
812
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

PAPER

Enabling a Uniform OpenCL Device View for Heterogeneous
Platforms

Dafei HUANG†a), Changqing XUN†, Nan WU†, Mei WEN†, Chunyuan ZHANG†, Xing CAI††∗, Nonmembers,
and Qianming YANG†, Student Member

SUMMARY Aiming to ease the parallel programming for heteroge-
neous architectures, we propose and implement a high-level OpenCL run-
time that conceptually merges multiple heterogeneous hardware devices
into one virtual heterogeneous compute device (VHCD). Moreover, auto-
mated workload distribution among the devices is based on offline pro-
filing, together with new programming directives that define the device-
independent data access range per work-group. Therefore, an OpenCL
program originally written for a single compute device can, after inserting a
small number of programming directives, run efficiently on a platform con-
sisting of heterogeneous compute devices. Performance is ensured by in-
troducing the technique of virtual cache management, which minimizes the
amount of host-device data transfer. Our new OpenCL runtime is evaluated
by a diverse set of OpenCL benchmarks, demonstrating good performance
on various configurations of a heterogeneous system.
key words: heterogeneous devices, OpenCL, virtualized single device, au-
tomated workload distribution, data transfer minimization

1. Introduction

Heterogeneity has become a prevailing hardware charac-
teristic of major platforms of the computing industry to-
day. However, it is very difficult to program such sys-
tems that consist of multiple heterogeneous compute de-
vices. Although the OpenCL parallel programming stan-
dard has been designed with cross-platform portability in
mind, user-friendliness is hampered by the many program-
ming details of OpenCL that a user must explicitly handle,
especially when the compute devices are heterogeneous.

OpenCL programming in a nutshell. The main con-
trol of an OpenCL implementation lies inside its host pro-
gram, which uses OpenCL APIs to submit commands to the
devices for performing computations. The host program
also operates, via APIs, each device’s memory, which is
typically organized as buffer objects. A kernel is a special
function written in the OpenCL C language, to be executed
on the devices. The unit of concurrent OpenCL execution
is a work-item, which executes a kernel in a single-kernel-
multiple-data manner. The programmer specifies the num-

Manuscript received July 14, 2014.
Manuscript revised November 5, 2014.
Manuscript publicized January 20, 2015.
†The authors are with School of Computer, National University

of Defense Technology, 410073, Changsha, P. R. China.
††The author is with the Department of Informatics, University

of Oslo, P.O. Box 1080 Blindern, NO-0316 Oslo, Norway.
∗Presently, with Simula Research Laboratory, P.O. Box 134,

NO-1325 Lysaker, Norway.
a) E-mail: hdafei@acm.org

DOI: 10.1587/transinf.2014EDP7244

ber of work-items associated with a kernel, and these work-
items are organized as an N-dimensional range (NDRange).
For workload distribution, an NDRange is divided into mul-
tiple equal-sized work-groups, each having a unique global
ID. The work-items within each work-group have unique lo-
cal IDs.

Programmer’s headaches. From a programmer’s
point of view, there are several headaches associated with
OpenCL programming. First, the programmer has to query,
select and initialize the compute devices, and then create
computing contexts and command queues. These steps are
followed by enqueuing kernel execution, memory manipula-
tion and synchronization commands, which are submitted to
the command queues on the devices. Although an OpenCL
device is actually a logical concept, vendor-supplied specific
OpenCL runtimes force a programmer to submit commands
to each physical device specifically. The second headache
is associated with kernel workload distribution, because the
existing OpenCL runtimes provide no support for automat-
ing workload division between the devices. The program-
mer thus has to write input data to each device’s buffers and
decide the NDRange size on each device, etc. For heteroge-
neous devices, the programmer considers the specific hard-
ware of each device before assigning to it a number of work-
groups, typically relying on some possibly inaccurate early
experience. The third headache concerns data management.
When a distributed kernel finishes on all the involved de-
vices, the programmer has to manipulate inter-device data
transfers if needed. Last but not least, a change in the hard-
ware configuration may require the OpenCL code to be man-
ually re-tuned for performance.

Our solution. As seen above, OpenCL programming
is not very user-friendly for heterogeneous compute de-
vices. To improve the programmability and handle the
above headaches, we propose in this paper a high-level
OpenCL runtime. The rationale is that user-friendliness will
arise from a uniform compute device view, despite whether
the underlying devices are homogeneous or heterogeneous.
We want to relieve the programmer of cumbersome details
about the number and types of devices, and also the tasks of
workload division and data transfer.

In addition to proposing the high-level OpenCL run-
time, this paper also has contributions in (1) balanced work-
load distribution, (2) analysis of work-group buffer access
range, and (3) data buffer management. More specifically,
automated offline profiling is adopted to facilitate a fair dis-

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



HUANG et al.: ENABLING A UNIFORM OPENCL DEVICE VIEW
813

tribution of workload among heterogeneous devices. The
OpenCL C syntax is extended with directives that provide
device-independent buffer access pattern definitions. A vir-
tual software-managed distributed cache is introduced be-
tween the host and the underlying devices, with dedicated
replacement and write-back strategies, for the purpose of
minimizing device-host-device data transfers.

The remainder of this paper is structured as follows.
Section 2 gives an overview of the new OpenCL runtime
and some key design issues. Section 3 explains the imple-
mentation details. The new OpenCL runtime is evaluated
by a set of benchmarks in Sect. 4, while Sect. 5 discusses
the related work. Finally, Sect. 6 addresses the limitations
and proposes some future work.

2. Design Overview

As shown in Fig. 1, we want a new OpenCL runtime that en-
compasses different vendor-specific OpenCL runtimes and,
at the same time, allows the programmer to operate multi-
ple heterogeneous compute devices through a single virtual
heterogeneous compute device (VHCD). That is, only one
VHCD is visible and initialized by the programmer, provid-
ing a virtualized device view. The VHCD-supported run-
time automatically distributes workload across the under-
lying multiple devices. Underneath the VHCD-supported
runtime, vendor-provided OpenCL runtimes directly control
execution of subtasks on the underlying devices. Moreover,
the new OpenCL runtime manages data transfers between
the multiple physical devices.

