
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015
835

PAPER

A Distributed and Cooperative NameNode Cluster
for a Highly-Available Hadoop Distributed File System

Yonghwan KIM†a), Nonmember, Tadashi ARARAGI††, Member, Junya NAKAMURA†††b), Nonmember,
and Toshimitsu MASUZAWA†c), Member

SUMMARY Recently, Hadoop has attracted much attention from en-
gineers and researchers as an emerging and effective framework for Big
Data. HDFS (Hadoop Distributed File System) can manage a huge amount
of data with high performance and reliability using only commodity hard-
ware. However, HDFS requires a single master node, called a NameNode,
to manage the entire namespace (or all the i-nodes) of a file system. This
causes the SPOF (Single Point Of Failure) problem because the file system
becomes inaccessible when the NameNode fails. This also causes a bottle-
neck of efficiency since all the access requests to the file system have to con-
tact the NameNode. Hadoop 2.0 resolves the SPOF problem by introducing
manual failover based on two NameNodes, Active and Standby. However,
it still has the efficiency bottleneck problem since all the access requests
have to contact the Active in ordinary executions. It may also lose the ad-
vantage of using commodity hardware since the two NameNodes have to
share a highly reliable sophisticated storage. In this paper, we propose a
new HDFS architecture to resolve all the problems mentioned above.
key words: Hadoop, HDFS, high-availability, distributed NameNodes, au-
tomatic failover, load balancing

1. Introduction

Recently, the size of data that needs to be stored, processed,
and maintained is increasing rapidly because of cloud ser-
vices, social network services, and very many log files. IDC
introduces the new term that “digital universe” [1], which is
made up of all digital data in the world. And they predict
the size of digital universe will be 2.8 ZB (2.8 ∗ 1021 Bytes).
We usually call these huge data, which are difficult (or im-
practical) to process with traditional data processing tools or
applications, Bigdata [4]. Storing and processing Bigdata
effectively became an emerging issue over the last several
years, and Hadoop is one of the most popular frameworks
that can handle Bigdata effectively [2], [10].

Hadoop is an open source framework for storing and
processing large data sets distributedly and effectively on
commodity (not highly-reliable) hardware. Surely these

Manuscript received July 28, 2014.
Manuscript revised November 18, 2014.
Manuscript publicized December 26, 2014.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††The author is with Proassist, Ltd., Osaka-shi, 541–0043

Japan.
†††The author is with Information and Media Center, Toyohashi

University of Technology, Toyohashi-shi, 441–8122 Japan.
a) E-mail: y-kim@ist.osaka-u.ac.jp
b) E-mail: junya@imc.tut.ac.jp
c) E-mail: masuzawa@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2014EDP7258

hardware are not designed specifically as parts of a large
distributed system or storage, but have been appropriated for
this role in Hadoop. We can also increase the Hadoop sys-
tem performance easily by installing additional hardware.
For these reasons, many companies or research institutes
begin to use Hadoop. For example, NewYork Times uses
Hadoop to store all previous articles, and Facebook ana-
lyzes 135 TB of datasets everyday. In Japan, Yahoo! Japan
uses Hadoop for analysis of access logs, and Rakuten uses
it for merchandise managements and behavioral analysis of
users. DeNA also uses Hadoop to analyze all user’s behav-
iors whose number is over 2 billions per day.

Hadoop consists of two main components. One is
HDFS (Hadoop Distributed File System) [7] and the other
one is MapReduce [6]. HDFS is a distributed file system
based on GFS (Google File System) [5], and MapReduce is
a programming model for processing large data sets.

HDFS consists of only one master node named a
NameNode, and many worker nodes named DataNodes.
The NameNode manages metadata of all files and direc-
tories of the file system, and DataNodes store actual data
blocks in their local storages. Each datum in the file system
is divided into several blocks of a predetermined size, and
each block is replicated. Because of this replication, HDFS
can guarantee reliability of stored data even if some DataN-
odes fail.

The NameNode maintains iNodes which are meta-
data of all files and directories in HDFS. Each iNode con-
tains a file name, path information, access permission, the
number of replications, a list of DataNodes storing ac-
tual blocks, and so on. In order to access to HDFS, each
client should send requests (commands of the file system)
to the NameNode and these requests are processed by the
NameNode.

However, HDFS has some problems because the
NameNode is the only one master node [3], [18], [19].

1. Single Point Of Failure (SPOF): A failure of the
NameNode causes a failure of the entire system.

2. Namespace Limitation: The NameNode maintains all
iNodes on its local memory in order to process the
requests instantly. Thus, the size of the namespace
is limited by the size of local memory (RAM) in the
NameNode. According to previous works [18], [20], in
order to store 100 million files, a NameNode should
have at least 60 GB of RAM.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

836
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

3. Load Balancing Problem: All requests from clients
are received and processed by the NameNode. This
may cause the bottleneck of performance.

In this paper, to resolve these problems, we pro-
pose a new architecture of HDFS which allows multiple
NameNodes. Our proposed system has the following ad-
vantages.

• Resolving SPOF Problem: We resolve the SPOF
problem using multiple NameNodes. When some
NameNodes fail, other NameNodes take their roles im-
mediately, instead of the failed NameNodes.

• Resolving NameNode Limitation: We can extend the
maximum size of the namespace by installing addi-
tional NameNodes.

• Load Balancing: All iNodes are distributed among
many NameNodes. Thus, each NameNode has to man-
age only a portion of the entire namespace, and it
should process only the requests related to the names-
pace it maintains.

• Commodity Hardware: The proposed system can be
constructed by only commodity hardware as the origi-
nal HDFS and needs no special hardware.

• Weak-linearizability: The execution of our system
guarantees weak-linearizability; which is a weaker
property than linearizability [22], [23]. The definition
and proof of weak-linearizability will be discussed in
Sect. 5.

The rest of this paper is organized as follows: Section 2
introduces some related works As the background of our
work, HDFS and ZooKeeper [8] are introduced in Sect. 3.
Section 4 presents our proposed system and protocol, and
their correctness is shown in Sect. 5. The experimental eval-
uations of system overhead and performance of load balanc-
ing are presented in Sect. 6. A summary and future works
are given in Sect. 7.

2. Related Works

From the viewpoint of availaility, the SPOF problem of the
NameNode is the most critical problem in HDFS. Therefore,
there are various studies of this problem.

In Hadoop 1.x, HDFS introduces a S econdary
NameNode and a Backup NameNode to store the process
logs of the NameNode. When the NameNode fails, HDFS
can be restored using those stored logs. However, monitor-
ing of faults and restoring of HDFS can be executed only
manually by a system administrator.

Hadoop 2.0 introduces a HDFS HA (High-Availabili-
ty) [11] using two NameNodes which are completely syn-
chronized to resolve the SPOF problem. One NameNode is
called an Active NameNode, which is responsible for pro-
cessing the requests from clients. Another NameNode is
called a S tandby NameNode, which is keeping its state syn-
chronized with the Active NameNode to provide a failover.
When the Active NameNode fails, the Standby NameNode

take over the role of the Active NameNode. However, in or-
der to synchronize these two NameNodes, a shared storage
is required between them. Basically the Active NameNode
writes its edit logs to this shared storage and the Standby
NameNode applies these stored edit logs to its own state.
This causes a new SPOF problem because the shared storage
is a single point which stores all edit logs. Therefore, relia-
bility of shared storage must be achieved by, for instance a
RAID technology or a multiplexing of the network, to guar-
antee high-availability of HDFS.

In Hadoop 2.1 or later versions, a new architec-
ture, Quorum Journal Manager (QJM) [12], is introduced.
Hadoop 2.1 also has two NameNodes that are configured
and synchronized at all times. But Hadoop 2.1 implements
QJM, instead of the shared storage. QJM consists of many
machines named JournalNodes. The Active NameNode
sends its edit logs to the JournalNodes, instead of writing
to the shared storage. The Active NameNode’s edit logs are
durably recorded to a majority of these JournalNodes. The
Standby NameNode constantly checks these JournalNodes,
and applies the new edit logs (if exists) to its own names-
pace. The QJM can tolerate up to �(N − 1)/2�. Note that at
least 3 JournalNodes are required and an odd number (i.e. 3,
5, 7, etc.) of JournalNodes are recommended. The QJM re-
solves the SPOF problem of the shared storage in Hadoop
2.0, but the namespace limitation and the load balancing
problems are still left because there is the only one (Active)
NameNode in this system.

Facebook also presents an AvatarNode [13], [14] for
availability of HDFS, which is keeping its state synchro-
nized with the NameNode. But actually this system does
not deal with the namespace limitation or the load balanc-
ing problems.

