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PAPER

A Scenario-Based Reliability Analysis Approach for
Component-Based Software

Chunyan HOU†a), Nonmember, Chen CHEN††, Member, Jinsong WANG†, and Kai SHI†, Nonmembers

SUMMARY With the rise of component-based software development,
its reliability has attracted much attention from both academic and industry
communities. Component-based software development focuses on archi-
tecture design, and thus it is important for reliability analysis to emphasize
software architecture. Existing approaches to architecture-based software
reliability analysis don’t model the usage profile explicitly, and they ignore
the difference between the testing profile and the practical profile of com-
ponents, which limits their applicability and accuracy. In response to these
issues, a new reliability modeling and prediction approach is introduced.
The approach considers reliability-related architecture factors by explicitly
modeling the system usage profile, and transforms the testing profile into
the practical usage profile of components by representing the profile with
input sub-domains. Finally, the evaluation experiment shows the potential
of the approach.
key words: software reliability, software architecture, scenario, compo-
nent, profile

1. Introduction

With the advance of social information processes, computer
and software products have been widely used in various in-
dustries, especially in safety-critical fields. Software relia-
bility has drawn wide concern. The reliability of a software
system is defined as the probability of failure-free operation
for a specified period of time in a specified environment.
Software reliability is one of the most important criteria to
measure software quality, and determines whether or not a
software system could run in a stable and reliable way.

In recent years, the rise of component-based software
development has changed the nature of software industry.
It’s becoming an important development pattern for fu-
ture software to share resources and collaborate with each
other in the globally distributed community. Software in-
dustry has adopted this more productive and flexible de-
velopment approach instead of coding from scratch, where
software is generated with existing open-source, commer-
cial and proprietary components by assembling them to-
gether in an interoperable manner. Thus, software engi-
neering is now more focused on architecture design, compo-
nent selection and system integration tasks instead of cod-
ing. Software architecture is becoming a key factor to mea-
sure a software system in component-based software devel-
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opment. As a result, traditional black-box software relia-
bility analysis approaches based on software testing is no
longer suitable for a component-based software application.
As software development shifts the emphasis to architecture
design, architecture-based software reliability analysis at-
tracted wide concern in the community. In contrast to black-
box approaches, architecture-based approaches are applica-
ble for reliability analysis at any phase during the software
lifecycle, and it is especially necessary at early design phase,
which helps software architect to evaluate various architec-
ture designs quantitatively and make a choice among them.
Thus, architecture-based software reliability analysis is use-
ful to optimize software architecture design, avoid costly de-
sign change, and improve software development process and
reliability.

Research on architecture-based software reliability
analysis is still in its infancy. There are some problems for
the existing approaches needed to be solved. In response to
these problems, a new scenario-based reliability analysis ap-
proach for component-based software is proposed in this pa-
per. The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 describes a component-
based software architecture model (CSA) in a two-layer
structure. Section 4 explains how to predict software reli-
ability based on CSA, which includes solving practical pro-
file of components in the light of system usage profile, and
solving a scenario-based model. Section 5 documents the
case study before Sect. 6 concludes the paper.

2. Related Work

In the past few decades, software reliability analysis ap-
proaches have been developed a lot, most of which are
software reliability growth models (SRGMs) [1], which are
proposed according to traditional software development.
SRGMs take software as a whole and use system failure
dataset collected during testing and operational phases to
model software reliability growth procedure. SRGMs are
a kind of black-box models which take the interactions be-
tween software with external environment into account only
without considering its internal architecture. Software ar-
chitecture is crucial for a component-based software sys-
tem. Thus, SRGMs are not suitable for component-based
software reliability analysis.

The existing architecture-based approaches for compo-
nent-based software reliability analysis can be classified into
two broad categories, namely a state-based and path-based
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model. The former maps a software architecture model
into a Markov state space model, and analytically combines
software architecture with component failure behaviors to
predict software reliability [2]. The latter is also called a
scenario-based model. Scenario has been widely used to de-
scribe the way how a software system reacts to a request.
Scenario is a set of component interactions triggered by a
specific input stimulus, also called a system execution path.
A scenario-based approach models software architecture as
all possible paths in a software system and their execution
probabilities. The approach solves path reliability, and then
averages them with their probabilities as weights to obtain
system reliability.