Based on the FreeOCL [1] framework, which is an
open-source CPU implementation of OpenCL for Linux, we
have implemented the new VHCD-supported runtime. Our
OpenCL runtime is designed as an installable client driver
(ICD), consistent with the OpenCL standard. To prepare the
reader for the implementation details of the new OpenCL
runtime in Sect. 3, let us first provide an overview of its
VHCD-enabling design.

Balanced workload distribution. We use an offline
profiling approach (similar to [2]) to workload distribution,
as a tradeoff between static performance modeling [3] and
a dynamically scheduled task pool [4]. To ensure good par-
titioning accuracy, the computing capability of each device
is measured by an offline code execution, which practically
incurs little overhead. The work-group index space of a ker-

Fig. 1 A virtualized uniform device view enables the VHCD runtime to
operate multiple heterogeneous compute devices.

nel is then automatically partitioned into N work-group as-
signments, the same as the number of underlying compute
devices available.

Analysis of work-group buffer access range. An-
other desirable feature is automated identification of the data
part(s) needed by each device. This relies on the knowledge
of the buffer access range of all the work-groups. Full soft-
ware analysis of the buffer access range, however, may in-
cur large overheads in form of time and/or register usage.
This is especially true in the presence of a large number
of fine-grain data items, for each we need to maintain and
manipulate base, bound, and dependency information. Nev-
ertheless, these overheads can be significantly reduced by
aggregating all the buffer access range information into a
small number of pattern template items. Therefore, we pro-
pose new compiler directives, called buffer access pattern
definition (BAPD), to be inserted into an OpenCL code for
describing the pattern of work-group buffer accesses. Our
new VHCD-supported runtime parses the inserted BAPD di-
rectives to determine the buffer access range of each work-
group assignment.

Data buffer management. We maintain a virtual
VHCD memory that maps to the host memory. The memory
space of each physical device is an image of a portion of the
VHCD memory. Since the devices can only operate with lo-
cal data, data transfers between the VHCD and the devices
are needed for maintaining data consistency. To avoid re-
dundant data transfers, we introduce the technique of buffer
cache management, which maintains data distribution infor-
mation on the memory hierarchy.

3. Implementing the VHCD-Supported OpenCL Run-
time

The new OpenCL runtime works in two phases: offline pro-
filing and actual execution, as shown in Fig. 2. During the
profiling phase, three main modules are in action: kernel
parser, kernel profiler and workload distributor. The first
module is designed based on Clang [5], and translates each
kernel command from the VHCD-command queue. The

Fig. 2 The VHCD-supported OpenCL runtime has two phases: profiling
and execution, each consisting of a number of modules.



814
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

second module profiles kernel execution on each device.
The third module computes a workload partitioning and dis-
tributes all commands to the devices, in addition to storing
the related partitioning information in a data structure called
KernelInfo. If the system configuration remains unchanged,
the KernelInfo structure can be reused, thus no need for new
profiling.

During the execution phase, three more main modules
are in action: kernel translator, task dispatcher and buffer
manager. The first module translates an original kernel code
into a distributed form (as subtasks) intended for the devices.
The second module generates operations of the subtasks to
be executed on the devices. The third module queues the
operations to each device’s command queue.

3.1 Offline Workload Profiling and Partitioning

To ensure a fair workload partitioning across N heteroge-
neous devices, such that the overall kernel execution time is
minimized, we make the following assumption.

Assumption: All the work-groups are executed in the
single-kernel-multiple-data manner. The kernel execution
time on any given device is linearly proportional to the num-
ber of assigned work-groups. Moreover, the time needed by
two different physical devices to complete a single work-
group has a fixed ratio in between.

The key to our assumption is a linear relationship be-
tween the kernel execution time and the number of launched
work-groups. That relationship is basically a step function.
However, we can assume that the execution times of work-
groups are even. Although some kernels with conditional
branches may conflict with this assumption, these branches
are avoidable (e.g. Stencil2D using “halo points” to resolve
the boundary conditions), or only result in small variations
in execution times (e.g. DCT8x8 ignoring the blocks out-
side of image). What’s more, due to the massive number of
work-groups, the step intervals are comparatively very small
to the work-group count as well as the total execution time.
So a linear relationship can apply here.

For verification, we have used an NVIDIA Tesla C2050
GPU to run both benchmark MatrixMul from NVIDIA
OpenCL SDK and benchmark Stencil2D from SHOC [6].
The first test program multiplies two dense matrices (thus
compute-bound), and the latter applies a 9-point stencil on
a 2D grid (thus memory-bound). Kernel execution time
was measured against different numbers of work-groups
launched, and the results of MatrixMul and Stencil2D are
shown in Fig. 3a) and Fig. 3b), respectively. It is obvious
that the two plots confirm our assumption.

Our OpenCL runtime distributes the workload across
heterogeneous devices based on a simple philosophy. Sup-
pose the kernel execution time per work-group on device i
is Ti, i = 1, . . . ,N. An ideal distribution that minimizes
the overall execution time, where Ri denotes the fraction of
work-groups assigned to device i, can be described by the
following equations:

T1 ∗ R1 = T2 ∗ R2 = . . . = TN ∗ RN (1)

R1 + R2 + . . . + RN = 1 (2)

Therefore, we can obtain Ri = 1/Ti ∗ (1/T1 + 1/T2 + . . . +
1/TN)−1 as a fair fraction of the work-groups that should be
assigned to device i.

We remark that offline profiling needs to be performed
for each compute device and each new application, or every
time the code is changed. The associated overhead is usu-
ally negligible. For a kernel that is repeatedly executed in
an actual OpenCL program, a single kernel execution is suf-
ficient for the profiling purpose. Moreover, only a relatively
small number of work-groups need to participate in the sin-
gle kernel execution, because what we want to measure is
the time usage per work-group.

3.2 Defining Buffer Access Pattern

Most typically, an OpenCL kernel traverses a loop. Each
work-item corresponds to one or multiple iterations of the
loop body. The two major memory access patterns associ-
ated with looping are stride and index [7], [8]. In the stride
pattern, the data blocks accessed by adjacent loop iterations
have a fixed distance, and the data blocks have a uniform
size. Each work-item thus accesses a data block or multiple
data blocks with a fixed stride. In the index pattern, both the
stride and the block size are determined by an index array,
both may vary with the loop index. Since a work-group con-
sists of contiguous work-items, they should have the same
access pattern.

