent relationships between actions; that is, a
precondition of an action at is rendered true only by exe-
cuting a previous action at−k such that t, k ∈ N, 1 < t ≤ n,
0 < k < t. In this situation, at depends on at−k, and their
positions in the plan cannot be exchanged. The dependence
relation is formally defined as follows.

Definition 3 Let 〈a1, . . . , an〉 be an ordered sequence
of actions. Action a j is straightly dependent on action ai

(denoted as ai → a j) if and only if 0 < i < j ≤ n, (add(ai) ∩
pre(aj)) � ∅, and (add(ai) ∩ pre(a j)) � (∪ j−1

t=i+1add(at)).

Let E(ai, a j) = (add(ai)∩pre(a j))\∪ j−1
t=i+1add(at). From

Definition 3, it is clear that E(ai, a j) � ∅ if and only if ai →
a j. a j is straightly dependent on action ai; that is, ai is the
last action that makes E(ai, a j) nonempty. Without loss of
generality, action a j is defined as dependent on the effect
of action ai (denoted as ai →∗ a j) if and only if ai → a j

or a sequence of integers k1, . . . , kl (l ≥ 1) exists such that
ai → ak1 , ak1 → ak2 , . . . , akl → a j. Obviously, the dependent
relationship is transitive. The negation of this relation is
given by ai →∗/ a j.

For a more general description of the dependent rela-
tionship, we introduce two special actions, a0 = (∅,∅, I)
and an+1 = (G,∅,∅).

Definition 4 Let 〈a1, . . . , an〉 be an ordered sequence
of actions. Actions ai and a j (i < j) are independent of the
effects (denoted as ai↔/ a j) if and only if ai →∗/ a j, pre(ai)∩
del(aj) = ∅ and add(a j) ∩ del(ai) = ∅.

Proposition 1 Let π = 〈a1, . . . , ai−1, ai, ai+1, ai+2, . . . ,
an〉 be a plan in the planning problem Π and ai↔/ ai+1. Then
plan π′ = 〈a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an〉 also solves
planning problem Π.

This proposition, proven in literature [18], states that if
two actions are adjacent and independent of the effects, their
positions in the plan can be swapped, and the new sequence
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of actions will solve the original planning problem.
To distinguish the primitive action in the domain from

the assembly of actions, we presented the detailed definition
of the atomic action and macro as follows.

Definition 5 An atomic action is an action a that is
directly grounded from an original operator in O. Clearly,
an atomic action cannot be decomposed.

Definition 6 A macro is composed of several atomic
actions, and in some state, the predictions and effects of the
macro are identical to those of its constituents. Formally, a
macro is an assembly of actions ai1 , ai2 , . . . , aim , denoted as
ai1,i2,...,im where

• pre(ai1,i2 ) = (pre(ai1 ) ∪ pre(ai2 ))\add(ai1 ), . . . ,
pre(ai1,i2,...,im ) = (pre(ai1,i2,...,im−1 ) ∪ pre(aim ))\
add(ai1,i2,...,im−1 ),
• del(ai1,i2 ) = (del(ai1 ) ∪ del(ai2 ))\add(ai2 ), . . . ,

del(ai1,i2,...,im ) = (del(ai1,i2,...,im−1 ) ∪ del(aim ))\add(aim ),
• add(ai1,i2 ) = (add(ai1 ) ∪ add(ai2 ))\del(ai2 ), . . . ,

add(ai1,i2,...,im ) = (add(ai1,i2,...,im−1 ) ∪ add(aim ))\del(aim ).

From Definition 4, it is clear that (1) each subsequence
of ai1 , ai2 , . . . , aim can also be assembled as a macro and (2) if
a j1, j2,..., jk is another macro in the same planning problem and
im = j1, then ai1,i2,...,im, j2,..., jk also be composed as a macro.

The next proposition states the conditions for creating
a macro with m = 2.