The existing architecture-based approaches mainly suf-
fer from the following shortcomings.

(1) It’s inconvenient for software developers to use
them since they use some kind of analysis-oriented math-
ematical models to model software architecture. To over-
come this problem, some of the approaches adopted design-
oriented high-level notations [4], [11]. They model software
architecture based on UML sequence and deployment di-
agrams annotated with reliability properties such as fail-
ure probability. This kind of architecture models need to
be transformed into analytical models before they can be
solved to obtain system reliability. The aim of these ap-
proaches is that software developers can quickly enhance
existing design specifications in UML to construct reliabil-
ity predictions regardless of the complication of underlying
analysis technology. However, most of them only choose
some aspects of software architecture to build architecture
models. For example, the scenario-based approaches only
model the interactions between components without consid-
ering other factors such as execution environment, deploy
information and so on [11]. That hinders effective software
reliability analysis at architecture design phase.

(2) They don’t model software usage profile explicitly.
They usually represent usage profile implicitly with transi-
tion probabilities between states or scenarios in a system
model, which are dependent on testing dataset [9] or soft-
ware developers’ intuition [10]. However, the former is not
available at early design stage of a software system, and
the latter is apt to make reliability estimation less objective.
Afterwards, a parameter dependency method was proposed
to propagate system-level usage profile to all the compo-
nents in a software system. System inputs influence system
control flow, and determine practical profile of the compo-
nents in a system. Hamlet et al. [5] allow component de-
velopers to specify the call propagation of individual com-
ponents. However, the dependency of the call propagations
to input parameters values is not made explicit. Reussner
et al. [7] explicitly models the influence of external compo-
nents. However, the approach assumes fixed transition prob-
abilities between components; therefore its models cannot
be reused if the system-level usage profile changes. Brosch
et al. [2] explicitly model system-level usage profile and the
interactions between components to solve parameter depen-
dencies which are used to propagate system profile to all

components in a system. However, the approach specifies
component failure behavior in terms of program internal ac-
tions, which don’t conform to software testing specification.

(3) They directly take unit testing results of compo-
nents as their practical reliability without considering the
difference between testing and operational profile. Compo-
nent developers and users are separate during component-
based software development. The developers have no idea
how the component will be used in the future when testing it.
Thereby, components’ testing profile is different from opera-
tional profile, and need be converted into operational profile
before testing results are used to estimate components’ prac-
tical reliability. To solve this problem, Hemlet et al. [5] pro-
posed a sub-domain concept. Software input space can be
naturally divided into several functional sub-domains, each
of which has their own operational profile in uniform distri-
bution. Component practical profile can be represented as a
weight vector of sub-domains, which allows software devel-
opers to test components without knowledge of their usage
profile. However, the approach doesn’t apply the concept of
sub-domain for component-based software reliability anal-
ysis.

(4) They don’t consider the influence of execution en-
vironment on the reliability of a software system. Lipton
et al. [6] and Yacoub et al. [11] take failure probabilities
of network connections into account, but neglect the avail-
ability of other hardware device, such as processors. Sato
et al. [8] combine a system model with a resource availabil-
ity model. However, they do not consider application-level
software failures. Brosch et al. [3] consider availability of
network links and hardware devices, and generate Markov
chains for all possible cases of hardware resource availabil-
ity. However, the approach doesn’t consider potential state
space explosion.

In response to above problems, we propose a scenario-
based approach for component-based software reliability
analysis. Nowadays, scenario-based approaches have re-
ceived increasing attentions since scenario concept con-
forms to software testing specification, where a scenario
corresponds to a test case. To the first problem, a two-
layer model is suggested to describe component-based soft-
ware architecture, where the first layer locates a UML-based
model for the sake of software developers and the second
layer is a formal analytical model transformed from the
first-layer model. The second-layer model is invisible for
software developers, which is potentially analyzed to obtain
software reliability. To the second problem, an algorithm
is proposed, which propagates user input profile at system
level to build practical profile of the components in a sys-
tem. To the third problem, sub-domain concept is adopted to
map testing profile into operational profile of components.
A scenario-based approach has an advantage to overcome
the last problem. A component-based software application
generally has a finite number of execution paths. A scenario-
based approach builds physical state space in the light of
system execution paths. In comparison to traditional ap-
proaches who consider all possible combinations of hard-
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Fig. 1 An example for architecture model.

ware resource states, a scenario-based approach can effec-
tively avoid state space explosion and improve the efficiency
of software reliability analysis.

