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Predicting Vectorization Profitability Using Binary Classification
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Kazuaki J. MURAKAMI††, Member, Hadrien CLARKE††, Masaki ARAI††††, Tadashi NAKAHIRA††††,

and Eiji YAMANAKA†††††, Nonmembers

SUMMARY Basic block vectorization consists in realizing instruction-
level parallelism inside basic blocks in order to generate SIMD instructions
and thus speedup data processing. It is however problematic, because the
vectorized program may actually be slower than the original one. There-
fore, it would be useful to predict beforehand whether or not vectorization
will actually produce any speedup. This paper proposes to do so by ex-
pressing vectorization profitability as a classification problem, and by pre-
dicting it using a machine learning technique called support vector machine
(SVM). It considers three compilers (icc, gcc and llvm), and a benchmark
suite made of 151 loops, unrolled with factors ranging from 1 to 20. The
paper further proposes a technique that combines the results of two SVMs
to reach 99% of accuracy for all three compilers. Moreover, by correctly
predicting unprofitable vectorizations, the technique presented in this paper
provides speedups of up to 2.16 times, 2.47 times and 3.83 times for icc,
gcc and LLVM, respectively (9%, 18% and 56% on average). It also lowers
to less than 1% the probability of the compiler generating a slower program
with vectorization turned on (from more than 25% for the compilers alone).
key words: machine learning, support vector machine, automatic vector-
ization, software characteristics

1. Introduction

Single Instruction Multiple Data (SIMD) is an effective
paradigm which can dramatically raise the peak perfor-
mance of processors as well as their power efficiency. This
is particularly important in high performance computing
and embedded systems, in which higher performance is re-
quired inside a constant power envelop. However, it is also
a double-edged technique and in some cases it is preferable
to rather use traditional scalar instructions for performance
reasons. This happens because SIMD instructions in mod-
ern processors often involve some overheads like data pack-
ing and unpacking or very slow access to unaligned data
in memory subsystems. Users often rely on the compiler
in order to automatically generate SIMD instructions. We
call this process automatic vectorization and the compilers
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that perform this type of optimization are called vectoriz-
ing compilers. Such compilers use heuristics in the middle-
end and the back-end in order to create vector instructions
from scalar programs. In the case where the so-vectorized
program would be actually slower, that is, if vectorization
would not be profitable, the compiler should discard vec-
tors and output the original scalar program. This last step is
important; yet, modern compilers are not effective at doing
so: according to our results detailed in Sect. 4.3, the vector-
ized program generated by Intel Compiler (icc), the GNU
C Compiler (gcc) and LLVM is slower than the scalar one
for 56%, 76% and 78% of our benchmark (26%, 26% and
75% if we consider a 5% margin, as explained in Sect. 5.3).
In other words, compilers often fail to detect the situations
where vectorization is not profitable. The reason is that the
complexity of both compilers and architectures has reached
a point at which it is very difficult to predict their behavior
and to develop reliable optimization heuristics.

In this paper, we decide to acknowledge this situation
and we regard the compiler and the target processor as a
single black box. We merely consider its inputs and out-
puts, and try to determine if we could guess some proper-
ties from them. This corresponds to the problem of pattern
recognition, very common on various domains like image
recognition. As detailed by Chirsotpher M. Bisoph [11], the
common way to solve such problem is to use machine learn-
ing: this has motivated our work.

This paper is organized as follows. First, we introduce
the related work in Sect. 2 before explaining how we lever-
age machine learning in Sect. 3. Next, we explain our ex-
perimental setup and propose several experiments to predict
vectorization profitability with high accuracy in Sects. 4 and
5. Then we assess in Sect. 6.1 the potential of our method
for speeding up the programs generated by the compilers.
We conclude by discussing the limitations of our method,
and how it could be applied to real-world situations.

2. Related Work

Using machine learning to improve compilers is no break-
through, and the literature already contains several works
that apply support vector machine (SVM) [2], [13], near-
est neighbor (NN) [12], [13], artificial neural networks
(ANN) [1], [3], and logistic regression [9]. They however
make different types of predictions: Stephenson et al [13],
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Park et al. [2] and Agakov et al. [12] determine parameters
of code optimizations; Kulkarni et al. [1] order optimization
passes in the middle end; Pekhimenko et al. [9] use machine
learning to focus search algorithms.