Proposition 2 Let π = 〈a1, . . . , an〉 be a plan that solves
planning problem Π and i < j be indexes of actions in π.
Assume that the following conditions hold:

• for every k such that i < k < j, ai ↔/ ak ∨ ak ↔/ a j;
• for every k and x such that i < k < x < j, ¬(ai ↔/ ak) ∧

ai ↔/ ax implies ak ↔/ ax;
• for every l and x such that i < x < l < j, ¬(al ↔/ a j) ∧

ax ↔/ a j implies ax ↔/ al.

Then there exists a plan π′ = 〈a1, . . . , ai, j, . . . , an〉 that
also solves planning problem Π.

Proof: Clearly, when actions ai and a j are adjacent,
they can be assembled into ai, j without losing the validity of
the plan. If the actions are not adjacent then we can move
the actions immediately preceding ai or following a j until
ai and a j become adjacent. The intermediate actions are
shifted by repeating the following steps:

1. Let ax be the action immediately following ai in the
current plan, such that ai ↔/ ax. By Proposition 1, we can
swap ai and ax.

2. Let ay be the action immediately preceding a j in the
current plan, such that ay ↔/ a j. By Proposition 1, we can
swap ay and a j.

3. Let ak be the action between ai and a j with the
largest index k in the current plan, such that ¬(ai↔/ ak). This
action can be moved until it follows aj by repeated applica-
tion of Proposition 1 (specifically, action ak can be swapped
with its immediately succeeding action until it follows aj).

4. Let al be the action between ai and a j with the small-
est index l in the current plan, such that ¬(al ↔/ a j). This
action can be moved until it precedes ai by repeated appli-

cation of Proposition 1.
Without loss of generality, the actions in Proposition 2

can also be composed as a macro. The following proposition
extends the above conditions to more general cases with m ≥
2.

Proposition 3 Let π = 〈a1, . . . , an〉 be a plan that solves
planning problem Π and let Ai1,...,im = 〈ai1 , . . . , aim〉 be a sub-
sequence of π. If actions aik and aik+1 satisfy the assump-
tion of Proposition 2 for each 1 ≤ k < m, then a plan
π′ = 〈a1, . . . , ai1,...,im , . . . , an〉 exists that also solves planning
problem Π.

Proof: Without loss of generality, we assume that
i1 < i2 < . . . < im. By Proposition 2, ai1 , . . . , aim can be
assembled by repeatedly processing the steps in Proposition
2 with action pairs.

3.2 Generating Macros from Solved Cases

In Sect. 3.1, we defined the dependency relationship and
macro, and introduced the conditions for generating a
macro. This section describes search algorithms for learning
the macros in solved cases.

Definition 4 states that we should first compute the di-
rectly dependent relationship →. The directly dependent
relationships among all actions in plan π are incorporated
in a matrix RD. RD(i, j) = 1 if and only if ai → a j, oth-
erwise RD(i, j) = 0. For each predicate p, d(p) refers to
the last action that makes the predicate true. Obviously, if
i ∈ {d(p)|p ∈ pre(aj)}, then ai → a j and RD(i, j) = 1. RD is
computed by Algorithm 1.

The loop (step 3) starts at the second index because
a1 is true in the initial state I, and a1 is not dependent on
any other action. Step 7 ensures that d(p) refers to the final
action that created it.

The matrixes RS and RI are separately used to indicate
the relationship of →∗ and ↔/ : RS (i, j) = 1 if and only if
ai →∗ a j, otherwise RS (i, j) = 0, and RI(i, j) = 1 if and only
if ai ↔/ a j, otherwise RI(i, j) = 0. As the transitive closure,
RS is computed by the Warshall algorithm [21] as shown in
Algorithm 2.