Gira f f a file system [15] is proposed to resolve both
the namespace limitation problem and the load balancing
problem. Giraffa file system adopts HBase [16], which is
the Hadoop distributed and scalable database and is the open
source implementation of Google’s BigTable [21]. HBase
consists of lots of servers named RegionS ervers, and guar-
antees scalability linear to the number of RegionServers. In
Giraffa file system, all iNodes are stored in HBase in a dis-
tributed manner. Therefore, Giraffa can resolve the names-
pace limitation problem due to the scalability property of
HBase. HBase can also process a huge number of clients
because HBase processes requests from clients through co-
operation among many RegionServers. This implies that
Giraffa file system also resolves the load balancing problem.

HBase has only one master node named HMaster.
Different from the NameNode in HDFS, the HMaster (in
Giraffa file system) does not store any iNode actually, there-
fore failure of the HMaster does not cause loss of metadata.
However, The HMaster is constantly monitoring all Region-
Servers using heartbeat messages. When the HMaster de-
tects some troubles of RegionServers, it reallocates the data
maintained by the failed RegionServers to other Region-
Servers. Note that the data maintained by the failed Region-
Servers are stored on local disks periodically. The HMaster

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
837

has an important role for availability of the HBase system,
and thus the system cannot tolerate failure of the HMaster
(even though it does not cause the loss of data). And a
failover process of HBase requires a certain amount of time
because data of the failed RegionServers are stored in their
local disks as the file format called HFile.

3. Background

In this section, we explain the background of our work,
HDFS and ZooKeeper, in detail. And we introduce the fault
model that we consider in this paper.

3.1 HDFS (Hadoop Distributed File System)

HDFS [7] is an open-source software framework and a log-
ical distributed file system for large data sets. It can store
and process large data sets efficiently on clusters of com-
modity hardware. Clients can access HDFS as an ordinary
file system by just sending requests to the NameNode.

HDFS adopts a master/slave model. HDFS consists
of one master node named NameNode, and many worker
nodes named DataNodes (Fig. 1). The NameNode maintains
the entire namespace of the file system, which includes all
metadata. Each file is divided into several blocks and each
block is replicated. All file blocks (including the replicated
blocks) are stored on local disks of DataNodes. Therefore,
the files in HDFS are not be lost by DataNodes’ failures.
Each DataNode reports its own state, which includes a heart-
beat, status of blocks, and remaining space of its local disk,

Fig. 1 Architecture of HDFS.

to the NameNode periodically.
The NameNode manages all iNodes (metadata) of

the HDFS’s namespace. Each iNode corresponds to each
file or each directory in HDFS and contains all infor-
maiton about its corresponding file, for example, a name,
a size, access permissions, and locations of all blocks. The
NameNode can process requests from clients with referring
these iNodes. The NameNode stores all iNodes on its own
memory (RAM) for immediate responces.

If the NameNode fails, clients cannot access to HDFS,
because all iNodes are lost. Therefore, fault-tolerance of the
NameNode is one of the most critical problem of HDFS’s
availability, and there are lots of works of this problem.

3.2 ZooKeeper

ZooKeeper [8] is a small cluster that provides highly reli-
able distributed coordination. All servers in Zookeeper are
synchronized, and one of them behaves as a leader (Fig. 2).
Zookeeper is distributed over a sets of hosts called an en-
semble. As long as majority of the servers are available, the
ZooKeeper service is available.

ZooKeeper is organized similarly to a standard file sys-
tem. It also provides a namespace of the file system. Actu-
ally ZooKeeper has only a few commands of the file sys-
tem and relatively small space, but it can provide high fault-
tolerance.

ZooKeeper stores coordination data, e.g. status infor-
mation, configuration, location information, etc., at znodes
which are basic storage units. The data stored at each znode,
which includes data changes, ACL changes, and timestamp,
in a namespace are read and written atomically.

ZooKeeper also provides useful data models as fol-
lows.

• Ephemeral nodes: Each znode can be a permanent
node or an ephemeral node. When a znode is created,
the type of node is determined, and is never changed.

Fig. 2 ZooKeeper service.

838
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

In the case of an ephemeral node, the znode exists as
long as the session creating the znode is active. This
implies that when the client creating the znode fails,
the corresponding znode is also deleted. A permanent
node is never deleted without a client’s explicit request.

• Watches: Watches allow clients to get notifications
when a znode changes. Watches are set by operations
on the ZooKeeper service and are triggered by some
events. For instance, a client can register the watcher
on a specific znode to detect deletion of the znode.
However, Watchers are triggered only once. To re-
ceive multiple notifications, a client needs to register
the watcher once again.

In our proposed system, all NameNodes are mon-
itored using two data models introduced above. Each
NameNode creates a znode on ZooKeeper as an ephemeral
node. Some troubles on the NameNodes can be detected
because an ephemeral node is deleted when the correspond-
ing NameNode fails. Thus the watcher is registered for each
ephemeral node to operate a failover process.

3.3 Fault Model

In this paper, we consider only crash faults of NameNodes,
where the faulty NameNodes prematurely stop their opera-
tions. We assume that Zookeeper is reliable and can eventu-
ally detect the faults of NameNodes.

4. Our Approach: Cooperative Distirbuted NameNode
Cluster

4.1 Namespace Partitioning

As we mentioned in the previous section, all iNodes are
stored on the memory of the NameNode. An iNode in-
cludes all information (name, size, access permission, block
locations, etc.) of its corresponding file (or directory). The
namespace of HDFS can be represented by the set of
iNodes.

Our proposed system has several NameNodes. It par-
titions the namespace of HDFS and stores replicas of the
fragments distributedly among the NameNodes. Figure 3
describes the difference between our system and Hadoop
2.0 [11]. A tree on the upper-left shows the entire names-
pace. The root of the tree corresponds the root directory, and
the sub-directories under the root directory are described as
subtrees (triangles). To help to understand, identifiers of
each subtree is attached as NS 1,NS 2,NS 3,

Hadoop 2.x has two NameNodes, Active and Standby.
Each of the NameNodes stores the entire namespace. The
Active NameNode is responsible for processing requests
from all clients, and it writes edit logs to a shared stor-
age. When new edit logs are written on a shared storage (or
JournalNodes in Hadoop 2.2 or later versions), the Standby
NameNode reads those edit logs and applies them to its own
state. Therefore, two NameNodes are completely synchro-
nized at all times, and this enables the Standby NameNode

Fig. 3 Namespace partitioning.

to operate as an Active NameNode when the (original) Ac-
tive NameNode fails.

In contrast, the lower part of Fig. 3 presents our pro-
posed architecture. Our system contains N NameNodes de-
noted by NameNode1,NameNode2, . . . ,NameNodeN , and
this set of NameNodes are called a NameNode cluster.
The namespace is partitioned into m disjoint fragments
(NS 1,NS 2, . . . ,NS m). The fragments are replicated and
distributedly stored in the NameNodes. In Fig. 3, each
fragment has 3 replicas including itself. These 3 repli-
cas are stored on different NameNodes, for example, repli-
cas of NS i are stored on NameNode1, NameNode2, and
NameNode3.

For each fragment Ni, the NameNodes storing a replica
of Ni are classified into a Primary NameNode and Backup
NameNodes. Only one NameNode can be a Primary
NameNode of NS i and the Primary NameNodes of dif-
ferent fragments Ni and Nj are determined independently.
Only the Primary NameNode of Ni can process the re-
quests on NS i from clients. All the other NameNodes are
Backup NameNodes modify NS i they store if the Primary
NameNode allows.

We deal with the SPOF problem of HDFS using these
NameNodes. When the Primary NameNode of NS i mod-
ifies the state of NS i, it sends its edit logs to all Backup
NameNodes storing NS i. When the Primary NameNode of
NS i fails, one of the Backup NameNodes takes over the
role of the Primary NameNode. This failover process can
be operated within a short time. In the lower part of Fig. 3,
the Primary NameNode of NS 2 is NameNode2, and NS 2

is also maintained by NameNode1 and NameNode3. When
NameNode2 fails, NameNode1 or NameNode3 becomes the
Primary NameNode of NS 2.

Certainly, it is not easy to guarantee that the states of all
replicated NS i are completely synchronized to be identical,

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
839

because message communication in the distributed systems
might be delayed unpredictably. Therefore we propose the
majority-based protocol in Sect. 4.2.

All fragment information, which includes the parti-
tion information and the address of the Primary NameNode
of each fragment, is maintained by ZooKeeper, a highly-
reliable distributed coordinator. We call this information
NSTable (NameSpace Table), and we assume that clients
can recognize the destination address of each request refer-
ring the NSTable.

4.2 Cooperative Process

In this Section, we explain how NameNodes cooperate.

4.2.1 Consistency Mechanisms

As mentioned in Sect. 4.1, in our proposed architecture, we
partition a namespace into m fragments, replicate each frag-
ment to make k replicas, store these replicas in k differ-
ent NameNodes (one Primary NameNode and k-1 Backup
NameNodes). We call k redundancy factor. The redundancy
factor determines a degree of fault-tolerance.