3. Component-Based Software Architecture Model

In this section, we will introduce a two-layer component-
based software architecture model called CSA. The first
layer of a CSA model situates a UML-based architecture
model while the second layer is a formal model. First of
all, a simple example is employed to illustrate the first-layer
model orienting software developers. And then, we will in-
troduce the second-layer model of a CSA model, which is
invisible for software developers, and the target for reliabil-
ity analysis algorithms.

3.1 UML-Based Architecture Model

Figure 1 shows a simple example of a UML-based archi-
tecture model of component-based software. As shown in
Fig. 1, the model is composed of three elements: (1) com-
ponent reliability models; (2) system-level usage profile; (3)
execution environment.

Component reliability models are the primary elements
of a CSA model, and also crucial for the reliability of a
component-based software application. They are built with
reliability-related information offered by component devel-
opers, including basic properties, testing profile and the in-
teractions between components. Basic properties are made
up of interface description, input space, deployment location
and so on. Sub-domain concept is adopted to represent test-
ing profile, where unit testing of a component is a procedure
that component developers test it in its input sub-domains
in a specific execution environment. Testing results are the
probabilities that failure occurs in sub-domains whose re-
quired hardware is also modeled abstractly in order to take
the influence of execution environment failure on software
reliability into account. The interactions between compo-
nents are depicted with call actions and program structures
nesting calls based on UML sequence and activity diagrams.
Call actions describe parameter dependencies between com-
ponents, which are useful to pass practical profile of a com-
ponent to its called component. The structures nesting calls

including sequence, loop, branch, fork and so on, explain
the way that a component uses other components, and indi-
cate possible direction of control flow in a program.

Control flow direction in a system depends on system-
level usage profile. As software reliability theory shows,
software reliability is dependent on their usage profile.
Thus, a precise and objective description of usage profile is
very important for the accuracy of software reliability pre-
diction. Domain experts specify the usage model, which
involves the number and order of calls to component inter-
faces at the system boundaries. The model can contain con-
trol flow constructs such as branches, loops. For each called
interface, the domain experts also characterize its input pa-
rameter values and specific probabilities taking different val-
ues. Once the usage model is connected to the system model
by the software architect, tools can propagate the parame-
ter values through the parameterized expressions specified
by component developers. Because of the parameterization,
the usage model can easily be changed at the system bound-
aries and the effect on the component specifications can be
recalculated.

Execution environment characterizes the configuration
of the servers used to deploy components, and the links be-
tween servers. Communication link failures include loss
or damage of message during transport, which results in
service failure. Though transport protocols like TCP in-
clude mechanisms for fault tolerance, failures can still oc-
cur due to overload, physical damage of the transmission
link, or other reasons. As such failures are generally unpre-
dictable from the point of view of the system deployer, we
treat them like software failures and annotate communica-
tion links with a failure probability. System developers can
define these failure probabilities either from experience with
similar systems or by running tests on the target network.
Servers are made up of hardware resources for software
execution, e.g. CPU, harddisk, memory and so on. Each
kind of hardware has inherent properties, such as process-
ing rate, scheduling strategy and so on. Unavailable hard-
ware causes a service execution to fail. Hardware resource
breakdowns mainly result from wear out effects. Typically,
a broken-down resource is eventually repaired or replaced
by a functionally equivalent new resource. In CSA, hard-
ware resources are annotated with Mean Time To Failure
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Fig. 2 CSA formal model.

(MTTF) and Mean Time To Repair (MTTR). System de-
ployers have to specify these values. Hardwar vendors often
provide MTTF values in specification documents. System
deployers can refine these values on experience. MTTR val-
ues can depend on hardware support contracts. Hardware
reliability models are generated with their properties related
to software reliability. When a component is deployed on a
specific server, reliability models of hardware in the server
can be mapped directly to abstract hardware models in com-
ponent sub-domains.