Observation: There generally exists a pattern for the
work-items (and work-groups) to access a buffer. Moreover,
for each buffer, the access range of a work-group in the index
space can be denoted by four attributes, {P, S ,D,N}, where
P is the start address, S is the size of each data block, D
is the stride between two consecutive data blocks, N is the
number of data blocks.

We have extended the OpenCL C syntax to allow pro-
grammers to define a work-group’s access pattern for each
buffer, as shown in Fig. 4. The unit for P, S and D is
byte. By default, the value of both P and D is {0, 0, 0}, the
value of S is {1, 1, 1}, and the value of N is 1. Figure 4a)
and Fig. 4b) show, respectively, the BAPD directives that
can be inserted into the Stencil2D benchmark for specify-
ing the access pattern of its input buffer (dataBuf1) and out-
put buffer (dataBuf2). Each rectangle in Fig. 4 represents a

Fig. 3 Kernel execution time of benchmark MatrixMul (a, in seconds)
and Stencil2D (b, in milliseconds), as function of the number of work-
groups launched.



HUANG et al.: ENABLING A UNIFORM OPENCL DEVICE VIEW
815

Fig. 4 BAPD directives used for the input and output buffers of the Sten-
cil2D benchmark.

work-group.

3.3 Distributing Workload among Multiple Devices

For the efficiency of kernel execution, we have adopted two
principles for workload distribution:

Principle 1: Each work-group assignment should be
expressed in a single OpenCL NDRange. That is, the work-
group IDs are contiguous in each dimension.

Principle 2: Subtask partitioning is done in the high-
est dimension. That is, for a 2D index space, partitioning
is performed in rows; for a 3D index space, partitioning is
performed in horizontal planes.

The size of the partitions may not be constant, depen-
dent on the underlying physical devices. If a partitioning
does not satisfy Principle 1, the distributed kernel needs
to be launched multiple times, causing excessive overhead
of kernel launching. Principle 2 concerns the efficiency
of host-device data transfers. It ensures that the buffer ac-
cess range of each subtask is a continuous memory region,
which can be transferred between host and devices by a sin-
gle command. Otherwise, multiple commands may be en-
queued for each subtask, which can significantly reduce the
overall effective bandwidth.

During the profiling phase, after the BAPD directives
are read by the kernel parser, the Ri values will be computed
by the kernel profiler. Using the above two principles, the
workload distributor determines the partitioning and records
it into the KernelInfo data structure, to be used during the
execution phase. The information stored inside KernelInfo
has three parts. In addition to the kernel name, the other two
parts are as follows:

• The workload partitioning description stored as the off-
set and size of each work-group assignment.
• The buffer access range description of each device for

each involved buffer. In particular, the four attributes
{P, S ,D,N}, given by the BAPD directives, enable the
workload distributor to transform 2D/3D data blocks
to a series of {offset, size}, denoting the buffer access
range in 1D flat memory space.

Fig. 5 An example of the auto-generated KernelInfo data structure asso-
ciated with the Stencil2D benchmark, which uses a 4096 × 4096 grid.

Figure 5 shows an example of KernelInfo associated
with Stencil2D, where the global size is (4096,4096,1) and
the size of each work-group is (16,16,1). Two heteroge-
neous devices are assumed, and the partitioning ratio is 1:3.

3.4 Executing Distributed Kernels

Using information stored in KernelInfo, the task dispatcher
sends a series of commands to each device to execute the
distributed kernels. There are four steps corresponding to
clEnqueueNDRangeKernel().

1. Use KernelInfo to generate buffer access requests to the
buffer manager;

2. Use the buffer segment table to locate requested input
data; If needed, carry out device-host-device data trans-
fer and update the segment table;

3. Execute the distributed kernel on devices;
4. Use KernelInfo to update the segment table of each out-

put buffer.

The first, second and the fourth steps are mainly completed
by the buffer manager to be described in Sect. 3.5. The task
dispatcher sends buffer access requests to the buffer manager
according to the BufferList description of KernelInfo. In the
following text of Sect. 3.4, we will describe the third step,
which executes a distributed kernel on multiple devices.

The behavior of each work-item executed on a single
device should be consistent with that when executed on mul-
tiple devices. After the workload partitioning, the index
space of a work-group assignment may not be consistent
with the original programmer-visible kernel index space. It
can cause execution errors of the distributed kernel. For ex-
ample, the code segment of the kernel for a vector addition
with memory coalescing is shown in Fig. 6a), while Fig. 6b)
shows the situation when the kernel is executed on a single
device, assuming global size is 16 and work-group size is
1. The work-item with global ID 12, for instance, will iter-
ate twice, referencing a[12] and a[28]. Figure 6c) shows the
situation of two devices, where the five last work-items are
executed on physical device 1 as a subtask. The global ID
of the previous work-item is 1, and the global size is 5. This
means that the work-item will iterate seven times, referenc-
ing a[1], a[6], a[11], a[16], a[21], a[26] and a[31].

It can be seen from the above example that the incon-
sistency in index space affects not only the buffer locations
accessed by a work-item, but also the number of inner it-
erations per work-item. To solve the problem, we modify
the kernel command which sends the distributed kernel to
the command queues of the physical devices, as shown in



816
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 6 Example execution error of a distributed vector add kernel.

Fig. 7a). The parts in bold italic denote the differences with
the original kernel command. We set global size as the size
of the work-group assignment for the device, and
global offset is set to shift the start address of the NDRange
in the distributed kernel, ensuring correct values of global
ID and work-group ID.

In addition, based on Clang [5], we have designed a
source-to-source translator to transform the original kernel
code into the distributed kernel code. As shown in Fig. 7b),
after the transformation, extra global size arguments are in-
serted. These three arguments denote different dimensions
respectively. In other words, the original global size is
passed to the distributed kernel as arguments, and functions
get global size() and get num groups() are transformed to
use the corresponding arguments. These three arguments are
initiated by the task dispatcher when invoking clEnqueueN-
DRangeKernel() during the execution phase.