The work from Stephenson et al. [13] uses multiclass
classification† to determine for each program the unroll
factor that yields the best performance. Their bench-
mark consists of 2500 loops extracted from several well-
known benchmarks targeted at high-performance comput-
ing as well as embedded computing. They leverage both
SVM and NN, and manage to correctly predict the best un-
roll factor with an accuracy of 65% and 62%, respectively.
This proves to be far better than their baseline, Open Re-
search Compiler††. Our work is however orthogonal to this
work for several reasons. First, we consider a very different
prediction target: Stephenson et al. predict the unroll factor,
and we predict the vectorization profitability. Second, our
benchmark programs are different. Third, the set of soft-
ware characteristics we consider is very different from theirs
(their set is similar to the one of Fursin et al. [6], evaluated
under the label Milepost in Sect. 5.5).

Kulkarni et al. [1] use machine learning to tackle the
complex problem of the ordering of optimization tech-
niques. They model an optimization scenario using a
Markov process; then they construct optimization scenarios
iteratively, one optimization technique at a time, using ANN
at each step. They apply their method to the just-in-time
compiler of a Java virtual machine, and achieve to reduce
the execution time of compiled programs by up to 20%.

Our work, as well as all the previously detailed ones,
endeavors to improve the quality of the output of the com-
piler by reducing the execution time of the compiled pro-
grams. From this point of view, the works from Agakov
et al. [12] and Pekhimenko et al. [9] are original. They uti-
lize machine learning in order to reduce the compilation
time, that is, the execution time of the compiler itself. The
objective of Agakov et al. is to reduce the time required to
find the best optimization sequence to apply to a given pro-
gram. They adopt a technique based on NN to bias an exist-
ing search algorithm (random or genetic) and they manage
to reduce the search time by one order of magnitude. On the
other hand, Pekhimenko et al. [9] use logistic regression to
determine the parameters of optimization techniques inside
a fixed optimization scenario, with the aim of leveraging the
fast execution time of logistic regression compared to the
heuristics implemented into a commercial vendor compiler.
They manage to reduce the compilation time by two orders
of magnitude while at the same time slightly improving the
execution time. The originality of our work lies on its tar-
get: we aim at predicting the profitability of vectorization.
We choose to express vectorization profitability as a classi-
fication problem instead of a regression problem in the other
works. This is the first work to do so to best of our knowl-
edge. It is therefore complementary to the related work, and

†As opposed to binary classification.
††Now called Open64. Online: http://www.open64.net/

can be use side-by-side in order to improve traditional com-
pilers that do not use any machine learning. Stock et al. [3]
also target the improvement of automatic vectorization, but
in the classical context of regression and automatic tuning.
They extract their own set of static software characteristics
(SSC) from assembly in order to predict performance using
various machine learning techniques, and choose the best
optimization scenario as the one with the highest predicted
performance, the same way as Park et al. [2]. Their tech-
nique shows high accuracy on a simple benchmark kernels
made of perfectly nested, independent loops that contain one
statement; it however performs only slightly better than ran-
dom search on stencil kernels. Our technique reaches high
accuracy for a benchmark suite made of 151 realistic, com-
plex loops.

Similar to our work, the motivation behind the GCC
Milepost project by Fursin et al. [6] is to add machine learn-
ing capabilities to mainstream compilers so that they can au-
tomatically chose and tune optimization sequences for het-
erogeneous reconfigurable processors. Our work is more
specific, and we only focus on automatic basic-block vec-
torization (ABBV). Yet, the set of static software character-
istics (SSC) used by GCC Milepost proved not to be rele-
vant for our benchmark. Indeed, we detail in Sect. 5.5 that
for SVM, not only it yields far lower accuracy than our own
set of SSC (detailed in Sect. 3.2), but also that this accuracy
is similar to the one obtained with random numbers as SSC.

There are several ways to classify software features.
First, they may be measured statically from sources or dy-
namically at runtime. While the second makes it possible
to gather far more information, they require to actually exe-
cute the program: this is not something we can afford inside
a compiler for obvious time-related constraints [10]. Soft-
ware features may further be hardware dependent and hard-
ware independent. The former suffers from lack of porta-
bility: we may rely on some hardware counters on a given
machine that are not available on another one, for example
because of differences in micro-architecture. For this reason
we favor the latter, and our results in Sect. 5 show that this
is enough. Another approach is proposed by Park et al. [2]:
they leverage graph mining techniques to directly feed the
program’s dataflow graph to a SVM, and predict the best op-
timization scenario. They compare this approach with Mile-
post GCC and yield better prediction accuracy. Still, in this
paper, we adopt a more conservative approach, and consider
traditional static, hardware independent software features.