3.2 Formal Architecture Model

According to the UML-based CSA model, we adopt a multi-
layer directed graph to represent the formal CSA model, as
shown in Fig. 2. Nodes in Fig. 2 are composed of solid and
hollow nodes which denote call actions and the actions nest-
ing calls respectively. The former represents a call to an in-
terface, which launches a directed graph for the reliability
model of called interface on the next layer. The latter repre-
sents program structures nesting calls, such as loop, branch
and so on. We will define the formal CSA model in detail as
follows.

Definition 1. (CSA) A CSA is a component-based soft-
ware architecture model and defined by the tuple 〈Server
server[], Interface inf [], Usage usage[], Interface *first〉,
where server is a set of servers in a software system; inf
is a set of component interfaces used to constitute a soft-
ware application; usage is a system usage profile composed
of the usage profiles belonging to different kinds of users;
and pointer first points to start node of user interface in a
software system.

Definition 2. (Server) A server is defined by the tuple
〈string name, Hardware hw[], Link link[]〉, where name is
the name of a server; hw is a set of hardware resources in a
server; and link is a set of communication links connecting
to a server.

Definition 3. (Hardware) Hardware models a kind of
hardware resources in a server. It is annotated by the tuple
〈int type, int MTTF, int MTTR, long fp〉, where type is the
type of hardware, for example, CPU, hardisk, memory and
so on; MTTF is mean time to failure; MTTR is mean time to
repair; and fp is hardware failure probability.

Definition 4. (Link) A link models a communication
link, and is defined as the tuple 〈string name, long fp〉, where
name is the name of a link, and fp is link failure probability.

Definition 5. (Interface) An Interface is a service pro-
vided by a component. It is annotated by the tuple 〈string
name, Component cp, Input input[], Sdomain sd[], Action
*op, long R〉, where name is the name of a interface; com-
ponent is the component offering a interface; Input describes
interface input space; Sd is a set of sub-domains constituting
interface input space; op is a pointer directing to program
start node; and R is practical reliability of a interface.

Definition 6. (Component) A component is defined as
the tuple 〈string name, Server *server〉, where name is com-
ponent name, and server points to the server where a com-
ponent runs.

Definition 7. (Input) Input describes the input to a pa-
rameter, and is defined as the tuple 〈string name, int type,
Profile profile[]〉, where name is parameter name; type is pa-
rameter type; and profile is parameter input profile.

Definition 8. (Profile) A profile describes a case of pa-
rameter input, and is defined by the tuple 〈short value, long
P, Sdomain *sd[]〉, where value is discrete input value; P
is the probability taking the value; and sd points to the sub-
domain that a profile belongs to.

Definition 9. (Sdomain) A Sdomain models one of the
sub-domains constituting input space of a component inter-
face. It is annotated by the tuple 〈string exp, short weight,
int hardtype[], long fp, long R, Hardware *hw[]〉, where exp
is a Boolean expression with interface input parameters as
variables used to define sub-domain input space; weight is
the probability that a interface input falls into a sub-domain,
which is dependent on component practical profile; hard-
type is a set of abstract hardware models to indicate what
kinds of hardware are required by a sub-domain; fp is the
probability that failure occurs in a sub-domain, which is
dependent on component testing profile; R is practical re-
liability of a interface in a sub-domain, and determined by
its practical profile; and hw points to concrete hardware re-
sources, which is used to realize mapping from abstract to
concrete hardware model in a sub-domain.

Definition 10. (Action) An action is a program inter-
nal action and defined by the tuple 〈int type, string exp, In-
put input[], Action *child, Action *next〉, where type is ac-
tion type including call, branch, loop and so on; exp is a
arithmetic or Boolean expression to describe parameter de-
pendencies; input is the interface input profile after taking a
action, which is used to record how a action influences input
profile and pass input profile to the next action; child points
to sub-actions nested by a action; and next points to the next
action.

Definition 11. (Call) Call is a subclass of Action,
which models the interactions between two interfaces. It is
annotated by the tuple 〈Interface *called, long rlink〉, where
called points to called interface, and rlink is the reliability
of communication link between two components.