3.5 Managing a Virtual Software-Managed Distributed
Cache

Our OpenCL runtime uses a two-level memory hierarchy as
shown in Fig. 8. To distinguish a buffer object that is created
in the virtual VHCD memory from another object created in
a device’s memory, we call the former a buffer object, in
short buffer, and the latter a cache buffer object, in short
cache buffer. The runtime allocates the VHCD memory on
the host and treats it as the main memory. The on-device
memory parts are treated as a virtual software-managed dis-
tributed cache. Whenever a clCreateBuffer() function is in-
voked during the execution phase, a buffer in VHCD mem-
ory, the corresponding on-device cache buffers, and an ini-
tial segment table are created simultaneously. The buffer
manager considers the virtual cache as a write-back cache,
and adopts a cache coherency protocol similar to the MSI
(modified, shared, invalid) protocol. The virtual cache has
three new features:

1. The host may directly access buffers in the VHCD
memory without touching the virtual cache. However,
data in the cache buffers may become invalid.

2. Both buffers and cache buffers are referenced by macro
instructions, e.g., clEnqueueWriteBuffer() and clEn-
queueNDRangeKernel(). Each memory reference is a

Fig. 7 Example kernel code translated by the kernel translator.

Fig. 8 Two-level memory hierarchy of VHCD.

bulk reference, enabling an efficient software manage-
ment of cache coherency.

3. The virtual cache actually corresponds to the device
memory of the devices. Furthermore, the buffer in the
VHCD memory and the corresponding cache buffers in
the virtual distributed cache are of the same size. Thus
capacity miss will not happen in the virtual cache.

To record the data distribution state across all the de-
vices, the buffer manager maintains a buffer segment table
for each buffer. Each item of this table is a buffer segment
representing a portion of the corresponding buffer with the
same state, described by three arguments {offset, size, tag}.
Offset and size denote a segment’s start address and size (in
bytes). Tag is a bitfield variable, revealing on which de-
vice the valid data is stored. Value 1 means valid, 0 means
invalid. The length of a segment can be as short as one sin-
gle byte, which ensures that no redundant data transfers will
happen. On the other hand, feature 3 from above ensures
that the maintenance overhead is acceptable.

Figure 9 shows the state machine of each byte in a
buffer. Buffer read/write requests may be invoked by the
host program (called in short as host read/write) or by the
distributed kernel executed on any physical device (called
in short as Pdevicei read/write), as shown in Table 1. The
three states are defined as follows:

1. Modified: This byte has been modified in one cache
buffer, thus inconsistent with the VHCD memory. The
byte has to be written back to the VHCD memory, be-
fore other devices or the host can read it.

2. Shared: This byte is unmodified and exists in at least
one cache buffer.



HUANG et al.: ENABLING A UNIFORM OPENCL DEVICE VIEW
817

Fig. 9 State machine of each byte in the memory system of VHCD.

Table 1 An overview of actions that need to be carried out by the buffer
manager, in the case of different read/write requests.

Requests Actions

Pdevicei write Modified/Shared/Invalid: Nothing.
Pdevicei read Modified: If read miss, write the segment back and

then transfer it to the requesting Pdevice.
Shared/Invalid: If read miss, transfer the segment to
the requesting Pdevice.

Host write Modified/Shared/Invalid: Copy the data segment
from user space into the VHCD memory and trans-
fer it to all Pdevices.

Host read Modified: Write the data segment from Pdevicei back
to VHCD memory, and then copy it to the user space.
Shared/Invalid: Copy the data segment from VHCD
memory to user space.

3. Invalid: This byte must be fetched from the VHCD
memory if it is to be stored in this cache buffer.

The buffer access requests from the host or Pdevicei

are described as {offset, size, mode(write/read), source(host/
Pdevicei)}. The two first arguments are used to locate a data
segment in a buffer as in the segment table, whereas mode
denotes a read or write data segment in the buffer or its copy
in a cache buffer, and source denotes the requester. Table 1
lists the actions (except state updating) that can be taken
by the buffer manager. Buffer access requests to different
segments within different states may cause different actions.
After the actions are completed, the state of each segment
will be updated according to the state machine shown in
Fig. 9. A segment accessed by different requests may be
split to multiple segments, and adjacent segments with the
same state will be merged. It can be seen that data transfer
is only needed when Pdevicei read miss happens.

3.6 Putting Everything Together

Let us use benchmark Stencil2D as an example, which has
a single kernel invoked iteratively. Figure 10 shows, dur-
ing the kernel’s iterative execution, the state changes of the
segment tables for buffers dataBuf1 and dataBuf2, plus the
inter-device data transfers needed. In the figure, grey bars
with symbols of {} denote buffer access operations. Opera-
tions for buffer dataBuf1 or cache buffer dataBuf1 are found

in the left, operations for buffer dataBuf2 or cache buffer
dataBuf2 are in the right; {offset,size} in these buffer opera-
tions and the segment tables are expressed by a bar’s loca-
tion and length. W and R denote write and read operations,
while Host, Dev0 or Dev1 indicates who performs the oper-
ation. Every symbol of → denotes actual inter-device data
transfer caused by buffer access operations. A black bar de-
notes transferred data location. Note that communication
between Dev0 and Dev1 is actually Dev0-Host-Dev1. Other
bars denote segment tables, where the tag of each segment
has 3 bits, corresponding to Dev0, Dev1, Host. The shading
in a segment table reveals the owners of valid data. Slash
denotes Dev0, backslash denotes Dev1, and vertical bar de-
notes Host. Shared segments are marked with all owners’
flags.

As shown in Fig. 10, Step 1 is HostWrite(dataBuf1).
The whole dataBuf1 array is written to Host, Dev0, and
Dev1. The segment table of dataBuf1 thus contains one
item, with tag ‘111’, denoting that all the devices have valid
data, whereas the segment table of dataBuf2 contains one
item with tag ‘000’. According to the KernelInfo structure
shown in Fig. 5, the partitioning gives two subtasks, 25% of
work on Dev0, 75% on Dev1. Using KernelInfo, the buffer
manager knows that the input to the subtask on Dev0 con-
sists of the upper 1/4 of the input array and one additional
row as its bottom boundary, while the input to the subtask on
Dev1 consists of the lower 3/4 of the input array and one ad-
ditional row as its top boundary. The outputs of the subtasks
are similar to the inputs except the boundary rows.