3. Machine Learning

In this section, we detail the inputs and outputs of our pre-
dictive machine learning device. We use a common tech-
nique called support vector machine (SVM), described in
most reference books such as the one by Christopher M.
Bishop [11].
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Table 1 The software characteristics.
Identifier Level Range Description
AST1 AST N The increment of the innermost for loop
AST2 AST {0, 1} Will the address of the first access to the array be always aligned with the machine’s vector size ?
AST3 AST {0, 1} In array accesses, is the induction variables involved in the last dimension the one of the innermost loop ?
AST4 AST N Number of array accesses in the body of the loop
AST5 AST N The number of arrays accessed inside the loop
AST6 AST {0, 1} Does the benchmark involve any restrict keyword ?
IR1 IR N The size of the dataset
IR2 IR N Estimation of the dynamic instruction count
IR3 IR N The depth of the innermost loop
IR4 IR N The estimated trip-count of the innermost loop
IR5 IR N Number of IR statements in the innermost loop
IR6 IR N The number of variables used in the innermost loop, for the code in single static assignment (SSA) representation

Fig. 1 The inputs and outputs of our model, implemented using a SVM.

3.1 Modeling

We express vectorization profitability prediction as a classi-
fication problem: we define a class labelled 1 for programs
that profit from vectorization, and another class labelled 0
otherwise. Then we train a binary classifier for predicting
the class of new programs. We use SVM as binary classi-
fier. The inputs and outputs of our SVM are shown in Fig. 1.
It takes as input the user program, and outputs its class, 0
or 1. The user program is expressed as a vector of floating
point numbers called the software characteristics. They are
described in the next section.

3.2 The Software Characteristics

Static software characteristics (SSC) consist in numbers that
express some important characteristics of the input pro-
grams, and measured without executing it. We use the
SSC as input features of our SVM in order to predict vec-
torization profitability. We use 12 software features; 6 of
which are extracted at abstract-syntax-tree (AST) level us-
ing Clang, and 6 at LLVM’s intermediate-representation
(IR) level. We have selected them empirically, according
to our observations of what may be important when consid-
ering basic block vectorization. We use custom SSC instead
of GCC Milepost for the reasons explained in Sect. 5.5. Our
SSC are detailed in Table 1. When more than one array is ac-
cessed in the innermost loop, AST2 and AST3 are estimated
for each arrays access, then we consider as a software char-
acteristics their arithmetic mean (a real number between 0
and 1). IR2 and IR4 rely on the prediction of the dynamic
behavior of our program provided by LLVM. This is conve-
nient as it uses some placeholder when the values can not be
computed. IR6 should be understood as a rough estimation
of the number of registers consumed by our loop. Finally, in
order to determine AST1, we not only analyze the for state-
ment, but also the array indexes for a consistent, constant

multiplier of the induction variable.

4. Experimental Setup

4.1 Benchmark and Scope

We use a benchmark called TSVC, which stands for test
suite for vectorizing compilers, in its version provided by
Maleki et al. [4]. It consists of 151 simple computation
loops, initially devised to assess how smart compilers are
at vectorizing loops. This benchmark is representative of
the portions of code that constitute hotspots of programs,
namely the target of optimizing compilation.

We concentrate on one automatic vectorization tech-
nique called automatic-basic-block vectorization, referred to
as ABBV in the rest of this paper. ABBV consists in lever-
aging the inherent instruction-level parallelism (ILP) inside
basic blocks in order to generate SIMD instructions. This is
different from loop vectorization and loop pipelining, which
generate SIMD instructions across different iteration of the
same basic block†, not considered in this paper [14]. ABBV
is carried out in the compiler’s backend and mainly relies on
pattern matching. The quality of the results greatly depends
on the input to the backend, that is, basic blocks should ex-
hibit enough ILP. The amount of ILP is not only an inher-
ent property of the compiled program but also it is greatly
affected by the front and middle ends of the compiler, for
instance when unrolling loops.

For the forthcoming experiments, our test machine is
an Intel Core2 Duo Merom Processor at 2.66GHz. We con-
sider the following 3 compilers: Intel Compiler (icc) version
12.1.5, GNU C Compiler (gcc) version 4.6.3, and LLVM
version 3.3. The options of each with and without ABBV
are shown in Table 2.

