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A Spatially Correlated Mixture Model for Image Segmentation

Kosei KURISU†, Nonmember, Nobuo SUEMATSU†a), Kazunori IWATA†, and Akira HAYASHI†, Members

SUMMARY In image segmentation, finite mixture modeling has been
widely used. In its simplest form, the spatial correlation among neighbor-
ing pixels is not taken into account, and its segmentation results can be
largely deteriorated by noise in images. We propose a spatially correlated
mixture model in which the mixing proportions of finite mixture models
are governed by a set of underlying functions defined on the image space.
The spatial correlation among pixels is introduced by putting a Gaussian
process prior on the underlying functions. We can set the spatial correla-
tion rather directly and flexibly by choosing the covariance function of the
Gaussian process prior. The effectiveness of our model is demonstrated by
experiments with synthetic and real images.
key words: image segmentation, Gaussian processes, mixture models

1. Introduction

There are many approaches to image segmentation. Among
them, we address the approaches based on finite mixture
modeling which models the probability density function
of pixel luminance value with finite mixture models. In
this framework, every pixel value is assumed to be drawn
from one of the components of a mixture. The parame-
ters of the finite mixture model are usually estimated using
the Expectation-Maximization (EM) algorithm based on the
maximum likelihood principle [1], [2]. However, since the
simplest form of the finite mixture modeling does not take
the spatial information of pixels into account, its segmenta-
tion results for noisy images are often over-segmented and
include many segments that are too tiny.

To improve segmentation accuracy for noisy images,
it is essential to consider the spatial information of pixels.
In the previous work [3], the spatially variant finite mixture
model (SVFMM) has been proposed. In this model, a set of
finite mixture models corresponding pixels whose mixing
proportions can vary individually is introduced. The spatial
correlation is brought into the model by posing a Markov
random field (MRF) prior on the mixing proportions. The
EM-algorithm for SVFMM was improved afterwards in [4].
However, SVFMM still has the tendency of over segmenta-
tion for highly corrupted images.

In this paper, we propose a new model called spatially
correlated mixture model (SCMM) and examine its effec-
tiveness and properties on synthetic and real images. An
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important difference from SVFMM lies in the probabilistic
model which expresses prior distribution of the mixing pro-
portions. SCMM assumes that every class has an underlying
function defined on image space, and the set of the func-
tions for all classes govern mixing proportions. By putting
a Gaussian process prior on the underlying functions, the
spatial correlation among the mixing proportions is intro-
duced. We develop a quasi EM-algorithm to obtain maxi-
mum a posteriori (MAP) estimation of the underlying func-
tions.

A Gaussian process is an infinite set of random vari-
ables, where any finite number of elements have a joint
Gaussian distribution [5]. We can use a Gaussian process
to represent a probability distribution over function space.
A Gaussian process prior is quite useful because the poste-
rior given noise-free or noisy observations is also a Gaussian
process whose mean function and covariance function can
be obtained analytically. The covariance function of a Gaus-
sian process expresses correlation among any finite values
of the random function. Thus we can set the spatial correla-
tion among pixel labels flexibly via the covariance function
of the Gaussian process prior, and we can expect SCMM to
alleviate the tendency of over segmentation SVFMM has by
choosing the covariance function properly.

This paper is organized as follows. In Sects. 2 and
3, we review the simplest finite mixture modeling and
the SVFMM. In Sect. 4, we describe our proposed model,
SCMM. Then, in Sect. 5, we provide an empirical study
with synthetic images and real images to examine the ef-
fectiveness and properties of our method, and we conclude
in Sect. 6.

2. Simplest Finite Mixture Modeling

We briefly review the image segmentation technique with
the simplest form of the finite mixture modeling.

Given a grayscale image, we want to label each pixel
of the image as belonging to one of C classes. Let yv de-
note the observation of at v-th pixel. In the simplest finite
mixture model (SFMM), it is assumed that each pixel lumi-
nance value yv is independently drawn from the finite mix-
ture model

p(yv|Φ) =
C∑

c=1

πc p(yv|θc),

where Φ = {πc, θc|c = 1, . . . ,C} and πc are mixing propor-
tions which sum to 1. p(yv|θc) is the component of class c
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and θc = {μc, σc} is the set of its mean and standard devi-
ation. Throughout this paper, p(yv|θc) denotes a univariate
Gaussian distribution.