In our architecture, synchronization among
NameNodes is required to update each fragment consis-
tently. The synchronization is realized using message com-
munication implemented by RPC (Remote Procedure Call)
protocol. Notice that a message sender never knows whether
a message is received or not, until its acknowledgement
comes back.

Now we introduce a majority-based message protocol
that can make the replicas of each fragment keep consis-
tency. This majority-based protocol can guarantee the con-
sistency even if up to (� k−1

2 �) NameNodes fail, where k is the
redundancy factor.

Our Majority-based Protocol: To send requests to HDFS,
a client should send the requests to the Primary NameNode.
The clients can get the address of the Primary NameNode
from ZooKeeper. When the Primary NameNode receives a
request from a client, it checks whether the request is valid
or not. The request is invalid when the client gets an out-
of-date address of the Primary NameNode. This happens
because NSTable can be changed by the failover process. If
the request is valid, the Primary NameNode processes (ap-
plies) the request.

A request from a client may modify the state of the
fragment. If the state of the fragment is modified, the
Primary NameNode sends sync messages to all Backup
NameNodes maintaining the replicas of the fragment. The
Backup NameNode which receives the sync message sends
ack message to the Primary NameNode. The Primary
NameNode has to wait for receipts of the ack messages from
a majority of the Backup NameNodes.

There are k replicas of each fragment and (k − 1)
Backup NameNodes maintain the replicas, thus, the Primary
NameNode requires k

2 or more ack messages to proceed to

Fig. 4 Process of the request on a primary NameNode.

the next step. If a majority of the ack messages are received
by the Primary NameNode, it can fix the modificiation of
the fragment’s state (i.e., commit the transaction) and sends
the result (response) of the request to the client. Finally, the
Primary NameNode sends update messages to all Backup
NameNodes to fix the replicas’ states of the fragment.

Figure 4 shows the flow of processing a request from a
client on the Primary NameNode. We describe this process
in detail through Algorithms from 1 to 3. In this Algorithms,
we represent the system’s state like NS vf , where vmeans the
version of current view which is incremented by the failover
process and f means the version of its own fragment (f can
be increased by processing the request). We also represent
the Primary NameNode just as PNN.

4.2.2 Automatic Failover

In our architecture, we use ZooKeeper, which is a dis-
tributed coordinator, in order to keep consistency among
NameNodes. Each NameNode creates a session that cre-

Algorithm 1 When a request from a client is received
1: procedure OnRequest(Req j) � when Req j from Clti is received
2: if !isValid(NS Table,Req j) then � validity check
3: Notify Clti of the invalid request � Clti may check NS Table
4: return
5: end if
6: if update of NS vf is not necessary then

� Some requests do not require the update of NS (e.g. ls)
7: return Response of Req j

8: end if
9: Create NS v(f+1) from the latest state NS vf (by applying Req j)

10: Set NS v(f+1) as a tentative state
11: Send S yncv(f+1) (edit log for NS v(f+1)) to backup NameNodes
12: Wait until the receipt a majority of the ack messages
13: Update NS v(f+1) to a fixed state
14: Send Result (Req j) to Client(Clti)
15: Send U pdatev(f+1) (for logv(f+1)) to backup NameNodes
16: end procedure

840
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Algorithm 2 When S ync is received
1: procedure OnLog(S yncv

′
f ′) � when S ync from PNN is received

2: if isPNN then � PNN received S ync
3: if v’ > v then � comparing log’s view with current view
4: Check ZooKeeper’s Failover Log
5: Sync its own state to the latest log version
6: end if
7: end if
8: if (v = v’) & (f+1 = f’) then � next version of fragment’s state
9: Create NS v(f+1) as unfixed state (by applying S yncv

′
f ′)

10: Send ackv(f+1) to PNN
11: end if
12: end procedure

Algorithm 3 When U pdate from PNN is received
1: procedure OnUpdate(U pdatev

′
f ′)

2: if NS v
′

f ′ is unfixed state then � valid update?

3: Update NS v
′

f ′ to fixed state
4: end if
5: end procedure

ates znode as an ephemeral node on the ZooKeeper and
sets a watcher on that znode. This process is used for
detecting a fault of the NameNode. When a NameNode
fails, the ephemeral node created by that NameNode is
deleted due to disconnection of the session with it. If
the Primary NameNode fails, the ZooKeeper notifies all
Backup NameNodes of the Primary NameNode’s failure.
The next Primary NameNode is determined by rotation re-
ferring NSTable.

The Backup NameNode which received the notifica-
tion from the ZooKeeper records its state of the managed
fragment to the ZooKeeper. The next Primary NameNode
checks the ZooKeeper and waits until a majority of the repli-
cas’ states (k

2 or more) are recorded. When a majority of the
fragment’s states is recorded on the ZooKeeper, the Primary
NameNode elects the latest state of the fragment as the state
after the failover. NSTable should be modified during this
failover process.

We should also consider the following situations:

1. An ephemeral znode created on the ZooKeeper may be
deleted even when the NameNode does not fail. This
is caused by some temporary network troubles.

2. During a failover, the next Primary NameNode may
also fail before the termination of the failover.

In case 1, the (previous) Primary NameNode which is
excluded by some temporary network troubles can rejoin to
the NameNode cluster with creating a new ephemeral node
and setting a watcher once again. To guarantee consistency
of the namespace, process log of the failover is recorded
on the ZooKeeper. This log can be used when the previous
NameNode recognizes the disconnection and returns to the
system.

In case 2, the ephemeral node created by the next Pri-
mary NameNode is deleted although a failover is underway.

A new failover is initiated by the ZooKeeper and the new
next Primary NameNode coordiates it.

A Failover Process: As we explain above, each NameNode
creates an ephemeral znode on the ZooKeeper and sets a
watcher on it for a failover.

When the ZooKeeper finds deletion of the ehpe-
meral node, it checks whether it is created by the Pri-
mary NameNode or not. If it is created by the Primary
NameNode, the ZooKeeper sends S uspect messages to all
Backup NameNodes. The Backup NameNode which re-
ceived the S uspect message, it records its fragment’s state
on a predetermined znode on the ZooKeeper. The next Pri-
mary NameNode waits until a majority of the fragment’s
states is recorded on the ZooKeeper, and adopts the latest
state as its own state. The next Primary NameNode sends
consensus messages to all Backup NameNodes, and waits
until a majority of the Backup NameNodes. Finally, the next
Primary NameNode becomes the Primary NameNode, and
sends Resync messages to all Backup NameNodes. This
Primary NameNode can begin to process the request from
clients immediately, because all Backup NameNodes must
receive the Resync message before receiving any S ync mes-
sages from the new Primary NameNode due to FIFO prop-
erty.

We describe this process in detail through Algorithms
from 4 to 7.

Algorithm 4 When S uspect from ZooKeeper is received
1: procedure OnSuspect(NNx)
2: Record its latest NS vifi to znode on the ZooKeeper
3: if sel f is the next PNN then
4: Wait until a majority of the NS vf are recorded
5: nextNS← newest one among collected NS vf s
6: Send Consensus(nextNS) to backup NameNodes
7: Wait until a majority of the Ready are received
8: Broadcast Resync(nextNS) to NameNodes (include itself)
9: Write Failover’s Log to the ZooKeeper

10: end if
11: end procedure

Algorithm 5 When Consensus is received
1: procedure OnConsensus(nextNS)

� when Consensus from the next PNN is received
2: if isNextPNN then � sender is next PNN?
3: Synchronize its own state to nextNS
4: Send Ready() to the next PNN
5: end if
6: end procedure

Algorithm 6 ZooKeeper’s Watcher Code
1: procedure OnDisconnect(NNx)

� when the session with the NameNode(NNx) is disconnected
2: if NNx is the Primary NameNode then
3: Send S uspect to NameNodes maintaining PNN’s replica
4: end if
5: end procedure

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
841

Algorithm 7 When a NN finds disconnection with ZK
1: procedure OnDisconnect() � when the session w/ ZK is disconnected
2: Try to start session w/ ZK and makes a new ZNode
3: Check the failover’s Log and synchronize with the current PNN
4: Set Watcher to ZK
5: end procedure

4.3 Implementation Sketch

In this Section, we present details of implementation of our
system to some extent.

Namespace Table: The namespace table (NSTable) is a
hash table which has a file path as an input and it returns the
corresponding fragment number and Primary NameNode’s
address as outputs. NSTable is stored in the znode of
ZooKeeper, a highly reliable distributed file system. We
assume that NSTable is never lost due to the high fault-
tolerance of ZooKeeper. NSTable includes the NSTable’s
version which is updated at each failover process. All
NameNodes and clients can get the most recent NSTable
from ZooKeeper at any time. Note that NSTables’ versions
some NameNodes or clients get can be different.