Step 2 does one execution of the kernel, with array
dataBuf1 as input and array dataBuf2 as output. There arise
two Pdevicei read requests and two Pdevicei write requests
as shown in Fig. 10. The Pdevicei write request changes
the segment table of dataBuf2 into two items, denoting that
Dev0 owns valid the upper part of dataBuf2, while Dev1
owns valid the lower part of dataBuf2. No actual data trans-
fers are needed no matter read or write request.

The kernel is executed again in Step 3, with dataBuf2
as input, dataBuf1 as output. Dev0 and Dev1 have the same
input requirement for dataBuf2 as the previous kernel exe-
cution for dataBuf1. There arise two Pdevicei read requests
and two Pdevicei write requests as shown in Fig. 10. How-
ever, Dev0 only has the upper part of array dataBuf2, while
Dev1 only has the lower part. Pdevicei read operations will
cause cache misses. In other words, the boundary needed
by Dev0 belongs to Dev1, and vice versa. Inter-device data
transfer is thus invoked.

Suppose array dataBuf1 is the output of the final kernel
execution. There is one host read operation as shown in Step
4. The upper part of dataBuf1 belongs to Dev0, while the
lower part belongs to Dev1. The buffer manager invokes the
needed device-host data transfers to read data from buffers
Dev0 and Dev1 to the host.

We can see for Stencil2D, there is only boundary
data exchange between the devices, as efficient as manu-
ally scheduled. Note that a data transfer caused by host
read/write does not count due to unavoidable communica-



818
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 10 State changes of the segment tables during execution of benchmark Stencil2D on a VHCD
with two compute devices.

tion also in the case of manual scheduling. Introducing
the virtual cache into the VHCD system is very important
for real applications, because it minimizes inter-device data
transfers between kernel executions (e.g., invoking a single
kernel several times or invoking multiple kernels), without
having to use manual scheduling.

4. Evaluation

We tested the performance of our VHCD-supported
OpenCL runtime using a heterogeneous system that consists
of two Intel Xeon E5620 quad-core CPUs, one NVIDIA
Tesla C2050 GPU, and one NVIDIA GTX 460 GPU, plus
16GB DDR2 main memory. The operating system is Red
Hat Enterprise Linux 5. The GPUs communicate with the
CPUs via a PCI-E Gen.2 x16 bus that uses point-to-point
serial links. The associated data transfer rate is 8GBps (full
duplex). We used four different hardware configurations de-
noted as C1–C4, as defined in Table 2. The two E5620 CPUs
are treated as a single OpenCL compute device, denoted as
E5620 in this paper.

Eight OpenCL benchmarks were chosen from sev-
eral sources: Parboil [9], SNU NPB [10], NVIDIA, and
SHOC [6]. Some details are given in Table 3. The bench-
marks were selected to cover a wide spectrum of computa-
tion types and execution features. MatrixMul implements
a dense matrix multiplication. SAD computes the sum of
absolute differences kernel, used in MPEG video encoders.
EP generates pairs of Gaussian random deviates using the
Marsaglia polar method. DCT8x8 implements the discrete
cosine transform (DCT) for an 8x8 block. NBODY simu-
lates the evolution of a system of bodies. Stencil2D applies
a 9-point stencil operation to a 2D grid. FDTD3D applies a
finite differences time domain progression stencil on a 3D
surface. FFT3D solves a 3D partial differential equation
using the fast Fourier transform. In Table 3, “single ker-
nel” means that there is only one kernel in the test bench-
mark, whereas “single execution” means the kernel is exe-
cuted once. Take MatrixMul for instance. There is only one

Table 2 Four heterogeneous hardware configurations used for testing the
new OpenCL runtime. (E5620 means two E5620 CPUs combined.)

Name Hardware Configuration

C1 E5620 + G460
C2 E5620 + C2050
C3 G460 + C2050
C4 E5620 + G460 + C2050

kernel in this benchmark and it is executed only one time,
although it may be executed multiple times for performance
measuring. For the Stencil2D benchmark, however, it needs
to be executed multiple times and there is data dependency
between the different executions.

Although the original source codes of all the bench-
marks were designed for a single OpenCL device, we easily
ported them to a heterogeneous platform without any modi-
fication (except inserting a few BAPD directives). The cor-
rectness of the VHCD runtime was verified by checking the
numerical results, and wall-clock timing was used for the
time measurements. The overhead associated with data load
(clEnqueueWriteBuffer) and store (clEnqueuReadBuffer)
was ignored.

4.1 Results

Figure 11 shows that our VHCD-supported runtime gave
a performance boost for almost all the benchmarks on all
the four heterogeneous hardware configurations. The results
also confirm that the VHCD runtime can, in this truly het-
erogeneous scenario, balance the workload distribution and
automate the required data transfers. Speedup of the first
four benchmarks is very close to be perfect, due to the ab-
sence of inter-device data transfer and good load balance be-
tween the devices. Speedup of the last four benchmarks is
less perfect due to unavoidable data transfers. When the ra-
tio of computation versus data transfer is large, the speedup
is very good (such as for NBODY and Stencil2D). The worst
case occurred with FDTD3D, especially the speedup ob-
tained on configuration C4 is less than that on C2 and C3.



HUANG et al.: ENABLING A UNIFORM OPENCL DEVICE VIEW
819

Table 3 Benchmarks used for evaluating the VHCD-supported OpenCL runtime. Column A shows
the number of kernels, column B shows the number of executions for each kernel, column C shows
whether there is inter-device data transfer through the main memory.