We can derive an EM algorithm [1] for maximum like-
lihood estimation of the parameters [2]. By introducing hid-
den variables

zcv =

⎧⎪⎪⎨⎪⎪⎩
1 if yv belongs to class c

0 otherwise,

the expected complete-data log-likelihood given {yv|v =
1, . . . ,V} and Φ′ can be written as

Q(Φ|Φ′) = E [
log p({yv}, {zcv}|Φ)|{yv},Φ′]

=

V∑
v=1

C∑
c=1

ζcv log
[
πc p(yv|θc)

]
,

where V is the number of pixels in the image and

ζcv = E[zcv|yv,Φ′] = π′c p(yv|θ′c)∑C
c′=1 π

′
c′ p(yi|θ′c′ )

. (1)

Then, Q(Φ|Φ′) is maximized with respect to Φ when

πc =
1
V

V∑
v=1

ζcv, (2)

μc =

∑V
v=1 ζcvyv∑V
v=1 ζcv

, (3)

σc =

⎛⎜⎜⎜⎜⎝
∑V
v=1 ζcv(yv − μc)2

∑V
v=1 ζc f

⎞⎟⎟⎟⎟⎠
1/2

. (4)

The EM algorithm iterates between an E-step in which
ζcv are evaluated according to Eq. (1) and an M-step in which
the elements of Φ are updated according to Eqs. (2)-(4).

OnceΦ is estimated, each pixel is labeled with the most
probable class:

C
arg max

c=1
p(zcv = 1|yv,Φ).

Under the SFMM, pixel values {yv} are considered i.i.d sam-
ples from a finite mixture model and the spatial information
of the pixels is not considered at all.

3. Spatially Variant Finite Mixture Model

The spatially variant finite mixture model (SVFMM) has
been proposed to incorporate the spatial correlation of the
pixels effectively [3] and its learning algorithm has been im-
proved in [4].

The SVFMM defines the density of the pixels {yv} as

p({yv}|Θ) =
V∏
v=1

C∑
c=1

πcvp(yv|θc),

where Θ = {πcv, θc|c = 1, . . . ,C, v = 1, . . . ,V}. As we
can see from the above density function, each pixel yv has

its own finite mixture model whose set of mixing propor-
tions is {πv1, . . . , πvC} and the pixels are still independent
given the SVFMM. The spatial correlation among pixel is
brought through the prior distribution of the mixing propor-
tions {πcv|c = 1, . . . ,C, v = 1, . . . ,V}.

The prior distribution is modeled by an MRF and its
density function is described by the Gibbs distribution:

p({πcv}) = 1
Z

exp

⎧⎪⎪⎨⎪⎪⎩−β
∑
s∈S

Vs({πcv})
⎫⎪⎪⎬⎪⎪⎭ ,

where Z is the partition function, β is a parameter that con-
trols the concentration of the distribution, S is the set of
cliques, and Vs(·) is the potential function of clique s ∈ S .

As the prior distribution of {πcv} is introduced, the
SVFMM has to be learned based on the maximum a pos-
teriori (MAP) criterion. This is achieved by defining

QMAP(Θ|Θ′) =
V∑
v=1

C∑
c=1

ζcv log
[
πcvp(yv|θc)

]

+ log p({πcv}) (5)

and developing an EM algorithm to maximize QMAP. In
Eq. (5), ζcv is slightly different from Eq. (1) and defined as

ζcv = E[zcv|yv,Θ′] = π′cvp(yv|θ′c)∑C
c′=1 π

′
c′vp(yi|θ′c′ )

. (6)

The EM algorithm for SVFMM is similar to that for the
SFMM. In its E-step, Eq. (6) is evaluated instead of Eq. (1),
and in its M-step, μc and σc are updated using the same
Eqs. (3) and (4). The main difference lies in the updating of
{πcv} in its M-step. In [3], this updating is done using the
gradient projection method [6]. On the other hand, in [4], it
is done by finding the solutions of the equations ∂QMAP

∂πcv
= 0

and then solving linearly constrained quadratic program-
ming problems to ensure that {πcv} satisfy the constraints

0 ≤ πcv ≤ 1,
C∑

c=1

πcv = 1.