ZooKeeper: ZooKeeper is a highly reliable file system. In
our system, ZooKeeper has two main roles.

First, we uses ZooKeeper to store NSTable reliably.
The most recent NSTable is always stored in the predeter-
mined znode of ZooKeeper. Our system communicates with
ZooKeeper to update NSTable only. All NameNodes and
clients can get the most recent NSTable from ZooKeeper.

Another role of ZooKeeper is to detect faults of
NameNodes. ZooKeeper is a distributed file system con-
sisting of znodes, but it can be utilized to detect nodes’
crash faults using ephemeral nodes. Each NameNode in
our system creates its own ephemeral node in ZooKeeper.
When a NameNode fails, its corresponding ephemeral node
is deleted by a property of ZooKeeper, and some predeter-
mined actions (a failover process in our system) is operated
(Algorithm 6).

ZooKeeper is operated separately from our system
and requires no modification for application to our sys-
tem. Our system uses ZooKeeper as a small and reliable
file system for storing NSTable. And NameNodes’ crash
faults can be detected by ZooKeeper using their ephemeral
nodes in ZooKeeper system. Therefore, new (or recovered)
NameNodes have to create their ephemeral nodes and set
watchers (Algorithm 6) for failover processes.

NameNodes: A client sends a request to the file system us-
ing RPC (same as the original HDFS). Each NameNode cre-
ates a new (java) thread and executes Algorithm 1 when it
receives a request from the client.

Each NameNode maintains the set of the NameNodes’
addresses of each fragment. It knows from the NSTable
which NameNode is the Primary NameNode in this set.
Therefore, each NameNode can check the validity of the

request from the client: it detects invalidity of the request
when it is not the Primary NameNode.

Communications among NameNodes are implemented
by Remote Procedure Call (RPC) which is provided by
Hadoop library. A Primary NameNode can send the cor-
responding fragment’s update information to all Backup
NameNodes using RPC.

Clients: Each client can send requests (commands to the
file system) to our system, which is the same as the original
HDFS. However, as explained in this section, each client
has to know the corresponding Primary NameNode’s ad-
dress which it sends a request to. This implies that each
client requires NSTable to decide the target NameNode.

In our system, each client has NSTable instead of
NameNode’s address in the original HDFS. Each client can
easily get the most recent NSTable from ZooKeeper. If a
client sends a request to an invalid Primary NameNode be-
cause of an outdated version of NSTable, it is notified from
the NameNode which received the request.

5. Proof of Correctness

In this Section, we prove the correctness of our majority-
based protocol and failover process.

Our system can guarantee the follows regardless of
some NameNodes’ failure.

1. If a client receives a reply of its request from the sys-
tem, that the request is commmitted.

2. When a client refers a namespace in HDFS, it never
sees an older namespace than the one it refers before.

3. A namespace in HDFS is modified by clients only. This
implies the system never changes a namespace inter-
nally.

5.1 Preliminaries

In this Section, to help to understand our proof, we explain
some conceptional notations of the events that can be oc-
curred in our proposed system.

To access HDFS, each client sends a request to the Pri-
mary NameNode and waits until a result is back. Following
a shared memory model of distributed systems [22], we call
these events an invocation and a result respectively. A invo-
cation (Inv) represents a sending of a request, and a result
(Res) represents a receipt of a response from a system.

Each Inv and Res has an index, like Invi or Res j. Resi is
the result of Invi. A pair T xi = (Invi,Resi) of an invocation
and the corresponding result is called a transaction.

Figure 5 describes interaction between a client and the
system. A client sends a request (Invi) to an interface pro-
cess of the system, and receives a response (Resi) from the
interface process. When the interface process receives Invi,
it forwards it to the system (the Primary NameNode) and
forwards Resi to a client when received from the system.
We call Geti an event that the Primary NameNode receives
Invi, and call S endi an event that the Primary NameNode

842
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 5 Representations of a request.

Fig. 6 Timings of Inv and Res.

sends a result to the interface process.
We can summarize these events as follows: a client

sends a request to the system (Invi), the Primary NameNode
receives Invi (Geti), the Primary NameNode sends a re-
sponse back to the client (S endi), finally, the client receives
the response (Resi). The causal order of these events be-
comes as follows inevitably: Invi ≺ Geti ≺ S endi ≺ Resi.

However, in our proposed system, the system might not
send the response when failures or delays occur in the sys-
tem. If the response is not received by the client within a
certain interval time, the client considers its own request is
failed. We call this TimeOut. As a result, all transactions
of clients can be presented to T xi = (Invi,Resi), where Resi

can have two kinds of result, Reply or TimeOut.
Figure 6 shows events of a request using a time-space

diagram. If there is no fault in the system, a client Clti and
a NameNode NNx may operate like Fig. 6 (a). We can find
the causal order of the events Invi ≺ Geti ≺ S endi ≺ Resi.

However, the client cannot receive the response within
a predetermined interval time, Resi becomes not Reply
but TimeOut. Figure 6 (b) illustrates the case of Resi =

TimeOut because of a message’s delay. Note that, in this

case, only the causal orders Invi ≺ Resi and Invi ≺ Geti ≺
S endi (if exist) hold.

In this paper, we model our system as a state machine.
A request from a client is regarded as an input of this state
machine, the state of the system is changed deterministi-
cally by this input. This implies that our system’s state is
described by a sequence of requests. If a T xi is in an input
sequence, we call that request T xi is applied. In our system,
the relation between the system state and the sequence of
requests is complicated because of concurrency by multiple
NameNodes, NameNode fauls and message delays. We ex-
plain the details of the relation between an input sequence
and a system’s state.

5.2 Definitions

In this Section, we introduce some definitions for our proof.
The guiding principle of our protocol is that there is

only one Primary NameNode for each fragment at any time,
however some NameNodes may temporarily recognize a
different NameNode as a current Primary NameNode be-
cause of asynchrony. To avoid ambiguity, we define follows:

Definition 1. Global Primary NameNode. A Global Pri-
mary NameNode at a certain moment is the NameNode
which sends a Resync message lastly. If there is no
NameNode which has sent a Resync message, the initial Pri-
mary NameNode becomes a Global Primary NameNode.

We define a state of a NameNode as follows.

Definition 2. A State of a NameNode. A state of a
NameNode can be determined by a sequence of requests.
We represent the state of the NameNode NNi as follows:
σNNi = [Reqi ≺ Reqj ≺ . . .].

A state of a NameNode starts with its initial state, and
should be changed by requests from clients deterministi-
cally. Therefore, a current state of the Primary NameNode
can be specified by a sequence of corresponding Get events
and the Backup NameNodes can be specified by a sequence
of corresponding S ync events from the Primary NameNode.

Each Reqi in a sequence σNNi has one of between the
two states, fixed or unfixed. We explain a fixed or unfixed
request of each Reqi as follows.

• Each NameNode adds an unfixed Reqi to the end of its
own state, when it (if it is the Primary NameNode) re-
ceives the corresponding Geti, or it (if it is the Backup
NameNode) receives the corresponding S ync(Geti)
message from the Primary NameNode.

• Each unfixed Reqi is changed to a fixed request, when
the NameNode (if it is the Primary NameNode) re-
ceives corresponding ack messages from a majority
of Backup NameNodes, or the NameNode (if it is
the Backup NameNode) receives the corresponding
U pdate(Geti) message from the Primary NameNode.

• After a failover, each NameNode may receive the

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
843

Consensus(σNNc) message, where σNNc is the consen-
sus state of failover process, and update its state to the
received state σNNc to its own state. Some Req in only
its own state may be deleted by this synchronization,
however, a fixed Req is never deleted by this synchro-
nization (we will prove it in this Section). All Req
in the σNNc becomes fixed when each NameNode re-
ceives Resync().

The notation σNNi indicates the subsequence of σNNi

consisting of all fixed Req. And we call σNNi the fixed state
of the NameNode NNi.

Definition 3. A state of the system. A state of the system
σS is a state of the Global Primary NameNode at the time.

We represent a fixed state of the system σS consisting
of all fixed Req in σS .

We say that the request is processed or applied if the
corresponding Reqi is included in σS .

Definition 4. History. A history H is a sequence consisting
of Inv and Res.

We can construct a history H which consists of all Inv
and Res events, and we represent this history the global his-
tory, HG. All Inv and Res events in HG are sorted in chrono-
logical order. Figure 7 shows an example of execution of 3
clients. In this case, we can construct the Global History
HG = [Invi1, Invk1, Inv j1,Res j1,Resi1, Invi2, . . .].