Benchmark Source Remarks A B C NDRange Execution

MatrixMul NVIDIA Matrix dimension: 8192x8192 1 1 (8192,8192,1) Single kernel, single kernel execution
SAD Parboil 4x4,search range 33x33,input image 1920x1080 1 1 (1920,1080,1) Single kernel, single kernel execution
EP SNU NPB Class C 1 1 (32768,1,1) Single kernel, single kernel execution
DCT8x8 NVIDIA Input image 4096x8192 1 1 (4096,8192,1) Single kernel, single kernel execution
NBODY NVIDIA 32768 bodies, 100 iters, single precision 1 100 X (32768,1,1) Single kernel, multiple kernel executions
Stencil2D SHOC Size 4(4096x4096:16x16), 1000 iters 1 1000 X (4096,4096,1) Single kernel, multiple kernel executions
FDTD3D NVIDIA 376x376x376, radius 4, 1000 timesteps 1 1000 X (376,376,376) Single kernel, multiple kernel executions
FFT3D SNU NPB 256x256x256, double precision 3 1;1;1 X (256,256,1) Multiple kernels

Fig. 11 Speedup obtained by the VHCD-supported runtime, in comparison with only using E5620.
The value of “Cx Ideal” is calculated by summing up the individual speedup of all the devices found in
one heterogeneous configuration.

Fig. 12 Workload partitionings (between heterogeneous devices) that are automatically derived by
the VHCD-supported runtime.

Fig. 13 A comparison of three workload distribution schemes with respect to the utilization of the
heterogeneous devices.

Figures 12 and 13 investigate the workload distribution
that is automatically performed by the VHCD-supported
runtime. Figure 12 shows, for all the eight benchmarks, the
fractions of workload that are distributed to the heteroge-
neous devices in each of the four hardware configurations.
This partitioning information was generated by the offline

profiling. It can be seen that the new OpenCL runtime can
distribute the workload accordingly, when the benchmark
or heterogeneous hardware configuration varies. Figure 13
shows the utilization level of heterogeneous devices using
three different load balancing approaches, where “static”
means the workload is equally divided among the devices,



820
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 14 Time usage breakdown of the eight benchmarks on the four heterogeneous hardware config-
urations.

Fig. 15 Execution flows of four benchmarks on configuration C4.

“dynamic” means subtasks are dynamically dispatched from
a task pool consisting of 64 subtasks, whereas “ours” refers
to the approach adopted by the VHCD-supported runtime.
The results in Fig. 13 show that our offline-profiling strategy
can achieve a high level of device utilization. For compute-
intensive benchmarks, such as MatrixMul, EP and NBODY,
the result of the dynamic workload distribution is close to
our method, because the runtime scheduling overhead is rel-
atively low. Otherwise, the dynamic workload distribution
performs poorly. In short, a fair distribution of the workload
among heterogeneous devices is facilitated by our VHCD-
supported runtime.

Figure 14 focuses on the runtime and data transfer
overhead, by showing the breakdown of kernel execution
time, which consists of three parts: data transfer between
devices, overhead of the VHCD runtime (including task
dispatching, maintaining buffer segment tables), and dis-
tributed kernel execution time. Since using three devices
results in more inter-device data transfers than using two de-
vices, configuration C4 always spends a larger portion of the
time on data transfers. However, compared with C1–C3, C4
employs more compute devices thus requiring the least over-
all execution time. For memory-intensive applications, such
as the last four benchmarks, data transfers between many
devices can potentially be a scaling problem. We want to
remark, though, that the same scaling problem still exists
if the inter-device communications are hand-coded (instead
of automatically handled by the OpenCL runtime). Another
observation is that the overhead due to the VHCD-supported
runtime itself is very low, almost invisible in Fig. 14.

Furthermore, Fig. 15 shows the kernel execution flows
of four benchmarks on configuration C4, with inter-

Table 4 The relative amount of data transfer with the virtual software-
managed distributed cache, in comparison with a “master-slave” approach

Benchmark C1&C2&C3 C4

NBODY 60% 75%
Stencil2D 1% 2%
FDTD3D 2% 4%
FFT3D 33% 50%

device data transfers automatically handled by the VHCD-
supported runtime. The execution times of NBODY, Sten-
cil2D and FDTD3D are nearly the average costs of one ker-
nel iteration. How data transfers account for a significant
percentage of the total execution time is also shown. The
inherent computation-communication feature of FDTD3D
makes its data transfers relatively the most expensive.
Please note that with our runtime, data transfers cannot start
until all devices have finished their subtasks, which is shown
clearly in the flow of FFT3D. This results in a relatively poor
overlap of kernel execution and data transfers, while care-
fully hand-tuned programs may avoid that.

To see the effectiveness of the virtual software-
managed distributed cache, which minimizes the inter-
device data transfers, we have made a comparison with
a “master-slave” approach where the devices always
send/retrieve their entire local data to/from a host. Table 4
thus shows, for four benchmarks, the relative amount of data
transfer induced by the virtual cache, in comparison with
that of the “master-slave” approach. (The smaller values the
better.) It can be seen that, for a given benchmark, the rel-
ative amount of data transfer is the same for C1, C2 and
C3. This is because the three hardware configurations all in-
volve two devices. The advantage of using the virtual cache



HUANG et al.: ENABLING A UNIFORM OPENCL DEVICE VIEW
821

is especially large for benchmarks that only require bound-
ary data exchanges, such as Stencil2D and FDTD3D. Note
also that, if direct inter-device data transfer is supported by
the underlying hardware, the data transfer cost will decrease
further.

5. Related Work

Although computing systems with accelerators have be-
come mainstream, there still is a lack of support for auto-
matic task scheduling and data consistency when multiple
(heterogeneous) devices exist in the system.

The idea of using a single image that encompasses mul-
tiple devices was first introduced in [11], which is an im-
portant inspiration to our work. However, there are three
different aspects between [11] and the present paper. First,
workload distribution among heterogeneous devices was not
considered in [11]. Second, we have presented the novel
technique of buffer management, which was given little at-
tention in [11]. Third, [11] adopted an automated sampling
method for finding the minimum and maximum addresses
of the work-groups. This method is potentially problematic
because one needs to assume that the addresses are linear
functions of the local and global IDs, which is often not
true. Moreover, only considering the minimum and max-
imum addresses can be inappropriate for work-groups that
operate with multi-dimensional data and/or use coalesced
memory accesses.