4. Spatially Correlated Mixture Model

In this section, we describe the Spatially Correlated Mixture
Model (SCMM) that we propose. The model involves un-
derlying functions f1(·), . . . , fC(·) that are real valued func-
tions defined over the image space and govern the mixing
proportions of the SCMM. We first briefly review the Gaus-
sian process regression and covariance functions of Gaus-
sian processes, then describe details of the model and the
learning algorithm for the model.

4.1 Gaussian Process Regression [5]

We can use a Gaussian process to describe a distribution of
a random function, or a stochastic process. Formally, the
random function f (·) defined in Rd is a Gaussian process
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with mean function m(·) and covariance function k(·, ·), if
for any natural number L and a set of L points in Rd X =
{x1, . . . , xL}

f(X) ∼ N(m(X),K(X, X)),

whereN(μ,Σ) is the normal distribution with mean vector μ
and covariance matrix Σ, f(X) and m(X) are vectors whose
j-th elements are f (x j) and m(x j), respectively, and K(X, X)
is matrix whose (i, j)-th element is k(xi, x j). When f (·) is
a Gaussian process with mean function m(·) and covariance
function k(·, ·), it is denoted as

f (·) ∼ GP(m(·), k(·, ·)).
When we have some observations of an unknown func-

tion whose prior is a Gaussian process, we can obtain its
posterior distribution using Gaussian process regression.
Assume that we have a set of L observations of f (·), y =
[y1, . . . , yL]T at X, where

y j = f (x j) + ε j

and ε j are independent Gaussian noises with mean 0 and
variance σ2

ε j
(If some y j is an exact observation, correspond-

ing σ2
ε j
= 0). The covariance between yi and y j is written

as

Cov(yi, y j) = E[(yi−E[yi])(y j−E[y j])]

= E[( f (xi)−m(xi))( f (x j)−m(x j))]+E[εiε j]

= k(xi, x j)+δi jσ
2
εi
,

where δi j is Kronecker’s delta. Thus, given a set of test
points X∗ = {x∗1, . . . , x∗M}, we can write the joint distribution
of the vector f(X∗) and y as

[
f(X∗)

y

]
∼ N

([
m(X∗)
m(X)

]
,

[
K(X∗, X∗) K(X∗, X)
K(X, X∗) K(X, X) + D

])
,

where D is the diagonal matrix whose diagonal elements
are σ2

ε1
, . . . , σ2

εL
. Then, as shown in Appendix A.2 of [5], it

is known that the conditional distribution of f(X∗) given y is
also a multivariate Gaussian distribution and its mean vector
and covariance matrix are

m∗ = m(X∗)

+ K(X∗, X)[K(X, X) + D]−1(y −m(X)), (7)

K∗ = K(X∗, X∗) − K(X∗, X)[K(X, X) + D]−1K(X, X∗).

4.2 Covariance Functions

The spatial correlation of any two pair of values of a un-
derlying function is determined by the covariance function
k(·, ·) of the Gaussian process prior. In this paper, we use the
following two covariance functions.

kSE(x, x′) = exp

(
−‖x − x′‖2

2l2

)
, (8)

Fig. 1 Plots of two covariance functions, SE with l = 1, (solid) and GE
with l = 1, γ = 1 (dashed).

Fig. 2 Mean functions of the posterior Gaussian processes given noisy
observations shown as filled circles. The covariance functions of the priors
are SE with l = 1 (solid) and GE with l = 1, γ = 1 (dashed).

kGE(x, x′) = exp

{
−

( ‖x − x′‖
l

)γ}
for 0 < γ ≤ 2, (9)

which are referred to as Squared exponential (SE) and γ-
exponential (GE), respectively.

Figure 1 shows plots of the two covariance functions
of Eqs. (8) and (9). Figure 2 shows the posterior mean func-
tions for Gaussian process priors with the covariance func-
tions SE(l = 1) and GE(l = 1, γ = 0.1), which exhibit rather
different shapes.