We can also construct a subsequence of HG which con-
sists of all Inv and Res events that are performed by the
client Clti, and we represent this subsequence H(Clti)

G . In

the case of Fig. 7, H
(Clt j)
G becomes H

(Clt j)
G = [Inv j1,Res j1,

Inv j2,Res j2].

Definition 5. Sequential History. A history H is a sequen-
tial history, if (1) the first event of H is an Inv (2) Each Inv
is immediately followed by a matching Res, and each Res
immediately follows a matching Inv.

A sequential history represents a behavior of a client
in the absence of concurrency. Each client sends a request
(Invi), and receives a response (Resi = Reply) or treat the
request as a failure (Resi = TimeOut). A client sends the
next request after Res is decided, therefore H(Clti)

G becomes
a sequential history.

If a history H is a sequential history, it can be expressed
using corresponding transactions as follows. H(Clti)

G = [Inv0,
Res0, Inv1, ..Resn] = [T x0,T x1, ..T xn]

Fig. 7 An example of the execution of 3 clients.

Sequential Specification: A sequential specification
consists of a set of operations and a set of sequences of op-
erations [22]. A sequential specification is defined in detail
by the system specifications.

On the shared object S , a sequential specification of
S determines the total set of histories such that each Resi

in the sequential history H = [Inv1,Res1, Inv2,Res2, . . .]
has the result when the system processes the request
[Inv1, Inv2, . . . , Invi] sequentially. If the (sequential) history
H of S is in a sequential specification of S , we call H a legal
sequential history.

Definition 6. Linearizability. A global history HG is lin-
earizable if there exists a permutation π of all the operations
(Inv and Res) in HG such that

1. π is a legal sequential history, and
2. if the Resa occurs in HG before Invb, then Inva appears

before Invb in π.

Linearizability can guarantee the strong consistency for
concurrent objects [22]–[24]. Linearizability also guaran-
tees a local property which implies that the system consist-
ing of linearizable objects is also linearizable.

In the case of our proposed system, Resi may
have TimeOut instead of Reply due to failures of some
NameNodes or unpredictable delay. From the definition of a
sequential specification, a history including TimeOut never
is a legal sequential history. Thus we define a new property,
weak-linearizability as follows.

Definition 7. Weak-Linearizability. A global history HG

is weakly-linearizable if there exists a permutation π of a
subset of the operations (Inv and Res) in HG such that

1. π can be a legal sequential history by replacing all
T imeOuts with approprite Replys.

2. All transactions T xi = (Invi,Resi = Reply) are in π.
3. If Resa = Reply occurs in HG before Invb, then Inva

appears before Invb in π (if Invb is in π).
4. If Resa occurs before Invb in H(Cltx)

G , then Inva appears
before Invb in π (if both Inva and Invb are in π).

Weak linearizability is a weaker property than lineariz-
ability: weakly-linearizable global history HG is lineariz-
able if HG contains no transaction T x = (Inv,Res) such that
Res = TimeOut.

Conditions 1 and 2 of Definition 7 imply that all the
transactions with Res = Reply are committed but some of
the transactions with Res = TimeOut can be aborted. No-
tice that Condition 1 allows some transactions with Res =
TimeOut can be committed. In this case, TimeOuts occur at
the clients but the transactions are committed by the system.

Condition 3 of Definition 7 means that the processing
order of the transactions with Res = Reply is preserved even
if the requests are from different NameNodes. Condition 4
of Definition 7 implies that the processing order of the trans-
actions with Res = TimeOut is ensured only on the same
NameNode.

844
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

To help to understand the definitions we show an
exmaple. We assume two requests, mkdir and mv, both re-
quests are provided in ordinary file systems. mkdir([target])
is the request to make a directory [target], and mv([a], [b])
is the request to move [a] to [b]. The results of these re-
quests can be ok or f ail. ok means that request is processed
successfully, and f ail is not for some reasons, for example,
there is no [a] in the file system.

We show 4 executions (from HG1 to HG4) using the
above two requests with two clients, Clti and Clt j. Each Inv
and Res contains its client’s identifier and request number.

HG1 = Invi1(mkdir(/a)) Resi1(ok) Inv j1(mv(/a, /b))
Invi2(mv(/a, /c)) Res j1(ok) Resi2(f ail(no /a))

HG2 = Invi1(mkdir(/a)) Resi1(ok) Inv j1(mv(/a, /b))
Invi2(mv(/a, /c)) Res j1(f ail(no /a))
Resi2(f ail(no /a))

HG3 = Invi1(mkdir(/a)) Resi1(TimeOut) Inv j1(mv(/a, /b))
Invi2(mv(/a, /c)) Res j1(f ail(no /a))
Resi2(f ail(no /a))

HG4 = Invi1(mkdir(/a)) Resi1(TimeOut) Inv j1(mv(/a, /b))
Invi2(mv(/a, /c)) Res j1(f ail(no /a))
Resi2(f ail(no /a)) Invi3(mv(/a, /d)) Resi3(ok)

In HG1 and HG2, after mkdir of Invi1 is processed suc-
cessfully. The requests invoked by Invi2 and Inv j1 are pro-
cessed concurrently In HG1, the request of Invi2 becomes
f ail and the request of Inv j1 is processed correctly. This
means that the directory /a has changed to /b by the request
of Inv j1 before the request of Invi2 is processed. As a result,
HG1 can be represented as π = T xi1T x j1T xi2 and lineariz-
able.

In HG2, the requests invoked by Invi2 and Inv j1 are sent
concurrently and both of them become f ail. For this result,
we can assume that the request of Invi1 is processed after
them like π = T x j1T xi2T xi1. In this case, the requests of
Invi2 and Inv j2 are failed because there is no /a. However,
Invi2 (or Inv j1) is followed by Invi1 in π, but Resi1 ≺ Invi2
in HG2. This violates the condition of linearizability (Con-
dition 2 of Definition 6). Therefore HG2 is not linearizable.

HG3 and HG4 are histories including TimeOut. HG3

is a minor change of HG2, Resi1 is changed from ok to
TimeOut. In this case, we can delete T xi1 = (Invi1,Resi1)
becuase Resi1 has TimeOut. Therefore, we can construct
π = T x j1T xi2, and this means HG3 is weakly-linearizable.

HG4 can be made as adding some operations to the end
of HG3. A new invocation Invi3 is a request of mv, and it
is processed correctly. This means that Invi1 is applied suc-
cessfully, thus, we can not delete Invi1 from π even if Resi1

is TimeOut. According to condition 4 of Define 7, the order
Invi1 ≺ Invi2 has to be ensured regardless of Resi1. However,
Resi2 is failed due to the absence of /a. Therefore, HG4 is
not weakly-linearizable.

Weak-linearizability can guarantee consistency but it
cannot be determined whether a transaction is committed or
not when its reply is TimeOut. In this case, the transaction
with TimeOut can be either committed or aborted. Even if a

request is timed out, a client can check whether the request
is committed or not by accessing the HDFS. Certainly the
timed out request is never applied after checking HDFS, this
property is practical enough.

Now we prove that our proposed system can guaran-
tee weak linearizability regardless of some faults in the next
Section.

5.3 Correctness of Our System

In this Section, we prove the consistency of our system by
showing the following theorem.

Theorem 1. Any global history created by our system is
weakly-linearizable.

We consider any execution ε of our proposed system
and its global history. To help to prove, we construct a se-
quence consisting of all Gets and S ends in ε. We represent
this sequence HS . The global history HG consists of the
events of the clients, but HS consists of the events of the
NameNodes.

Now we introduce how to construct a sequential history
π from HG by referring HS as follows.

STEP 1: To construct a history HG from HG, arrange
all Inv events in HG in the order of their corresponding Get
events in HS . Since a Geti event occurs after an Invi event,
each Get event in HS has its corresponding Inv event in HG.
If an Inv event has no corresponding Get event, delete it
and its corresponding Res in HG. After that, move each Res
event in HG so that it comes immediately after its corre-
sponding Inv.

This process makes HG, a sequential history.

STEP 2: Remove from HG all transactions satisfying
(a) Res is TimeOut and (b) corresponding fixed Req never
appear in σS for all time.

Let π be a sequential history constructed by STEP 1
and 2. Now we show π satisfies all conditions (1 to 4) of
Definition 7.

At first, we introduce the following lemma to prove this
sequential history is legal.

Lemma 1. If Geti procedes Get j in HS , the corresponding
Reqi also procedes Req j in σS at any time if both of them
are in σS .

Proof of Lemma 1. (Proof by contradiction) Assume the
system consists of N NameNodes, NN1 to NNN , and they
manage the same replicas. NN1 is the Primary NameNode,
the NameNode with the next index should become the next
Primary NameNode at each failover.

Moreover, assume that NNN is never failed during the
execution of the system. This assumption is valid with-
out loss of generality because our proposed system guar-
antees � k−1

2 �-fault tolerance and this implies some fault-free
NameNodes are left.