We can now identify pairs of actions that can be assem-
bled according to Proposition 2, which provides the condi-
tions and steps for assembling two actions. We also define a
matrix RA that holds the relationships of actions that can be
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assembled: RA(i, j) = 1 if and only if ai and a j can form a
macro action ai, j, otherwise RA(i, j) = 0. The matrix RA can
be calculated in polynomial time. Note that two adjacent
actions can always be assembled (Proposition 2). The next
step searches for all macros in the successful plans.

Let G = 〈V, E〉 be a directed acyclic graph, where each
node in V corresponds to an action in plan π and (vi, v j) ∈
E if and only if ai and a j can be assembled as a macro.
Then RA is the adjacency matrix of graph G and learning all
macros is equivalent to searching for all sub-graphs in G.
The following Algorithm 3 returns the set of macros P.

In each iteration, there will be one element of set M
being tested and then deleted until M becomes empty. In
line 5, when M = ∅ does not hold, the process continues

and jumps into the next iteration, and eventually, the set M
will be emptied and the program will end with the returning
P.

Note 1 When implementing the algorithm 3, the fol-
lowing points should be noted:

1. Every subsequence from elements of P whose length
exceeds 1 is also a macro (by Definition 6). However, large-
grained macros are unlikely to be reused and will reduce
the efficiency of the planning algorithm if added to the do-
main. To improve Algorithm 3, we impose a length thresh-
old on the assembled sequences, and filter out macros that
are longer than the threshold l∗.

Appropriately choosing the threshold usually bases on
the feedback of experiments [22]. If the consumption of ex-
tracting macros is close to or even exceed that of the plan-
ning process, the value of l∗ should stop growing. We illus-
trate this principle through experiments in Sect. 5.

2. The improved search algorithm will exclude long
subsequences, but will find many assembled sequences that
occur occasionally and are unlikely to repeat in future prob-
lems. Therefore, we impose a frequency constraint by which
successful candidates will eventually join the domain. For-
mally, the support rate of macro ai1,i2,...,im in the training set,
denoted as S (ai1,i2,...,im ), should follow

S (ai1,i2,...,im ) =
M
N
≥ s∗,

where M refers to the number of plans that contain
ai1 , . . . , aim in the training set, N represents the size of the
training set, and s∗ is the lower support threshold.

4. Dynamic Macro-Based Heuristic Planning

Heuristic search algorithms perform a forward search from
an initial state to a goal state using a heuristic function that
estimates the distance to the goal [4]. Given a planning task
Π = 〈V,O, I,G〉, for each state s reached in a forward search,
The Heuristic Search Planner (abbreviated as HSP) roughly
estimates the solution length of the corresponding relaxed
task Π′ = 〈V,O′, I,G〉 by computing the following weight
values

gs( f )=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if f ∈ s,
i if [mino∈O, f∈add(o) Σp∈pre(o)gs(p)]= i − 1,
∞ otherwise.

HSP assumes that facts are independently acquired.
The weight of a set of facts F is computed by the additive
heuristic as follows

h(s) =
∑

f∈F
gs( f ).

Heuristic planning based on macros can be naturally
improved by directly adding the appropriate macros to the
domain. Any planner can handle the enhanced domain
without any change. In this method, a macro carries the
same weight as an atomic action (i.e., 1). However, since a
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Table 1 Settings and results of various training dataset.

Table 2 Macros that present in every plan.

macro executes in more than one time step, equally weight-
ing macros and atomic actions will likely generate a non-
optimal plan. As an example, consider the following short
planning task. The initial state is empty, the goals are
{G1,G2}, and four actions are implemented:

op1 = (∅,G1,∅),

op2 = (∅,G2,∅),

op3 = (∅,G2,G1),

op1,3 = (∅,G2,∅).

op1,3 is a macro assembled by actions of op1 and
op3. If op1,3 is weighted as 1, then macros (op1, op2) and
(op1, op1,3) are both weighted as 2. Therefore, the planner
selects both action sequences as optimal solutions. This ex-
ample highlights the need to adjust the weights of macros.

Definition 7 The dynamic weight of an action a is de-
fined as

w(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if a is an atomic action,

α ∗ len − 1 +
1

logM( f req + 1)
if a is a macro.