4.2 Preparation of the Data and Experimental Flow

Our experimental flow is divided into two steps: the gener-
ation of known data and the training/validation of the SVM.
The flow to generate the former consists of three steps: (1)
we unroll, compile and execute each TSVC kernel with and
without ABBV; (2) we determine the profitability of vec-
torization of each unrolled TSVC kernel; (3) we extract the

†The reader should further notice that automatic vectorization
is equivalent to loop unrolling followed by ABBV.
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Table 2 Compiler options that we use for our experiments.

ABBV Options
icc With -std=c99 -O2 -fno-alias -vec -xSSE3
icc Without -std=c99 -O2 -fno-alias -no-vec

gcc With -std=c99 -O2 -fivopts -funsafe-math-optimizations -fno-unroll-loops -flax-vector-conversions -msse3
-fno-tree-vectorize -fno-modulo-sched -ftree-slp-vectorize

gcc Without -std=c99 -O2 -fivopts -funsafe-math-optimizations -fno-unroll-loops -fno-tree-vectorize
-fno-modulo-sched -fno-tree-slp-vectorize

LLVM With -std=c99 -O2 -fivopts -funsafe-math-optimizations -fno-unroll-loops -flax-vector-conversions -msse3
-fno-tree-vectorize -fno-modulo-sched -ftree-slp-vectorize

LLVM Without -std=c99 -O2 -fivopts -funsafe-math-optimizations -fno-unroll-loops -fno-tree-vectorize
-fno-modulo-sched -fno-tree-slp-vectorize

Fig. 2 Overview of the performances of the compilers.

software characteristics from the C source of each unrolled
TSVC kernel. The flow relies on three tools: a innermost
loop unroller at C-source level, a software-characteristics
extractor, and the vendor compiler. For the first, we use a
tool called PIPS† to unroll the TSVC benchmarks from fac-
tors 1 to 20 with the purpose of having enough training data.
For the third, we use the icc, gcc, and LLVM compilers.
For the second, we measure the software characteristics by
means of a custom tool based on the LLVM framework, as
explained in Sect. 3.2. In Sect. 5.5, we rather use a random-
number generator and the tool GCC Milepost proposed by
Fursin et al. [6]. After preparing the data, we assess the qual-
ity of our method by computing its LOOCV accuracy, where
LOOCV stands for leave-one-out-cross-validation. It con-
sists in training the SVM with all the data but one, predict-
ing for the single left out data, and reiterating the process
for all the data in the data set. Our LOOCV procedure is de-
tailed in Sect. 5.1. In order to implement these experiments,
we use libsvm††, a stable and free library for SVM.

4.3 Early Results

We measure the data in the experimental conditions de-
tailed in the two previous sections. First of all, we com-
pute the geometric mean of the distribution of the vector-
ization speedups for all three compilers in Fig. 2 a. These
numbers vary significantly among compilers. In the case
of LLVM the mean is below 1, that is, the LLVM vector-
izer tends to actually slow down programs in average; fortu-
nately, our method corrects this bias. Figure 2 b and c further
plots the minimum and maximum values of the vectoriza-
tion speedups for each compiler. The numbers are similar

†Online: http://pips4u.org/
††Online: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

among compilers, only the maximum vectorization for icc
is very high: almost 40 times. More importantly, we no-
tice that the minimum vectorization speedup is significantly
smaller than 1 for the three compilers; in other words, all
the compilers may actually generate programs slower with
SIMD instructions than without. To better illustrate this phe-
nomena, we displayed the probability for each compilers to
slow down programs in Fig. 2 d. The ratios are all above
50%; gcc and LLVM even exceed 75%, that is, these two
compilers generate unprofitable vectorization in almost 80%
of the situations. This situation is obviously not tenable; we
suggest compiler users to never use automatic vectorization
for these compilers. Fortunately, our method introduced in
next section reduces these probabilities to less than 1%.