Now we can choose any two Get events, Geti ≺ Get j,

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
845

in HS . And assume that two corresponding Reqi and Reqj

appear in reverse order (Reqj ≺ Reqi) in σS , which means
S ync(Get j) occurrs before S ync(Geti) on NNN .

If Geti and Get j occur on the same NameNode,
S ync(Geti) must precede S ync(Get j) because of FIFO prop-
erty. Therefore, we only consider the case that these events
occur on different NameNodes, say NNi and NNj respec-
tively.

Each NameNode applies a received S ync() message
only when its sender is a Primary NameNode (possibly dif-
ferent from the Global Primary NameNode). To recognize
that a specific NameNode is the current Primary NameNode,
each NameNode has to receive a Resync() message from
that NameNode. From this protocol, each NameNode can
apply a S ync() message only when it receives Resync() mes-
sage from the Primary NameNode before the S ync() mes-
sage. Therefore, NNN has to receive Resync(NNi) before
S ync(Geti) to apply Geti to its state. As a result, in order to
apply Geti after Get j, the order of the events on NNN should
be as follows:

Resync(NNj) ≺ S ync(Get j)
≺ Resync(NNi) ≺ S ync(Geti)

Resync() must be sent before sending of S ync(Geti) on
NNi (NNj also). And S ync(Geti) precedes S ync(Get j) by
the assumption. Thus the following three cases of the send-
ing order are considerable without any violations of causal-
ity.

1. Resync(NNj) ≺ Resync(NNi)
≺ S ync(Geti) ≺ S ync(Get j)

2. Resync(NNi) ≺ Resync(NNj)
≺ S ync(Geti) ≺ S ync(Get j)

3. Resync(NNi) ≺ S ync(Geti)
≺ Resync(NNj) ≺ S ync(Get j)

In the case 1, NNj becomes the Primary NameNode be-
fore NNi do due to the total order of Resync() events. NNN

receives Resync(NNj) before S ync(Get j), and this makes
σN = [σ j,Reqj] (σ j is the NameNode state delivered by
a Consensus message before the Resync message). After
that, Resync(NNi) is received for the later failover, σN is
synchronized with σi, which is concensus state by NNi, as
a result. But Reqj is not in σi, because a consensus of σi is
already finished before occurring Get j. Therefore, σN never
applies Reqj (Get j event) to its own state. This contradicts
the assumption.

In the cases 2 and 3, NNi becomes a Primary
NameNode before NNj do. This means Resync(NNj) be-
comes the later failover than Resync(NNi). However, NNN

receives Resync(NNj) before Resync(NNi) by the assump-
tion. Therefore, Resync(NNi) cannot be applied because it
has an older failover version than Resync(NNj), and thus
Reqi (Geti event) is never applied. This also contradicts the
assumption.

As a result, all Reqs which are applied to σS preserve
the order of corresponding Gets in HS . �

From Lemma 1, all Reqs are applied to σS as the same

order of corresponding Gets in HS (if they are applied).
Thus the arrangement of all events in HG (STEP 1) is valid
because all requests are applied toσS at any time in the same
order as that of Get events in HS (if they are applied).

Now we show that deletion of some events in HG

(STEP 2) makes a legal sequential history.

Lemma 2. Once any Reqi in σS becomes fixed, it keeps its
state and is never deleted.

Proof of Lemma 2. We can prove Lemma 2 using the prop-
erty of majority.

In order to Reqi is fixed, it is necessary (a) to re-
ceive corresponding acki messages from a majority of k
NameNodes, or (b) to be contained in a consensual state of
a failover.

The condition (a) implies that a majority of NameNodes
send a corresponding acki message, and this means a major-
ity of NameNodes contain the Reqi in its state. In this situa-
tion, even if the Primary NameNode fails, Reqi is contained
in the consensual state because at least one Reqi is con-
sidered in the consensus since the majority of NameNodes
record its own state.

The condition (b) means that even if Reqi is unfixed, it
can be contained in the consensual state on a failover. To
restart HDFS service, the new Primary NameNode sends
Consensus() messages with the consensual state (including
Reqi) to all Backup NameNodes and waits ready messages
are received from a majority of the NameNodes. This guar-
antees that a majority of the NameNodes apply Reqi to their
own states, and this causes the same configuration as the
condition (a). �

The following Lemma 3 is induced from Lemma 2.

Lemma 3. A transactions T xi with Resi = Reply is included
in the sequential history π constructed by STEPs 1 and 2.

Proof of Lemma 3. Since Resi is Reply, there is a S endi

event in HS . The S endi event occurs when acki messages
are received from a majority of NameNodes. This means
that Reqi is in σS as the fixed state.

As a result, Reqi is never deleted from Lemma 2.
Therefore, the corresponding transaction T xi is not deleted
by STEP 2.

If there is no corresponding Geti, Resi cannot be Reply.
Thus, Geti is not removed by STEP 1, either. �

Lemma 3 guarantees that each Reqi, whose corre-
sponding Resi is Reply, is contained in σS . It follows that if
Reqi is removed from σS only when the corresponding Resi

is TimeOut.
A Geti event adds a new unfixed Reqi to the state of the

Primary NameNode. Each unfixed Reqi becomes eventu-
ally: (a) to be changed to fixed by receiving acki messages
from a majority of the NameNodes, (b) to be contained in
a consensual state and becomes fixed, or (c) not to be con-
tained in a consensual state and be removed from σS .

In the cases of (a) and (b), Reqi becomes fixed. This
means that Reqi is applied to σS eventually. In the case of

846
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

(c), Reqi can be excluded from the consensual state. This
implies that Reqi is never applied to σS .

Now we can say that the sequential history π con-
structed by STEPs 1 and 2 is legal from Lemmas 1 to 3.
Thus Condition 1 of Definition 7 is satisfied. And Condi-
tion 2 of Definition 7 is trivial from Lemma 3.

Now we show that π constructed by STEPs 1 and 2
does not violate Conditions 3 and 4 of Definition 7.

Lemma 4 shows us that the condition 3 is not violated.

Lemma 4. If Resa precedes Invb in HG and Resa is Reply,
then Geta precedes Getb in HS .

Proof of Lemma 4. Consider a transaction T xa = (Inva,
Resa = Reply) in HG. Geta and S enda surely appear in
HS because Resa is Reply. And the order of these events is
Geta ≺ S enda ≺ Resa.

Let Invb be an invocation following Resa (Resa ≺ Invb)
in HG. Certainly Getb appears in HS . (If not, T xb is re-
moved in STEP 1, thus this cannot violate Condition 3 of
Definition 7.)

From the causal relations introduced above, the order
Geta ≺ S enda ≺ Resa ≺ Invb ≺ Getb holds. Therefore, Geta
precedes Getb. �

Lemma 4 guarantees that if Resa precedes Invb in HG,
Geta is applied before Getb. This shows that Condition 3 of
Definition 7 is never violated because all Inv events in the
sequential history π constructed by STEPs 1 and 2 appear in
the same order as that of all Get events in HS .

Condition 4 is concerning about all events occurred on
a single client Clti. Consider two events, Resa ≺ Invb, in
H(Clti)

G . If Resa is Reply, Resa is applied before Invb by
Lemma 4. Therefore, we consider only the case that Resa

is TimeOut. This cannot guarantee that S enda appears in
HS , thus we cannot use Lemma 4.

Lemma 5 guarantees that Condition 4 is not violated.

Lemma 5. If Resa precedes Invb in H(Clti)
G , Geta precedes

Getb in HS .

Proof of Lemma 5. (Proof of contradiction) If Geta and
Getb occur on the same NameNode, Lemma 5 trivially holds
because of FIFO property. Thus we consider the case that
Geta and Getb occur on different NameNodes, NNa and NNb

respectively. This implies that a failover is operated be-
tween the two requests (Inva and Invb) which changes a
Primary NameNode from NNa to NNb, because the client
Clti sent Inva to NNa before sending Invb to NNb. Thus,
Resync(NNa) precedes Resync(NNb). If NNa is the initial
Primary NameNode, Resync(NNa) does not exist, thus we
assume Resync(NNa) is sent on initialization of the system
to simplify.

Assume that Getb on NNb precedes Geta on NNa.
This means Getb precedes Geta in HS . To apply Getb,
Resync(NNb) is required before Getb. Thus we can deter-
mined the order of these events as follows: Resync(NNa) ≺
Resync(NNb) ≺ Getb ≺ Geta. And Reqa is never applied
to σS because the Primary NameNode is already changed to

NNb.
In order that both of Reqa and Reqb are applied to

σS , the order of Geta and Getb may become as follow:
Resync(NNa) ≺ Geta ≺ Resync(NNb) ≺ Getb. However,
this order violates our assumption. �

In this Section, we show how to construct the legal
sequential history π by applying STEPs 1 and 2 to HG.
This π does not violate Conditions 2 (by Lemma 3), 3 (by
Lemma 4), and 4 (by Lemma 5). As a result, the global his-
tory created from any execution of our system satisfies all
conditions of weak-linearizability, and finally Theorem 1 is
proved.