Definition 12. (Branch) Branch is a subclass of Ac-
tion, which models a branch structure in an interface pro-
gram. It is defined by the tuple 〈string exp[], Action *child[],
short P[]〉, where exp and child corresponding to the same
properties in Action are redefined as arrays because a branch
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Fig. 3 Profile algorithm.

structure has a finite set of nested behaviors; andP is a set of
branch execution probabilities, namely branch profile.

Definition 13. (Loop) Loop is a subclass of Action,
which models a loop structure in an interface program. It
is defined by 〈LoopProfile profile[]〉, where profile is a loop
profile.

Definition 14. (LoopProfile) A LoopProfile models
the cases of loop execution, and is defined by the tuple 〈int
count, long P〉, where count is loop iteration counts, and P
is the probability that iteration counts occur.

Definition 15. (Usage) Usage is a usage profile and
models how a kind of users inputs at the boundaries of a
system, and is defined by the tuple 〈short P, Input input[]〉,
where P is the probability that this kind of users use the sys-
tem; and input describes their input profile.

4. A Scenario-Based Reliability Analysis

Based on CSA model built in the last section, we will pro-
pose a profile algorithm in this section, which parsers pa-
rameter dependencies between components to build practi-
cal profile of the components according to system-level us-
age profile in a component-based software application. And
then a scenario-based approach is applied to analyze CSA
model for component-based software reliability.

4.1 Profile Algorithm

We use C++ like language to implement profile algorithm,
as shown in Fig. 3.
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The algorithm propagates system-level input profile
through multi-layered directed CSA model by traversing
nodes at different layers in depth first order and at the same
layer in width first order. Since domain experts may provide
a number of input profiles from different kinds of users, pro-
file algorithm first calls initProfile() to normalize these pro-
files for input profile of user interface. Function initProfile()
averages all input profiles with their input probabilities as
weights to obtain user interface profile

csa.first −> input[i].profile =∑
j

csa.usage[ j].input[i].profile ∗ csa.usage[ j].P (1)

Then the algorithm defines a stack for traversal through
CSA model composed of nodes which denote call actions
and the actions nesting calls. We consider three program
structures nesting calls: sequence, loop and branch, since
these three fundamental structures are enough to realize any
program function [5]. Each kind of action is further divided
into action start and end, and thus the algorithm totally han-
dles the following eight kinds of nodes.

(1) Program Start. It is a kind of virtual action to
indicate the entrance to an interface without effective codes.
In the case of this type of nodes, the algorithm only needs to
give its input profile to the next node directly, and push the
next node into stack.

(2) Call Start. Function passProfile() is called to prop-
agate current input profile to called interface. passProfile()
uses a syntax parser to gain parameter dependencies be-
tween two interfaces, which are expressed as arithmetic ex-
pressions with input parameters of current interface as vari-
ables to represent target parameters. Input profile of called
interface can be solved with input profile of current interface
and parameter dependencies between them. After passing
profile, the algorithm pushes program start node of called in-
terface into stack, and prepares to traverse the directed graph
on the next layer.

(3) Branch Start. A branch structure nests a finite
number of sub-actions, which are visited in width first order.
For each sub-action, passProfile() is called to parse branch
transition Boolean expression to solve sub-action profile as
a subset of whole branch profile. Branch transition prob-
ability can be also obtained with sub-action profile. After
profile propagation, the sub-action is pushed into stack.

(4) Loop Start. Function passProfile() is called to
parse loop condition expression to solve loop profile with
input profile of current node. Loop profile is characterized
with loop iteration counts and the probabilities that iteration
counts occur. Since loop action has no influence on node
input profile, the profile can be passed directly to the sub-
action which is pushed into stack after that.

(5) Call End. It represents an end to call an interface.
At this time the node under this top node in stack is call
start node because all the nodes between them that form the
rounded actions in called interface have been visited and
popped out of stack. Before popping these two nodes out
of stack, the algorithm passes input profile of call start node

to the next node of call end node which is then pushed into
stack to make the traversal return to the upper layer.

(6) Loop End. It represents an end to a loop call. At
this time the first two nodes in stack are loop end and loop
start node since the sub-actions nested in loop have been
visited and popped out of stack. Before these two nodes
are popped out of stack, input profile of loop end node is
propagated to the next node.