Most recently, Pandit et al. [12] designed Fluidic Ker-
nels which shares very similar idea with our work. Their
proposed runtime utilizes a dynamic workload distribution
scheme, so that the distribution, data transfer and data co-
herence are managed dynamically according to the interme-
diate execution status. Comparing to our method, neither
user-specified memory access range nor profiling is needed,
but extra runtime overhead is induced due to dynamic man-
agement which is discussed in Fig. 13.

Sun et al. [13] designed a task queuing extension for
OpenCL that provides a high-level, unified execution model
tightly coupled with a resource management facility. In
multi-GPU environments, the work pool-based task queu-
ing extension allows the programmer to easily adapt the
scheduling policy of OpenCL kernels to fit the environ-
ment. Kim et al. [14] proposed an OpenCL framework
for heterogeneous CPU/GPU clusters. The framework can
achieve both high performance and ease of programming.
The framework also provides an illusion of a single system
for the user. Application developers can thus utilize multi-
ple heterogeneous compute devices, such as multicore CPUs
and GPUs, in a remote node as if they were in a local node.
No communication API, such as the MPI library, is required
in the application source.

In addition to OpenCL, other models have also been
proposed to program heterogeneous platforms. Qilin [2]
is a proposed programming model based on filters. How-
ever, users of Qilin have to write two versions of each fil-
ter for CPU and GPU, respectively. Offline profiling is also

adopted by Qilin to obtain information about each task on
each compute device. Huynh et al. [15] described an effi-
cient and scalable code generation framework that can map
general-purpose streaming applications onto a multi-GPU
system. They proposed an efficient stream graph partition-
ing algorithm that partitions the complex applications to
achieve the best performance under a given shared-memory
constraint. Kunzman et al. [16] are developing a unified pro-
gramming model that can be used for all cores, host and ac-
celerator alike. They discussed the modifications they have
made to the runtime system, along with discussing future
modifications. They developed a simple molecular dynam-
ics program executing on a mixture of x86 and Cell pro-
cessors without requiring hardware-specific code within the
application code.

For domain specific computing, MINT [17] and PH-
YSIS [18] use compiler directives or mathematical formu-
las to assist automated generation of stencil computing GPU
code. A programming model and runtime were proposed in
[19] to target solving dense linear algebra problems on mul-
tiple accelerators. Dynamic scheduling of workload distri-
bution was adopted in that work.

6. Discussion and Future Work

The OpenCL standard and implementations from various
vendors provide researchers with an opportunity to program
heterogeneous platforms using the same programming lan-
guage. Our VHCD-supported OpenCL runtime pushes this
one step further, allowing an OpenCL program originally
written for a single compute device to run seamlessly on
a heterogeneous system that has multiple compute devices.
We believe that our work is a timely contribution, because
of the increasing availability of CPU-GPU heterogeneous
systems. When a same OpenCL program wants to target
different platforms, our VHCD-supported OpenCL runtime
can be a useful tool. Here, it indeed makes sense to view
a collection of heterogeneous devices as a virtualized single
device.

The only required manual effort is to insert a few com-
piler directives. To the best of our knowledge, this VHCD-
supported runtime is the first to automatically exploit mul-
tiple heterogeneous devices from different vendors. Experi-
ments with a diverse set of benchmarks have confirmed the
usability and performance of the new OpenCL runtime.

However, there are six limitations with the new
OpenCL runtime:

• The linear assumption in the profiling phase. Viola-
tions will lead to unbalanced workload distribution,
which lowers the overall performance.
• The BAPD directives need to be inserted manually.
• BAPD can only describe memory access patterns that

can be represented by linear functions. For irregular
memory accesses which are seldom used, program-
mers cannot represent the memory access pattern with
BAPD at all, which is still an unsolved problem in this



822
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

research area to the best of our knowledge.
• The size of the VHCD (our proposed virtual device)

global memory must be equal to the smallest global
memory that physical devices have. Because the global
memory of each device is regarded as a full-size cache
of the VHCD global memory. The runtime will report
an error when try to create memory objects if there is a
violation.
• Performance portability of the OpenCL program is left

untouched. A device-specific program, when executed
directly on another device, typically cannot achieve
good performance [20], [21]. With poor performance
portability, the use of multiple heterogeneous devices
will not be beneficial but cause performance penalties.
• The inherent scaling problem with regard to relatively

large number of heterogeneous devices still exists.

As future work, we will first focus on the second limi-
tation. We have started to use a linear function with a set of
linear constraints, which is known to enable precise analy-
sis of data dependence and control dependence, to represent
the array access pattern for each global array reference in a
kernel [22]. We will try to integrate an array access analy-
sis tool based on this representation to discover buffer access
range automatically, instead of manually inserting BAPD di-
rectives.

Performance portability of OpenCL program is an un-
avoidable issue. We have started to build a translator to en-
able performance portability between devices by translating
a single OpenCL source code to optimized device-specific
code [22]. We will further improve the translator and inte-
grate it into VHCD. What’s more, the translator will also
perceive the performance and figure out how to distribute
the workload, which resolves the last limitation.

Acknowledgments

The authors gratefully acknowledge the support from Na-
tional Natural Science Foundation of China under No.
61033008, 61103080 and 61272145, 863 Program of China
under No. 2012AA012706.

References

[1] R. Brochard and N. Nikolaev, “Multi-platform implementation of
OpenCL 1.2 targeting CPUs,” http://code.google.com/p/freeocl/, ac-
cessed June 5. 2013.

[2] C.K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” Proc. 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pp.45–55, New York, NY, USA, 2009.

[3] D. Grewe and M.F.P. O’Boyle, “A static task partitioning approach
for heterogeneous systems using OpenCL,” Compiler Construction,
ed. J. Knoop, Lecture Notes in Computer Science, vol.6601, pp.286–
305, Springer, 2011.

[4] M. Boyer, S. Che, K. Skadron, J. Gummaraju, and N. Jayasena, “Au-
tomatic intra-application load balancing for heterogeneous systems,”
AMD Fusion Developer Summit, 2011.

[5] C. Lattner, “LLVM and Clang: Advancing compiler technology,”

FOSDEM ’11: Free and Open Source Developers’ European Meet-
ing, Brussels, Belgium, 2011.