4.3 Spatially Correlated Mixture Model

In the SCMM, the density function of the pixels {yv} is writ-
ten as

p({yv}|Ψ) =
V∏
v=1

C∑
c=1

ρc(xv|{ fc(·)})p(yv|θc).

Here, { fc(·)} is the set of underlying functions, Ψ =

{ fc(·), θc|c = 1, . . . ,C}, and

ρc(xv|{ fc(·)}) = exp fc(xv)∑C
c′=1 exp fc′(xv)

. (10)
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Note that { fc(·)} is ambiguous up to a function φ(x) because
if we define f ′c (x) = fc(x) + φ(x) for c = 1, . . . ,C then
ρc(x|{ fc(·)}) = ρc(x|{ f ′c (·)}) for any x. To eliminate the ambi-
guity, we impose the following constraint:

C∑
c=1

fc(x) = 0 for any x.

Under this constraint, we can write the inverse of Eq. (10) as

fc(xv)= log ρc(xv|{ fc(·)})− 1
C

C∑
c′=1

log ρc′ (xv|{ fc(·)}). (11)

In our model, the spatial smoothness is introduced by
assuming Gaussian process prior on { fc(·)}. The assumption
is described as follows:

f̃c(·) i.i.d∼ GP(m(·), k(·, ·)) for c = 1, . . . ,C, (12)

fc(x) = f̃c(x) − 1
C

C∑
c′=1

f̃c′(x). (13)

We can rewrite this description into a more suitable form for
later discussion. Let AC be the centering matrix of order C,
that is,

AC = IC − 1
C

UC ,

where IC is the identity matrix of order C and UC is the
square matrix of order C whose elements are all 1. In addi-
tion, let WC be the C × (C −1) matrix whose column vectors
are the normalized eigen vectors of AC corresponding to its
eigen value 1. Then, Eqs. (12) and (13) are equivalent to

f̃c(·) i.i.d∼ GP(m0(·), k(·, ·)) for c = 1, . . . ,C − 1, (14)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f1(x)
...

fC(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = WC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f̃1(x)
...

f̃C−1(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (15)

where m0(x) ≡ 0.

4.4 Learning Algorithm

We devise a quasi EM algorithm for our model. The algo-
rithm tries to maximize the expected log posterior given Ψ′,

QMAP(Ψ|Ψ′) =
V∑
v=1

C∑
c=1

ζcv log
[
ρc(xv|{ fc(·)})p(yv|θc)

]

+ log p({ fc(xv)}).
Here,

ζcv = E[zcv|yv,Ψ′] = ρc(xv|{ f ′c (·)})p(yv|θ′c)∑C
c′=1 ρc′ (xv|{ f ′c (·)})p(yv|θ′c′ )

. (16)

Since Eq. (16) corresponds to Eq. (6) in SVFMM, Eq. (16)
is evaluated in the E-step of our algorithm.

Let F be the C × V matrix whose (c, v)-th element
fcv = fc(xv). In the M-step of our algorithm, F is updated by
finding the maximum likelihood estimate and compromis-
ing it with the prior distribution described in Eqs. (14) and
(15) using Gaussian process regression. This is performed
as follows. As we can easily show that

V∑
v=1

C∑
c=1

ζcv log[πcvp(yv|θc)]

is maximized with respect to {πcv} when πcv = ζcv, the ML
estimate of F is obtained by using Eq. (11) as

FML =
(
log ζcv − 1

C

∑C
c′=1 log ζc′v

)
C×V
.

Since f1(·), . . . , fC(·) are not independent, before applying
Gaussian process regression, FML is transformed to F̃ML as

F̃ML = WT
C FML

using the relation WT
CWC = IC−1. Then, Eq. (7) is applied to

each row of F̃ML by regarding it as a sequence of noisy ob-
servations. When applying Eq. (7), D is set to be τ2I where
I is the identity matrix and τ2 is a design parameter of our
algorithm. When we denote the result of Gaussian process
regression by F̃, finally, the updated F is given by

F = WC F̃.

The updating of θc is done by using Eqs. (3) and (4) again.
Since the updated F is obtained by compromising the

maximum likelihood estimate with the prior distribution, we
can expect that QMAP(Ψ|Ψ′) is high to a certain degree at
the obtained F. However, since QMAP(Ψ|Ψ′) is not directly
maximized or increased in our M-step, we call the procedure
as quasi EM algorithm.