(7) Branch End. It is visited each time after a sub-
action nested in a branch structure is visited. This node and
branch start node are popped out of stack at the same time
only if all branch sub-actions are visited; otherwise only this
node is popped out. After visiting all sub-actions, input pro-
file of branch end node is passed from the last sub-action
and can’t be propagated to the next node. Thus, the algo-
rithm passes input profile of branch start node instead of
branch end node to the next node.

(8) Program End. It represents an end to an interface
program. At this time, the next node under this top node in
stack is program start node. After they are popped out of
stack, the next node that is call end node to an interface is
pushed into stack. Profile propagation is not necessary since
the profile of called interface has no influence on the profile
of the interface calling it.

Profile algorithm uses system usage profile to build
practical profile of all components in a component-based
software system with the operations mentioned above. In
order to facilitate the following software reliability analysis,
it’s necessary to map component practical profile into their
input sub-domains for the probabilities that components run
in each of their sub-domains. In terms of sub-domain con-
cept, the probability in a sub-domain can be obtained with
joint probability distribution of all parameter inputs in this
sub-domain.

inf .sd[i].weight =∑ ∏
inf .input[ j].profile∈sd[i]

inf .input[ j].profile.P (2)

4.2 CSA-Based Software Reliability Analysis

The profile algorithm in last subsection assigns values to
profile-related parameters in CSA model. Based on previ-
ous work we will carry out a scenario-based software reli-
ability analysis in this subsection. A scenario, also called
a system execution path, is a set of component interactions
triggered by specific input stimulus, which can be obtained
by traversing CSA model in depth first order. According
to the definition of CSA model, a scenario corresponds to
a sub-domain of user interfaces (UI) in a component-based
software application.

Traditional scenario-based approaches implicitly rep-
resent system usage profile as the probabilities that scenar-
ios occur, which are taken as weights to average all scenario
reliability for system reliability.
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Rsys =

n∑
i=1

(Rpathi
∗ Ppathi

) (3)

In contrast to traditional approaches, we explicitly
model the profile of call actions to solve call reliability,
which are used to solve path reliability. With usage profile
considered during reliability analysis, software reliability is
equal to the sum of all path reliability, which is UI practical
reliability in its sub-domains.

Rsys = UI.reliability =
n∑

i=1

UI.sd[i].reliability (4)

An execution path corresponds to a UI sub-domain,
which is composed of several calls. Unit testing on a UI
is carried out under the assumption that all call actions in a
UI wouldn’t fail, whose results are failure probabilities in UI
sub-domains. Thus, testing reliability in a UI sub-domain is
expressed as

1 − UI.sd[i].fp

= P(UI don’t fail in sd[i] | all calls don’t fail in sd[i])

=
P(UI and all calls don’t fail in sd[i])

P(all calls don’t fail in sd[i])
(5)

=
UI.sd[i].R∏

j

Rcall j

where Rcall j is the reliability of a call action in the ith UI
sub-domain.

From Eq. (5), path reliability is given by

UI.sd[i].reliability = (1 − UI.sd[i].fp) ∗
∏

j

Rcall j (6)

In addition to UI, other interfaces called by UI directly
or indirectly in a component-based software application can
be classified into two categories: one is called end interface
(EI), which lies at the end of a path and does not call other
interfaces; and the other is called middle interface (MI),
which lies between FI and EI along a path and includes call
actions. EI reliability is dependent on their practical profile.

EI.R =∑
EI.sd[ j]∈UI.sd[i]

((1 − EI.sd[ j].fp) ∗ EI.sd[ j].weight) (7)

where EI.sd[ j].weight is a sub-domain weight given by
Eq. (2).

MI reliability is expressed as

MI.R =
∑

MI.sd[ j]∈UI.sd[i]

((1 −MI.sd[ j].fp) ∗
∏

k

Rcallk ) (8)

From view of the above analysis, it’s necessary to solve
call reliability Rcall in order to obtain path reliability. Rcall

depends on two factors: the practical reliability of called
interfaces and call action profile. The former has been ob-
tained by Eqs. (7) and (8). The latter varies with different

kinds of call actions, which usually includes sequence call,
loop call and branch call. Call reliability under these three
call patterns is discussed as following.

(1) Sequence Call. It is the simplest way to make a
call. It’s not necessary to take call profile into account since
a sequence call is not nested by other actions. Sequence call
reliability is equal to practical reliability of called interface.