5. Our Model

5.1 The Naive Model

Our data set consists of 151 TSVC kernels × 20 unroll
factor, that is, 3020 lines. Each line consists of the tuple
{pid, S S C, vect. pro f .}, where pid is an integer between 1
and 151 that uniquely identifies the TSVC kernel, S S C the
software characteristics described in Sect. 3.2, vect. pro f .
the integer identifier of the class we are trying to predict (0
or 1). This last entry is ignored during predictions; it is only
useful for training as well as calculating accuracy and recall
figures. Our LOOCV procedure is shown in pseudo-code in
algorithm 1. It takes into input not only the whole data set,
but also the vector of all the program ids in our data set, (the
sequence of integers from 1 to 151 for TSVC). This vector
is used at line 3 to make sure that data lines from a same
program do not span across the training and test sets. This is
to prevent the presence of oracle in the training set, so that
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Fig. 3 Prediction accuracies for all methods and compilers: (a) the LOOCV total accuracies (b) the
LOOCV accuracies per class.

Algorithm 1: Our LOOCV procedure.
Input: data (array of pid, SSC, vect. prof.), pids (array of pid)

1 predictions← ∅;
2 for test.pid ∈ pids do
3 test.set← { d ∈ data, such as its pid is test.pid };
4 training.set← data \ test.set;
5 model← train.svm(training.set);
6 predictions← predictions ∪ model(test.set);
7 end
8 return predictions

our LOOCV procedure reproduces precisely real-world sit-
uations. The predictions of our classifier, 0 or 1, are stored
in the one-dimension vector prediction. The SVM model
is trained at line 5, and stored in the variable model as a
function: S S C �→ vect. pro f . ∈ {0, 1}.

As a first approach, we try to predict vectorization prof-
itability for all the data, using one model per compiler. We
display the accuracy of this naive model using LOOCV in
Fig. 3 a under the label naive. It ranges from 60% to 70%,
which is rather low, and further hides large discrepancies
between the recall for each classes as shown in Figs. 3 b and
3 c. The recall for class 0 is indeed under 30% for icc and
gcc, and the recall for class 1 under 50% for LLVM. In other
words, our predictor usually mis-predicts non-profitable ex-
amples for icc and gcc, and mis-predicts profitable ones
for LLVM. On the other hand, NN exhibits lower overall
LOOCV accuracy, but the recall is better balanced for each
class. In overall, our predictor is not reliable and needs im-
provement.

5.2 A Better Modeling

Most of the mis-predictions for the naı̈ve model occur when
the vectorization speedup is close to 1. These are the
programs for which vectorization has no significant effect.
From the point of view of compilation, we do not care
about correctly predicting these points; our focus is on sit-
uations for which vectorization is likely to bring significant
speedup or slowdown. In other words, these mis-predictions
are a consequence of a weakness in the way we model
the problem: vectorization profitability should be defined
with respect to a performance threshold above which per-
formance difference is considered as significant. Starting
from this section, we arbitrary set this threshold at 5%, that
is, speedup and speed-down are only considered significant

above 1.05 and under 0.95 respectively. Moreover, we clas-
sify the programs into the following three groups, noted
0,1, and 2: profitable (speedup ≥ 1.05), non-profitable
(speedup ≤ 0.95) and do-not-care (0.95 < speedup <
1.05). The proportions of data in the class do-not-care for
icc, gcc and LLVM are respectively 72.58%, 94.6% and
58.25%; the number of remaining data is therefore 762, 146
and 1128 respectively. With this definition, we consider that
our predictor mis-predicts if and only if its prediction leads
to a significant slow-down. In this context, we can recalcu-
late the LOOCV accuracy as

accuracy = 1 − p(1|0) − p(0|1) (1)

= p(0|0) + p(1|1) + p(0|2) + p(1|2) (2)

where p(a|b) is the probability to predict group a for a data
in group b†.

If we apply this definition with the data of the previ-
ous section, the new accuracies become 88.58%, 99% and
99% for icc, gcc and LLVM respectively. These figures are
however artificially pushed up by the data in group 2 (do-
not-care), that can never be mis-predicted. This may lead us
to overlook some weaknesses of our predictors; we therefore
decide to remove these data altogether when calculating the
accuracy. It is important to notice that it does not affect the
generality of our predictor, as mentioned in Sect. 6.1. Our
new classification of the data further affect the training of
the SVM. Indeed, we still use the same SVM as in Fig. 1.
This SVM merely predicts group 0 and 1, but not 2 (do-not-
care): mechanically, all the data from group 2 are not used
for training anymore.