Here, len is the length of the macro operator, M is the
number of occurrences of a in the training set (as previously
mentioned), and f req is the frequency with which action a
is selected as part of the solution. The parameter α is the
adjustment parameter, which satisfies α ∈ [2/len, 1]. When
α is small, the computing method allocates higher priority
to macros. f req is initialized as f req := M. For each suc-
cessful selection of action a, f req is incremented by 1. Ob-
viously, the weight of a macro a is less than len, and ap-
proaches len − 1 if continually selected as part of the solu-
tion.

The dynamic weight enables timely and effective se-
lection of macros. Accordingly, the measure to estimate the
dynamic difficulty involved in achieving from s is computed
as following:

gd
s ( f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if f ∈ s,
mino∈O, f∈add(o)(w(o) + Σp∈pre(o)gd

s (p))
if ∃o ∈ O, f ∈ add(o),

∞ otherwise.

Fig. 1 Average execution time of varying length restriction.

Fig. 2 Average number of valid result with varying frequency restriction.

The dynamic additive heuristic, based on generated
macros, is then defined as

hd(s) =
∑

f∈F
gd

s ( f ).
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Fig. 3 Plan length comparison between proposed DM-FF and FF.

The above dynamic heuristic is also applicable to other
heuristic-based planners. The FF planning system [7] is a
state-of-the-art planner that can handle classical STRIPS
planning problems. FF adopts a relaxed GRAPHLAN that
estimates the number of time steps in the search and con-
siders the positive effects among facts. As a case study, we
indicate the growth of the time steps in FF by setting w(a)
instead of 1. The following section evaluates our improved
FF system, DM-FF, in a series of experiments.

5. Performance Evaluation

We improved the macros generating algorithm according
Note 1, called Learning Macros with Length and Frequency
Restrictions (LMLF). The experimental training and test
sets for each domain were generated by random genera-
tors supplied by the IPC2002 in the STRIPS version. The
subjects were four representative domains: Depots, Zeno-
Travel, Satellite and Rovers. In the Depots domain, trucks
transport crates around depots and distributors, and crates
must be stacked onto pallets or atop other crates at their
destination. In the ZenoTravel domain, aircraft transports
travelers to their destination while monitoring fuel level. In
the Satellite domain, one or more satellites conduct obser-
vations, collect data, and downlink the data to a ground sta-
tion. In the Rovers domain, planning is implemented for
several rovers equipped with different, but possibly overlap-

ping, sets of equipment for traversing planet surfaces.
The first two experiments evaluated the effects of the

thresholds l∗ and s∗ on the efficiency of the generating al-
gorithm. The primary purpose of the Depots domain was
to test STRIPS planners. In this domain, we generated 4
training datasets of varying difficulty, each consisting of 20
planning problems, and solved the planning problems using
FF. The parameters of the random generators and the plan-
ning results are listed in Table 1.

This first experiment was mainly designed to reveal
how the restriction l∗ influences the execution time. How-
ever, according to the algorithms, it’s clear that the plan
length is a great factor and directly affects the performance.
On the other hand, the plan length represents the complex-
ity of the original planning problem. So we set up 4 training
datasets with different complexities as shown in Table 1 and
let the No. of the 4 datasets be the horizontal axis in Fig. 1.

Figure 1 shows the average time of searching for
macros among the above planning results, varying the length
restriction l∗. The total execution time, including the time
required to generate the relationship matrices and search for
the macros that meet the restrictions, was recorded and is
displayed in this figure.

Execution time is influenced by plan length and gener-
ation of the relationship matrix. The latter consumes a large
proportion of the total search time, especially in complex
planning problems. As shown in Fig. 1, the search process
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Fig. 4 Time comparison between different methods.

is more time-intensive under more relaxed conditions. In
this experiment, when l∗ ≥ 4, the time of analyzing the re-
sults exceeds that of the planning process. Thus l∗ = 4 is the
maximum acceptable value of this threshold in this domain.