6. Experimental Evaluations

Our proposed system guarantees the namespace’s consis-
tency regardless some failures. However to implement this
fault-tolerance, our system requires some synchronizations.
This may cause system overhead which may decrease the
performance of HDFS, therefore, we implement our system
to experimentally, and evaluate the overhead. Moreover, we
compare our system’s overhead with QJM’s. Finally, we
evaluate the effect of the load balancing briefly.

In our system, the Primary NameNode has to commu-
nicate with k − 1 Backup NameNodes to synchronize for
each request. If the frequency of the requests increases,
the synchronization overhead also increases. In our exper-
iments, we evaluate our proposed system with various re-
quest frequencies.

6.1 Experimental Environments

We use 36 commodity servers for the experiments. Table 1
shows the specification of each server.

Note that we implement our system based on Hadoop
1.0.3, and evaluate the overhead with comparing to Hadoop
1.0.3. However, QJM is not supported on this version of
Hadoop, therefore we use Hadoop 2.2.0 in the evaluations
of QJM.

We fix the number of DataNodes to 20 over all ex-
periments. In the original Hadoop, just one NameNode
is added. QJM has one Active NameNode, one Standby
NameNode, and many JournalNodes (we change the num-
ber of JournalNodes during experiments). Our proposed
system has multiple Primary NameNodes for several frag-
ments. However to simplify the experiments, only one Pri-
mary NameNode is implemented in our experiments. In
order to process requests, communications among Primary

Table 1 Specification of each server.

Number of Servers 36
CPU Intel Core i3 2100 (3.1 GHz)
RAM DDR3 4 GB
HDD S-ATAII 500 GB
OS CentOS 5.7

Hadoop HDFS 1.0.3 or HDFS 2.2.0 (for QJM)

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
847

NameNodes are not required, thus this configuration has no
influence to evaluations of the synchronization overheads.

HDFS (including our proposed system) supposes a lot
of clients. Therefore we implement a client application,
which creates lots of client threads concurrently. Each client
thread sends a request to the (Primary) NameNode and dis-
appears when the request is completed.

6.2 Synchronization Overheads

In this Section, we evaluate the overheads of synchroniza-
tion among a Primary NameNode and Backup NameNodes
and compare it with the original HDFS (without any syn-
chronizations).

6.2.1 Overhead on Low Load

A client periodically sends a request to the (Primary)
NameNode, and we evaluate the time until the response
comes back. A client sends 300 requests in total, and we
calculate the average time to process requests. And we re-
peat this evaluation (300 requests) 10 times for accuracy.
In HDFS (including our proposed system), the experimental
results vary widely on each experiment, especially when the
system load is high. This implies that some results can be
totally different from the other results even on the same con-
dition. These unreliable results may cause the big change of
the average of experimental results. To get the high reliable
results, we calculate the average of the experimental result
excepting the maximum and the minimum results.

A client sends a request every 100 ms (10 requests per
second). This frequency is very low and uninfluential to the
system performance.

Figure 8 shows the difference of the average pro-
cess (response) time between the original HDFS and our
proposed system. We change the number of Backup
NameNodes from 3 to 13.

The original HDFS without any synchronization can
process the request in about 7 ms. However, our proposed
system requires about 22 ms, because of the synchronization
overhead.

Fig. 8 Overhead on low load.

However, even when the number of Backup
NameNodes is increased to improve fault-tolerance, the
synchronization overhead is approximately same. Our
synchronization protocol is majority-based, thus the Pri-
mary NameNode does not need to wait for all Backup
NameNode’s ack. This property makes waiting time for
synchronizing stable.

6.2.2 Overhead on Heavy Load

Now we change the frequency of the sending requests to
evaluate average response time on various load environ-
ments.

Figure 9 describes the average response time on var-
ious request frequencies. X-axis shows the frequency of
the requests, and Y-axis represents the average response
time. Figure 9 (a) shows the result on 3, 5, and 7
Backup NameNodes compared with the original HDFS,
and Fig. 9 (b) shows the result on 9, 11, and 13 Backup
NameNodes.

As we discussed in the previous section, the orignal
HDFS’s response time is shorter than our proposed system’s
when the system load is low. However, if the frequency of
the requests exceeds 200 requests per second, the difference
becomes smaller. In more detail, we found the average over-
head of the synchronization is about 15 ms in the case of low

Fig. 9 Overhead on heavy load.

848
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 10 Ratio of synchronization overhead.

load. This overhead is relatively high because each request
can be processed in about 7 ms. However, as the system load
increases, the synchronization overhead gradually increases
up to about 50 ms, about 3.3 times of the low load case.
This increased amount of the overhead is relatively small
because the HDFS overhead increases from about 7 ms to
about 580 ms. As a result, the proportion of synchronization
overhead is about 68% on the low load case, and becomes
less than 8% on the heavy load case. And also in these cases,
our system’s response times are almost same regardless the
number of Backup NameNodes.

From the result of Sect. 6.2, we can find that our sys-
tem has synchronization overhead. However this overhead
is small enough and has no effect on the system with high
processing load.

To evaluate the actual synchronization overhead, we
conduct the additional experiments to evaluates the request
processing time and the synchronization time separately.
Figure 10 represents the ratio of the synchronization over-
head in the case of 3, 5, and 7 Backup NameNodes. Note
that no overhead occurred on the original HDFS. The re-
quest processing time increases drastically when the re-
quest frequency increases. However, the synchronization
time hardly increases even if the system’s processing load is
heavy. From this experiment, we can find again that the syn-
chronization overhead of our proposed system exerts only
little effect especially in heavy load environments.

6.3 Overhead Compared with QJM

Synchronization is also required in QJM on Hadoop 2.2. In
this Section, we compare the synchronization overhead be-
tween our system and QJM. We set the number of the nodes
which require synchronization (Backup NameNodes in our
system, and JournalNodes in QJM) to be the same.

6.3.1 Overhead on Low Load

The same as Sect. 6.2.1, we fix the request frequency to 10
requests per second, and a client sends 300 requests. We
repeat this 10 times and calculate the average response time.

Fig. 11 Comparing with QJM on low load.

Figure 11 represents the average response time on our
system and QJM when the number of Backup NameNodes
(or JournalNodes in QJM) is increased. In QJM, signifi-
cantly different from our proposed system, it can process
the request in about 9 ms, this result is only 2 ms slower
than the original HDFS. The optimization of the synchro-
nization process can be cited as a possible cause. QJM also
hardly changes the average response time if the number of
JournalNodes is increased.

6.3.2 Overhead on Heavy Load

In this Section, we change the request frequency, and mea-
sure the average response time of our system and QJM.

Figure 12 shows the average response time when the
frequency of the requests is changed. The same as the
previous section, X-axis represents the request frequency,
and Y-axis shows the average response time. Figure 12 (a)
shows the result on 3 and 5 Backup NameNodes, and
Fig. 12 (b) shows the result on 7 and 9 Backup NameNodes
(JournalNodes in the case of QJM).

In the result in the Sect. 6.3.1, QJM has lower syn-
chronization overhead than our system, but we can find
the inverse result in this experiment. QJM’s average re-
sponse time increases faster than our system’s when the fre-
quency of the requests increases. QJM has faster reponse
time than our system under 30 requests per second, how-
ever becomes slower over 50 requests per second. QJM re-
quires some communications with Standby NameNode to
keep their states identical, this makes a response time slower
on heavy load environments.

6.4 Effect of Load Balancing

In this Section, we evaluate the effect of the load balancing
by some experiments. Now we implement a several number
of Primary NameNodes to consider the case that the names-
pace is partitioned into m fragments.

In this experiment, a client sends mkdir (make a di-
rectory) request periodically, and the target directory name

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
849

Fig. 12 Comparing with QJM on heavy load.

Fig. 13 Effect of load balancing.

of mkdir is created randomly. And the target Primary
NameNode is determined by this target directory’s name.
We fix the number of Backup NameNodes, however they
also can be a Primary NameNode of other fragments. This
implies that a NameNode can be a Primary NameNode for
some fragments and a Backup NameNode for other frag-
ments concurrently.

Figure 13 represents the average response time when

we change the request frequency from 10 requests per sec-
ond to 500. To help to clarify the effect of the load bal-
ancing, we compare it with the original HDFS. When the
frequency is low (low processing load), we can not find the
effect of the load balancing because the overhead is higher
in this environment. However, in the case of the highest fre-
quency (500 requests per second), our system with 9 Pri-
mary NameNodes (this means 9 fragments exist) has the
shortest response time.