The new LOOCV procedure is similar as for the naı̈ve
predictor: we only need to remove all the elements of group
2 from the training set after the line 6 of algorithm 1. More-
over, the way we calculate accuracy is also different as ex-
plained in the previous paragraph. The accuracy and recalls
for each class are shown in Fig. 3 under the label 5% mar-
gin, Unbalanced. The accuracy has raised to between 80%
and 90% for all the compilers. In particular, it is 84.25%
with gcc despite the small size of its dataset††. The recalls
for both class raise similarly; it however appears that all the

†There is no p(2|x) because our machine learning device can
only output 0 or 1, as explained in Sect. 3.1.
††Readers knowledgable in machine learning may further note

that we have validated the correctness of the model with its learn-
ing curve, not shown in this paper.
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models remain skewed, toward class 1 for icc and gcc, and
toward class 0 for LLVM. We endeavor to address this weak-
ness in nest section.

5.3 Balance the Data

In this section, we start by noticing that the skew of the pre-
dictor of the previous section is correlated with the bias in-
side the dataset itself: 73% of the programs are in class 1 for
icc, 73% for gcc, and only 25% for LLVM. In this context,
we decide to force both classes to be balanced by removing
some data of group 0 or 1 from the training set before call-
ing the procedure of previous section. Like the data cleaning
introduced in previous section, this method only affects the
way we prepare the training set, and not the generality of
the predictor. The accuracy and recalls for this predictor are
shown in Fig. 3, under the label 5% margin, balanced. First,
the recall for the less likely class has raised for all compil-
ers, as expected: 92.61% and 94.87% for class 0 with icc
and gcc respectively, and 82.5% for class 1 and LLVM. The
overall accuracy as well as the recall for the other class has
however dropped significantly, under the naı̈ve predictor. In
other words, this prediction model is over-fitted toward the
less likely class. This has motivated our new compound pre-
dictor, introduced in next section.

5.4 Compound Predictor

In this section, we propose a new predictor based on the two
models introduced in Sects. 5.2 and 5.3. Because it is made
of two prediction models, we call it the compound predictor.
Our objective is to combine the advantages of both: high ac-
curacy for the most likely class for the former, and adjusted-
bias for the less likely class for the latter. The new proce-
dure is described in the pseudo-code in algorithm 2, where

Algorithm 2: The compound predictor.
1 **** Training **********;

Input: training.st
2 training.set← elements of training.set from groups 0 or 1;
3 training.set.balanced← balance groups 0 and 1 in training.set ;
4 // Gets LOOCV predictions;
5 // (within the training set);
6 loocv.u← loocv.svm(training.set);
7 model.u← train.svm(training.set);
8 loocv.b← loocv.svm(training.set.balanced);
9 model.b← train.svm(training.set.balanced);

10 proba← empty 3D array;
11 // Extracts Probabilities;
12 for i∈ [0, 1] and j∈ [0, 1] and k∈ [0, 1] do
13 data.u← data in loocv.u predicted as group i;
14 data.b← data in loocv.b predicted as group j;
15 data.ub← data.u ∩ data.b;
16 proba[i,j,k]← probability for data in data.ub to be in group k;
17 end
18 return proba, model.u, model.b;
19 **** Prediction **********;

Input: proba, model.u, model.b, test.sample
20 // Predicts with each SVM;
21 p.u← model.u(test.sample);
22 p.b← model.b(test.sample);
23 // Deduces the final prediction;
24 pred← argmax(i,proba[p.u,p.b,i]);
25 return pred;

loocv.svm(data.set) returns the one-dimension-vector of pre-
diction for the specified set using the LOOCV procedure of
algorithm 1, and train.svm(training.set) trains a SVM using
the specified set thereby returning a prediction model, that
is, a function that predicts the vectorization profitability (0
or 1) from the SSC (see Sect. 5.1). The inputs of the predic-
tion procedure are: proba, the three-dimension matrix of the
probabilities calculated in the training procedure, model.u
and model.b, the predicting classification functions obtained
from tain.svm in the training procedure, and test.sample, a
single line from the test set, that is, a tuple {pid, S S C}. In a
nutshell, the new procedure is the following:
(1) we calculate the LOOCV predictions for each element of
the training set, using the prediction procedures of Sects. 5.2
and 5.3 respectively (line 6 and 8);
(2) we calculate the conditional probabilities to hit each
class from the predictions of each SVM (line 12 to 17);
(3) we also train unbalanced and balanced models from the
whole training sets (line 7 and 9);
(4) when testing, we predict the vectorization profitability
using the models trained in (3) (line 21 and 22);
(5) finally, we deduce the final prediction as the most prob-
able one, given the predictions from (4), from the probabili-
ties pre-calculated in (2) (line 24).