[6] A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth,
K. Spafford, V. Tipparaju, and J.S. Vetter, “The scalable heteroge-
neous computing (SHOC) benchmark suite,” Proc. 3rd Workshop
on General-Purpose Computation on Graphics Processing Units,
GPGPU ’10, pp.63–74, New York, NY, USA, 2010.

[7] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Mem-
ory access scheduling,” Proc. 27th Annual International Symposium
on Computer Architecture, ISCA ’00, pp.128–138, Vancouver, BC,
Canada, June 2000.

[8] N. Wu, M. Wen, J. Ren, Y. He, C. Xun, W. Wu, and C. Zhang,
“Cache streamization for high performance stream processor,” In-
ternational Conference on High Performance Computing (HiPC),
pp.140–149, Kochi, India, Dec. 2009.

[9] J.A. Stratton, C. Rodrigues, I.J. Sung, N. Obeid, L.W. Chang,
N. Anssari, G.D. Liu, and W.W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput comput-
ing,” Tech. Rep. IMPACT-12-01, Center for Reliable and High-
Performance Computing, 2012.

[10] S. Seo, G. Jo, and J. Lee, “Performance characterization of the NAS
parallel benchmarks in OpenCL,” IEEE International Symposium
on Workload Characterization (IISWC), pp.137–148, Austin, TX,
USA, 2011.

[11] J. Kim, H. Kim, J.H. Lee, and J. Lee, “Achieving a single compute
device image in OpenCL for multiple GPUs,” Proc. 16th ACM Sym-
posium on Principles and Practice of Parallel Programming, PPoPP
’11, pp.277–288, New York, NY, USA, 2011.

[12] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative ex-
ecution of OpenCL programs on multiple heterogeneous devices,”
Proc. Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO ’14, pp.273–283, Orlando, FL,
USA, 2014.

[13] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli, “Enabling
task-level scheduling on heterogeneous platforms,” Proc. 5th Annual
Workshop on General Purpose Processing with Graphics Processing
Units, GPGPU-5, pp.84–93, New York, NY, USA, 2012.

[14] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “OpenCL as a
unified programming model for heterogeneous CPU/GPU clusters,”
Proc. 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’12, pp.299–300, New Orleans,
LA, USA, 2012.

[15] H.P. Huynh, A. Hagiescu, W.F. Wong, and R.S.M. Goh, “Scalable
framework for mapping streaming applications onto multi-GPU sys-
tems,” Proc. 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pp.1–10, New
Orleans, LA, USA, Feb. 2012.

[16] D. Kunzman and L. Kale, “Programming heterogeneous systems,”
IEEE International Symposium on Parallel and Distributed Process-
ing Workshops and Phd Forum (IPDPSW), pp.2061–2064,
Anchorage, AK, USA, 2011.

[17] D. Unat, X. Cai, and S.B. Baden, “Mint: realizing CUDA perfor-
mance in 3D stencil methods with annotated C,” Proc. International
Conference on Supercomputing, ICS ’11, pp.214–224, New York,
NY, USA, 2011.

[18] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: An
implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers,” Proc. 2011 Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pp.11:1–11:12, Seattle, WA, USA,
2011.

[19] G. Quintana-Ortı́, E.S. Quintana-Ortı́, A. Remón, and R.A. van
de Geijn, “An algorithm-by-blocks for supermatrix band Cholesky
factorization,” in High Performance Computing for Computational
Science - VECPAR 2008, ed. J.M.L.M. Palma, P.R. Amestoy,
M. Daydé, M. Mattoso, and J.C. Lopes, Lecture Notes in Computer
Science, vol.5336, pp.228–239, Springer-Verlag, 2008.



HUANG et al.: ENABLING A UNIFORM OPENCL DEVICE VIEW
823

[20] S. Pennycook, S. Hammond, S. Wright, J. Herdman, I. Miller,
and S.A. Jarvis, “An investigation of the performance portability of
OpenCL,” Journal of Parallel and Distributed Computing, vol.73,
pp.1439–1450, Elsevier, Nov. 2013.

[21] H. Dong, D. Ghosh, F. Zafar, and S. Zhou, “Cross-platform OpenCL
code and performance portability for CPU and GPU architectures in-
vestigated with a climate and weather physics model,” Proc. 2012
41st International Conference on Parallel Processing Workshops,
pp.126–134, Pittsburgh, PA, USA, Sept. 2012.

[22] D. Huang, M. Wen, C. Xun, D. Chen, X. Cai, Y Qiao, N. Wu,
and C. Zhang, “Automated transformation of GPU-specific OpenCL
kernels targeting performance portability on multi-Core/Many-core
CPU,” Proc. 20th International European Conference on Parallel and
Distributed Computing, pp.210–211, Porto, Portugal, Aug. 2014.

Dafei Huang was born in 1987. He is a
Ph.D. candidate in School of Computer at Na-
tional University of Defense Technology. His
research interests include parallel programming,
compiler optimization and runtime design.

Changqing Xun was born in 1983. He
is a research assistant in School of Computer at
National University of Defense Technology. His
research interests include parallel programming,
compiler optimization and runtime design.

Nan Wu was born in 1980. He is an as-
sociate professor in School of Computer at Na-
tional University of Defense Technology. His
research interests include computer architecture,
parallel programming and computer network.

Mei Wen was born in 1975. She is an as-
sociate professor in School of Computer at Na-
tional University of Defense Technology. Her
research interests include computer architecture,
parallel programming and scientific computing.

Chunyuan Zhang was born in 1964. He
is a professor in School of Computer at National
University of Defense Technology. His research
interests include computer architecture, paral-
lel programming, low power design, embedded
systems, media processing and scientific com-
puting.

Xing Cai was born in 1968. He is a profes-
sor in Department of Informatics at University
of Oslo and Simula Research Laboratory. His
research interests include parallel programming,
high-performance scientific computing, numeri-
cal methods and generic PDE software.

Qianming Yang was born in 1984. He
is a Ph.D. candidate in School of Computer
at National University of Defense Technology.
His research interests include computer archi-
tecture, parallel programming, advanced mem-
ory design and embedded system.