In another training dataset, we assess the effects of the
threshold s∗ on the number of valid results. The results for
l∗ = 4 are shown in Fig. 2. Clearly, the number of valid
macros decreases as s∗ increases.

From Fig. 2, we observe that in the Depots domain,
even with s∗ set to 1, seven macros are present in every plan.
These macros are listed in Table 2.

In Table 2, the “frequency” of a macro refers to the
number of plans containing the specified action in the train-
ing set, while “total frequency” monitors every appearance
of this action. Note that a macro cannot be recognized solely
by the action names contained within it. For example, in this
experiment, the following macros both comprise “Lift” and
“Load” actions, but they are clearly different because their
preconditions and effects differ.

1. Lift[Para1, Para2, Para3, Para4]-Load[Para1,
Para2, Para5, Para4]

2. Lift[Para1, Para2, Para3, Para4]-Load[Para5,
Para6, Para7, Para8]

Finally, we added macros leading to s∗ = 1 into cor-
responding domains and solved the problems respectively
with FF and the proposed DM-FF. The quality of planning

results, which means length of plan here, and the perfor-
mance of our DM-FF comparing to FF were the examin-
ing objects of this experiment. For better illustration, the
datasets were set much more complicated than the previous
training datasets and each of them contained 50 planning
problems. We considered the final weight of each macro ac-
tion under the dynamic weighting scheme employed by the
DM-FF planner as its contribution to the plan length.

The lengths of the planning results when problems in
each domain are separately solved by FF and DM-FF are
shown in Fig. 3. The horizontal axe indicates the number of
each problem in the certain domain. In the four domains, a
shorter plan can usually be found when using the proposed
DM-FF, which suggests that the proposed dynamic heuris-
tic is a practical method to optimize the planning. In fact,
closer inspection of the detailed statistics reveals that DM-
FF shortens the planning result by an average of 10.0% rel-
ative to FF. On the other hand, CPU computing time of each
method was noted and compared in Fig. 4.

In addition to the original FF and proposed DM-FF, FF
with enhanced domain, which means directly adding macros
into the domain and keep the original FF planner, also has
been compared in this experiment. Adding macros into do-
main will increase the solution space, and as shown in Fig. 4,
sometimes FF with enhanced domain costs more computing
time than the original FF. The proposed DM-FF, with im-
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proved dynamic heuristic, can get better performance than
FF with enhanced domain. In fact, the results indicates that
DM-FF is likely to improve the searching process and find
a shorter plan in less time than the FF if the heuristic guides
the planner to suitable macros.

6. Conclusions and Future Research

We have presented an approach for analyzing the action re-
lationships in planning problems, from which we designed
algorithms that search for available macros. To better ex-
ploit the potential domain information, we proposed a dy-
namic macro-based heuristic for guiding the planner to-
ward more reasonable moves. As demonstrated by exper-
iments, under appropriate restrictions, DM-FF can improve
the searching process and find the plan in shorter time than
the FF if the heuristic guides the planner to suitable macros.
This feature improves the efficiency of the method, espe-
cially in situations where invoking an action is time con-
suming.

Macros can reduce the depth of the planning algo-
rithm’s search tree, but unavoidably, they enlarge the search
tree’s branching factor at the same time, which will decrease
the benefits. If the original operators are too much and there
is few intrinsic correlation between them, the inclusion of
macros may damage the time and quality performance of
the original action model. We have designed the dynamic
heuristic to avoid this dilemma, but we still believe that there
will more techniques can help to overcome the limitation in
the future.

In addition, we hope to extend our idea to other fields,
such as numeric domains and conformant planning prob-
lems. Potential action relationship may reasonably be con-
sidered to exist in all categories of planning tasks. We will
also use the method to analyze dependency and other com-
mon relationships, with a view to improving the planning
results.
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