Figure 3 (label compound) confirms the relevance of
this approach: the models are not skewed anymore with all
the compilers, and the LOOCV accuracies are now above
99%. This is the best prediction technique we propose in
this article.

5.5 Comparison with GCC Milepost

GCC Milepost is a tool based on GCC to extract SSC from
benchmark for further optimization space exploration [6]†.
From the intermediate representation of GCC, it extracts 56
features that consists in some properties of the control flow
graph and the instruction mix. In this section, we assess the
accuracy of our SVM using GCC Milepost’s SSC instead
of our own set. First, one should note that GCC Milepost
merely measures SSC at the function level instead of loop
level in our work. For research purpose, we circumvented
this problem by isolating loops in independent functions.
Second, we also consider for comparison purpose a set of
SSC made of random numbers, that is, that does not describe
at all our benchmark.

Figure 4 shows the accuracy on icc’s timing informa-
tion of the models obtained with both sets of SSC, using
the same setup as in Sect. 5.3. First, we can see that these
numbers are similar than our numbers from 3 a for the naı̈ve
predictor. This hides strong bias toward the most likely class
for both prediction models based on random and GCC Mile-
post. In fact, they almost exclusively predict the most likely
class (1 in the case of icc): this makes them useless for any
prediction. Second, these figures are significantly lower than

†It is now part of the cMind framework, available online:
http://ctuning.org
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Fig. 4 The accuracy of the predictors for icc timing information, with
GCC Milepost 2.1’s SSC, as well as random numbers as SSC. This accu-
racy numbers hide strong bias in the recall per class.

Fig. 5 Average, maximum and minimum speedups of our predictor
(compound) and an hypothetical perfect predictor (perfect) against the
compiler with vectorization always on.

the compound predictor with our own set of SSC. Third,
we can see that GCC Milepost’SCC and random numbers
yield the same accuracy: in other words the former does not
provide any useful information about the benchmark to the
machine learning models. We believe that this is because
TSVC is not a natural fit for GCC Milepost, mostly tested
using MiBench [6]. Indeed, TSVC kernels are very similar
from the point of view of their control-flow graph and in-
struction mix. Their differences rather lie into their memory
access patterns (especially alignment) and data-flow graph,
which GCC Milepost does not measure at all.

6. Improvement of the Compilation Flow

6.1 Performance Improvement due to Our Compound Pre-
dictor

In this section, we assess the performance improvement we
can achieve by using our compound predictor proposed in
Sect. 5.4. To so, we predict the group for all the data with
the compound predictor, 0 or 1, using an LOOCV procedure
that wraps the procedures of algorithm 2. It is important to
notice that the procedure predicts whether group 0 or 1 for
all data, including those in group 2. That means that ele-
ments from group 2 are always predicted in class 0 or 1,
but never in 2. Then, we compile programs using ABBV

if the predicted group is 1, or without if it is 0, using op-
tions detailed in Table 2. The LOOCV procedure used in
this section is similar to the one described in Sect. 5.1; in
particular it makes sure that the data lines related to a given
program do not span across both the training and test sets.
This procedure finely reproduces real-world prediction situ-
ations. We measure the execution time of each so-compiled
programs, and calculate the speedup compared to the case
where ABBV is activated as follows:

speedup =
exec. time with ABBV

exec. time (ABBV as predicted)
(3)

The speedup numbers calculated under this setup are dis-
played in Fig. 5. We consider three metrics: the average
speedup, the maximum speedup and the minimum speedup,
respectively symbolized on the figure by the horizontal bars
and both ends of the vertical bars. Values under 1 corre-
spond to slowdown. By correctly predicting situation where
vectorization is not profitable, we manage to reach speedups
of up to 3.8 times. On the other hand, we may incor-
rectly predict profitable vectorization, thereby slowing down
the generated program. Still our predictor always provides
speedup in average. It is particularly efficient for LLVM,
where programs compiled with our predictor are in average
47.3% faster than without. We further display for each com-
piler the same numbers for a perfect predictor. Our predic-
tor’s numbers are always very close to the perfect predictor,
that is, our method is close to the optimum.