Rcall = MI.reliability or UI.reliability (9)

(2) Loop Call. A loop structure has a serial of nested
call actions. The loop contains a specification of loop itera-
tion counts as a random variable over a finite domain of iter-
ation counts loop.profile.count ∈ N0, each assigned a prob-
ability of its occurrence loop.profile.P. For loop reliability,
we have

Rcall =

∑
i

⎛⎜⎜⎜⎜⎜⎜⎜⎝loop.profile.P[i] ∗
⎛⎜⎜⎜⎜⎜⎜⎝
∏

j

Rcall j

⎞⎟⎟⎟⎟⎟⎟⎠
loop.profile.count[i]⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10)

(3) Branch call. A branch structure nests a finite num-
ber of sub-actions each of which is composed of a serial of
call actions. Branch profile is represented as branch tran-
sition probability. Thus, branch call reliability on a path is
expressed as

Rcall = ∑
branch.child[ j]−>input∈UI.sd[i]

⎛⎜⎜⎜⎜⎜⎝branch.P[ j] ∗
⎛⎜⎜⎜⎜⎜⎝
∏

k

R j
callk

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠
(11)

From view of the above discussion, it is a recursive call
procedure for CSA-based reliability analysis, which termi-
nates as arriving at the end of a path to compute EI relia-
bility. EI reliability is directly solved by Eq. (7). Path relia-
bility is obtained by backtrace from EI along a path step by
step until arriving at UI. Eventually, component-based soft-
ware reliability can be obtained with all path reliabilities as
Eq. (4).

When taking communication link reliability into ac-
count, it’s essential to refine the equations to compute call
reliability. Since a call action includes message delivery and
return, call reliability is given that

R
′
call = Rcall ∗ (call.rlink)2 (12)

Then we will discuss how hardware failures influence
the reliability of a component-based software system. Hard-
ware resources are modeled with the properties of MTTF
and MTTR, whose failure probability is given by

hw.fp =
hw.MTTR

hw.MTTF + hw.MTTR
(13)

Hardware reliability is expressed as

hw.R = 1 − hw.fp =
hw.MTTF

hw.MTTF + hw.MTTR
(14)
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Fig. 4 A CSA model of a business report system.

A component-based software application is generally
large and distributed with a good number of system re-
sources. Existing architecture-based approaches solve sys-
tem reliability in all possible cases of hardware resource
availability with exponential size. It’s easy for them to
cause state space explosion. In contrast to exponential state
space, the number of system execution paths is usually lin-
eal. CSA-based approach builds state space with the physi-
cal states that hardware resources required by each path are
normal, whose size is equal to the number of system paths.

Let S = {s1, s2, · · · , sn} be the physical state space,
where n is the number of system paths, and si ∈ S is the
state probability that the hardware required by path i is nor-
mal.

si =
∏

inf .sd[ j]∈UI.sd[i]

(1 − inf .sd[ j].hw−>fp)

=
∏

inf .sd[ j]∈UI.sd[i](
inf .sd[ j].hw−>MTTF

inf .sd[ j].hw−>MTTF + inf .sd[ j].hw−>MTTR

)

(15)

With the physical state space S , path reliability at cor-
responding physical state is given by UI.sd[i].R ∗ si. Thus,
component-based software reliability with physical resource
states considered is expressed as

Rsys
′ =

n∑
i=1

(UI.sd[i].R ∗ si) (16)

5. Case Study Evaluation

In this section CSA-based software reliability analysis ap-
proach is applied to evaluate the reliability of a distributed
component-based software system [3]. Evaluation result is
compared with the results in [3] to demonstrate the predic-
tion capabilities of our approach.

5.1 Software System Introduction

The component-based software system in [3] is called Busi-
ness Reporting System (BRS), which is the basis for our
case study evaluation. BRS generates management reports
from business data collected in a database. First of all, we
build a CSA model of this system as shown in Fig. 4.

Users can query the system via web browsers. They
can simply view the currently collected data or generate dif-
ferent kinds of reports (coarse or detailed) for a configurable
number of database entries. The usage model provided by
the domain expert shows that a user requests a report in 30
percent of the cases, from which 10 percent are detailed re-
ports. An average user requests reports for 7 database en-
tries.