We can conclude that the response time cannot be de-
creased linearly, even when all requests sent by clients are
processed concurrently by a several Primary NameNodes,
from following two reasons.

At first, we set the target directory of mkdir request
randomly, this means that we never apply some tech-
niques to improve the effect of the load balancing. This
cannot guarantee that the frequencies of the requests re-
ceived by Primary NameNodes are different among Primary
NameNodes.

Secondly, as we mentioned above, some Primary
NameNode can be also a Backup NameNode of a differ-
ent fragment. This implies that it is required to process
the request and synchronization with a different Primary
NameNode concurrently.

However, we can find the clear effect of the load bal-
ancing when the processing load is heavy. And this effect
becomes more effective, when the number of the fragments
m is large.

6.5 Performance of MapReduce Task

As we introduce in the Sect. 1, Hadoop consists of two main
components, HDFS and MapReduce. Hadoop can execute
distributed processing using MapReduce framework. In this
Section, we focused on the evaluation of our system’s over-
head comparing with HDFS and related work (QJM). Cer-
tainly, these results show only the performance of the file
system (HDFS).

However, we hardly evaluate the performace of
Hadoop (MapReduce) task because it is influenced a great
deal by a namespace partitioning rule. If a Hadoop task can
be executed on the single fragment, our system can execute
the task with the same processing time, because our sys-
tem can operate in exactly the same manner. If a Hadoop
task needs to access two or more fragments concurrently,
our system may process the task separately on each frag-
ment. After that, a specific process is required to merge the
separated results. To obtain good performance, the effective
namespace partitioning is required. We consider that con-
firming the partitioning rule is a future work.

7. Summary and Future Works

In this paper, we proposed a new architecture of HDFS,
which partitions the namespace into m fragments and
manages them in a distributed manner using m Primary
NameNodes. Our proposed system consists of m Primary

850
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

NameNodes and many Backup NameNodes (depending on
k) to guarantee the fault-tolerance. Actually we resolved the
SPOF problem of HDFS and the namespace limitation prob-
lem, and also got the effective load balancing. We proved the
consistency of the namespace regardless some failures in the
system. Our proposed system is majority-based, and this can
keep the namespace’s state consistent. Finally, we evaluated
our system’s synchronization overheads and the effect of the
load balancing compared with the original HDFS and QJM.

To make our system completely practical, we should
enhance some capabilities. First of all, to improve the per-
formance, the effective partition policy of the namespace is
required. In our experiments, we had partitioned a names-
pace based on directory names. However this may cause
high processing load on some specific NameNodes. We can
also consider the dynamic paritioning to resolve the above
problem. This partioning causes some effects to the per-
formace of the Hadoop task as we explained in Sect. 6.5.
Moreover, some integrated API (Application Programming
Interface) to control our system is required. For example, a
method which browses the entire namespace is required for
clients.

Acknowledgements

The authors would like to thank Prof. H. Kakugawa and
Prof. F. Ooshita at Osaka University for meaningful discus-
sions about improving this paper. This work is supported in
part by Grant-in-Aid for Scientific Research ((B) 26280022)
and ((B) 24650012) of JSPS.

References

[1] J. Gantz and D. Reinsel, “The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East,” IDC
iView, 2012.

[2] Apache Hadoop, The Apache Software Foundation,
http://hadoop.apache.org/

[3] K. Shvachko, “Warm HA NameNode going Hot,” Apache Hadoop
Issues, HDFS-2064, 2011.

[4] Big data, http://en.wikipedia.org/wiki/Big data
[5] S. Ghemawat, H. Gobioff, and S-T. Leung, “The Google file sys-

tem,” Proceedings of ACM Symposium on Operating Systems Prin-
ciples, pp.29–43, 2003.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, pp.137–149, 2004.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” Proc. IEEE the 26th Symposium on Mass
Storage Systems and Technologies (MSST), pp.1–10, 2010.

[8] Apache ZooKeeper, The Apache Software Foundation,
http://zookeeper.apache.org/

[9] F.P. Junqueira and B.C. Reed, “The life and times of a zookeeper,”
Proceedings of the 28th ACM Symposium on Principles of Dis-
tributed Computing (PODC), p.4, 2009.

[10] T. White, Hadoop: The Definitive Guide, 3rd edition, O’Reilly Me-
dia, Yahoo! Press, 2012.

[11] HDFS High Availability, The Apache Software Foundation,
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-
site/HDFSHighAvailabilityWithNFS.html

[12] Todd Lipcon, “Quorum-based protocol for reading and writing edit

logs,” Hadoop HDFS Issues, HDFS-3077, 2012.
[13] D. Molkov, “Hot Standby for NameNode,” Apache Hadoop HDFS

Issues, HDFS-976, 2013.
[14] A. Ryan, “Under the Hood: Hadoop Distributed Filesystem

reliability with Namenode and Avatarnode,” Facebook, 2012.
https://www.facebook.com/notes/facebook-engineering/under-the-
hood-hadoop-distributed-filesystem-reliability-with-namenode-
and-avata/10150888759153920

[15] Giraffa File System, A distirbuted highly available file System,
https://code.google.com/a/apache-extras.org/p/giraffa/wiki/
Introduction

[16] Apache HBASE, The Apache Software Foundation,
http://hbase.apache.org/

[17] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol.32,
no.4, pp.18–25, 2001.

[18] K. Shvachko, “HDFS scalability: The limits to growth,” ;login:,
vol.35, no.2, pp.6–16, 2010.

[19] K. Shvachko, “Scalability of the Hadoop Distributed File System,”
Hadoop Blog in Yahoo! Developer Network, 2010.

[20] K. Shvachko, “Name-node memory size estimates and optimization
proposal,” Apache Hadoop Common Issues, HADOOP-1687, 2007.

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: A dis-
tributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol.26, no.2, article 4, pp.1–26, 2008.

[22] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Sim-
ulations, and Advanced Topics, 2nd Edition, Wiley, 2004.

[23] M.P. Herlihy and J.M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol.12, no.3, pp.463–492,
1990.

[24] M. Raynal, Distributed Algorithms for Message-Passing Systems,
Springer, 2013.

[25] G. Kola, T. Kosar, and M. Livny, “Faults in large distributed systems
and what we can do about them,” Proceedings of 11th International
Euro-Par Conference, pp.442–453, 2005.

Yonghwan Kim is a Ph.D candidate at Grad-
uate School of Information Science and Tech-
nology in Osaka University, in Osaka, Japan.
He received the B.E. double-degree in Electron-
ics and Informatics from Soongsil University in
Seoul, Korea, in 2009. And he received the
M.E. degree in Informatics from Osaka Univer-
sity in 2011. He has lots of developing experi-
ence as a member of Samsung Software Mem-
bership at Samsung Electronic Company, Ko-
rea. The areas of research interests include dis-

tributed computing, fault tolerance and distributed file systems.

KIM et al.: A DISTRIBUTED AND COOPERATIVE NAMENODE CLUSTER FOR A HIGHLY-AVAILABLE HADOOP DISTRIBUTED FILE SYSTEM
851

Tadashi Araragi received the B.E. and
M.E. degrees in Mathematics from Tokyo Uni-
versity, in 1985 and 1987, respectively, and
D.E. degree in Informatics from Kyoto Uni-
versity in 2006. He joined Communica-
tions and Information Processing Labs. of NTT
(NIPPON TELEGRAPH AND TELEPHONE
CORPORATION), Yokosuka, Japan in 1987
and also worked as a Senior Research Scientist
at NTT Communication Science Laboratories
until 2014. He is currently working at Proas-

sist, Ltd, Osaka, Japan. His research interest includes formal verification,
analysis of security protocols and fault tolerance of distributed systems. Dr.
Araragi is a member of IEICE and IEEE Society.

Junya Nakamura received the B.E. and
M.E. degrees from the Department of Knowl-
edge-based Information Engineering, Toyohashi
University of Technology in 2006 and 2008
respectively, and D.E. degree in information
science from Graduate School of Information
Science and Technology, Osaka University in
2014. He is currently a project assistant pro-
fessor of Information and Media Center, Toyo-
hashi University. His research interests include
distributed algorithms and fault tolerance of dis-

tributed systems.

Toshimitsu Masuzawa received the B.E.,
M.E. and D.E. degrees in computer science from
Osaka University in 1982, 1984 and 1987. He
had worked at Osaka University during 1987–
1994, and was an associate professor of Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology (NAIST) during
1994–2000. He is now a professor of Gradu-
ate School of Information Science and Technol-
ogy, Osaka University. He was also a visiting
associate professor of Department of Computer

Science, Cornell University between 1993-1994. His research interests in-
clude distributed algorithms, parallel algorithms and graph theory. He is a
member of ACM, IEEE, IEICE and IPSJ.