Another interesting metrics is the unprofitability ratio
of compilers when using our predictor, as introduced in
Sect. 4.3. These numbers for icc, gcc and LLVM on the
data without noise are respectively 26.64%, 26.71% and
75.18%†. When using our compound predictor, these num-
bers drop down to 0.13%, 0.68% and 0.09%.

6.2 About Mis-Predictions (Case of Intel Compiler)

The compound predictor merely mis-predicts two programs
with icc. We can find several explanations for the predic-
tor being mis-led. First, both mis-predictions occur at unroll
factor 12. Indeed, whereas 12 is multiple of the width of our
SIMD datapath in single precision floating point, our data
show that the compiler sometimes decides not to vectorize
at this level for some reasons we were not able to under-
stand††. The second possible cause for our predictor to be
mis-led can be found in the source code of each kernel. The
first TSVC kernel to be mis-predicted is called s3111, shown
below:

1 # d e f i n e LEN 32000
2 void s3111 ( ) {
3 f l o a t sum ;
4 f o r ( i n t n l =0; nl <n t i m e s / 2 ; n l++) {
†These numbers are different from the one of Fig. 2, which also

consider the data inside the 5% margin.
††This may be a side-effect of the heuristics used internally by

the compilers in order to predict the profitability of vectorization
before actually applying ABBV.
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5 sum = 0 . ;
6 f o r ( i n t i =0; i <LEN; i ++)
7 i f ( a [ i ] >( f l o a t ) 0 . ) sum+=a [ i ] ;
8 }
9 }

This program does not profit from vectorization regardless
the unroll factor because it contains a branch at line 7. In
fact, this program is in class 2 for all unroll factors but 12:
this data line is a singularity. Moreover, our SSCs do not
measure the control flow graph although it would have been
important in this case. The second TSVC kernel to be mis-
predicted is called vpvts, shown below:

1 # d e f i n e LEN 32000
2 void v p v t s ( f l o a t s ) {
3 f o r ( i n t n l =0; nl <n t i m e s ; n l++)
4 f o r ( i n t i =0; i <LEN; i ++)
5 a [ i ]+=b [ i ]∗ s ;
6 }

This kernel profits from vectorization regardless the un-
roll factor, whereas we predict the opposite for an unroll
factor of 12. It involves a variable inside the calcula-
tions, which might have influenced the prediction toward
the wrong class. Yet, we notice that we correctly predict
it in class 1 for other unroll factor: 12 is a singularity of
our model. Therefore, it appears that this mis-prediction is
a glitch of our SVM.

7. Concluding Discussion

In this paper, we use support vector machines (SVM) to pre-
dict the profitability of automatic basic-block vectorization
for Intel Compiler, the GNU C Compiler and LLVM. As in-
put programs, we consider TSVC, a benchmark made of 151
simple yet representative loops, unrolled by a factor ranging
from 1 to 20. Our key innovation is to formulate vectoriza-
tion profitability in terms of a classification problem, and we
use SVM to solve it. We first obtain 70% cross-validation
accuracy by naively applying SVM. After some improve-
ments including combining the predictions of two different
SVMs, we manage to reach 99% cross-validation accuracy.

This technique is very useful because it allows the com-
piler to avoid, in most cases, applying vectorization when it
is not profitable to do so. We show that by doing so, it is pos-
sible to speedup compiled programs by up to 2.16 times for
Intel Compiler, 2.5 times for the GNU C Compiler, and 3.82
times for LLVM. Moreover, it enables to reduce the prob-
ability for the compiler to generate slower programs with
vectorization to less that 1%, from more than 25% with-
out. Moreover, the overhead on the compilation time is very
low: the predictions with SVMs required less than 1 sec-
ond on our test machine†. Our method however requires the
compiler to be trained once on some benchmark programs
before the first prediction to be made; this may take from
10 minutes with a traditional SVM, up to several hours with
our compound predictor. Still, if we consider a compilation
flow in which the compiler is trained on the user’s machine

†An Intel Core2 Duo Merom at 2.6GHz.

upon installation in order to tune itself to its environment,
this training is to be done only once; therefore we believe it
is not an obstacle to its use on real-world compilers.

Some important challenges remain to be solved before
our work can be applied to more complex programs. First, it
is challenging to measure most of our software characteris-
tics on programs which loop boundaries involve non-linear
expressions. Second, we have seen in Sect. 6.2 that it might
be relevant for those characteristics to better express the con-
trol flow-graph of programs. This will constitute our main
focus for further research.
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