On a high abstraction level, the system consists of five
independent software components running on four servers.
The web server propagates user requests to a scheduler com-
ponent, which dispatches them to possibly multiple applica-
tion servers. The application servers host a reporting engine
component, which either directly accesses the database or
queries a cache component.
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Table 1 Node profile in CSA.

Table 2 Hardware reliability.

5.2 CSA-Based Software Reliability Analysis

Before evaluating the reliability of BRS, we have to com-
pute its operational profile at first. The domain experts spec-
ify system level profile, as shown in the bottom left side of
Fig. 4, and the software designers provides the information
about how the components interact, as shown in the upper
side of Fig. 4. With the knowledge of the system level profile
and software architecture, we can execute the Profile algo-
rithm in Fig. 3 to propagate system input profile to all the
components. The obtained operational profiles are shown in
Table 1.

There are three execution paths in BRS obtained by
depth-first traversal, which correspond to three input sub-
domains of user interface processRequest(). First of all,
we solve path reliability without consideration of hard-
ware availability by Eq. (6). The results are 0.2698796,
0.0298719, and 0.699965. In this situation BRS reliability
is

Rsys = UI.R =
3∑

i=1

UI.sd[i].R = 0.9997165 (17)

In order to consider link reliability, we refresh call re-
liability on three paths by Eq. (12) to obtain three path reli-
abilities as 0.2698364, 0.0298660, and 0.6999510.

We annotate the CPU in WebServer, SchedulerServer,
ApplicationServer, DatabaseServer with CPU1, CUP2,
CPU3, CPU4 for convenience to discuss reliability analy-
sis considering hardware availability, whose reliabilities are
solved by Eq. (14) as shown in Table 2.

Based on the execution paths, we build system physical
state space as S = {s1, s2, s3}, where each item represents the

Table 3 Hardware reliability.

Fig. 5 Time complexity comparison.

probability that hardware resources required by correspond-
ing path are normal. The solution by Eq. (15) is {0.9999018,
0.9999018, 0.9999795}.

With the above analysis results, software reliability
considering hardware availability is solved by Eq. (16).

Rsys
′ =

3∑
i=1

(FI.sd[i].R ∗ si) = 0.99960959 (18)

We compare the reliability evaluation by CSA-based
approach with that by PCM-based approach and the simu-
lation result in [3], as shown in Table 3. It can be seen that
three results are very close and the deviation is less than
0.001 percent.

Then we will further compare time complexity of CSA-
based and PCM-based reliability analysis approach. Let the
number of nodes in software architecture model be n and the
number of hardware resources required by a software sys-
tem be m. PCM-based approach considers all possible cases
of hardware availability. As each resource has two possible
states, the size of physical state space is 2m. PCM-based ap-
proach evaluates software reliability at each physical state,
and the time complexity is O(2m · n). The size of physi-
cal state space built by CSA-based approach is equal to the
number of system execution paths obtained by depth-first
traversal through CSA model. CSA-based approach em-
ploys a scenario-based method to evaluate software reliabil-
ity at each physical state, and time complexity is O(e ·m ·n),
where e is the number of paths. Figure 5 shows the time
complexity of the two approaches in the case of n = 10.
CSA-based approach defines a loop action to a path by the
way of modeling loop profile, which makes the approach
not necessary to consider the situation of infinite paths due
to loop. As a result, the number of execution paths in a soft-
ware system is finite and meets e ≤ n. Figure 5 illustrates
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the time complexity of CSA-based approach with e = 10, 6,
and 3. It can be seen that CSA-based approach improves the
efficiency of software reliability analysis compared to expo-
nential time complexity of PCM-based approach for a large
component-based software application.

6. Conclusion

In this paper we propose a new approach to model and ana-
lyze component-based software reliability, which improves
traditional architecture-based approaches to overcome some
of their problems. The approach builds a two-layer model to
describe software architecture for the sake of software de-
velopers, where reliability-related factors are well modeled
to improve the accuracy of software reliability evaluation. A
scenario-based reliability analysis approach is employed to
avoid state space explosion and improve the efficiency of re-
liability analysis. Taking software reliability prediction as a
reference, software architects can constantly improve archi-
tecture design to achieve expected reliability requirements.
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