Once F is estimated, pixel v is labeled with the index
corresponding to the largest element in v-th column of F,
that is,

C
arg max

c=1
fcv.

5. Empirical Study

In this section, we examine the effectiveness and the validity
of our proposing method using synthetic and real images. In
the proposed method, long distance correlations are ignored
so that we don’t have to calculate very large covariance ma-
trices of order of the number of pixels in images. In the
following numerical experiments, we determine the initial
values of the parameters based on the results of k-means
method for all algorithms. In addition, we set τ2 = 100 for
our algorithm, which defines D of Eq. (7) as D = τ2I.

5.1 Experiment with Synthetic Images

In the first part of the empirical study, we use syn-
thetic images to compare segmentation accuracy of SFMM,
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Table 1 Comparison of error rates with the synthetic images for SFMM,
SVFMM, and the proposed method.

C σ
Error rates[%]

SFMM SVFMM SCMM

0.10 9.93 1.87 0.22
3 0.20 27.80 14.94 1.29

0.30 39.59 34.33 2.80

0.05 9.59 1.01 1.31
5 0.10 27.04 10.76 2.94

0.15 40.93 33.88 9.10

SVFMM, and SCMM. We corrupt synthetic images with
Gaussian noise, and measure segmentation accuracy by how
accurate is restoring noised images to original images. The
segmentation accuracy is measured by a misclassification
rate.

5.1.1 Experimental Setup

A C-class label image is generated by assigning label

cv = arg
C

max
c=1
gc(xv)

to v-th pixel located at xv for v = 1, . . . ,V , where each func-
tion gc(·) is obtained by interpolating, using cubic spline,
independent standard Gaussian random values assigned to
sparse grid points over the image space. Then, the noise
free image corresponding to the label image is created by
setting pixel values of the pixels whose label is cv to

2cv − 1
2C

,

and a synthetic image is generated by corrupting the noise
free image by zero mean Gaussian with standard deviation
of σ. For each pair of C and σ, 100 synthetic images of
128 × 128 pixels are generated and used to measure the av-
erage error rate for each of SFMM, SVFMM, and SCMM.

The parameter β of SVFMM is chosen so that it per-
forms best for each pair of C andσ. In the proposed method,
a Gaussian process prior with GE covariance function of
l = 4, γ = 0.8 is used throughout for synthetic images.

5.1.2 Results

Table 1 shows the measured error rates in this experiment.
We can see that the proposed SCMM has lower error rates
than SVFMM when image has relatively heavy noise. Since
SFMM does not take spatial informations into account,
SFMM provides poor results.

Figure 3 shows some examples of segmentation results
for (C, σ) = (3, 0.2). Figure 3 (a) is the true label image
and Fig. 3 (b) is corrupted image which is used as the in-
put image for each algorithms. Figure 3 (c) to 3 (e) are
segmentation results for SFMM, SVFMM, and SCMM, re-
spectively. Although SVFMM reduces errors compared to
SFMM, we can still see the tendency of over segmentation

Fig. 3 Segmentation results for an example of three class image. (a)
True label image and (b) corrupted image by zero mean Gaussian noise
with standard deviation of 0.2. Segmentation by SFMM (c), SVFMM (d),
and the proposed SCMM (e).

and it includes many too tiny segments. On the other hand,
the difference between the true label image and the result of
SCMM is rather subtle.

5.2 Experiment with Real Images

From the Berkeley segmentation dataset (BSDS) [7], we
picked 11 real images which look like whose luminance val-
ues give good clues to achieve decent segmentations. Note
that all images were converted to grayscale ranging from 0
to 1 in advance. Figure 4 shows the selected images. We
also use the images corrupted by Gaussian noise with stan-
dard deviation of 0.05 and 0.1.

Some ground truth segmentations produced by humans
are provided for each image in BSDS. However, given a
segmentation, we cannot define its misclassification rate be-
cause the correspondence between the segment labels in the
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Fig. 4 The real images chosen from BSDS.

segmentation and those in a ground truth cannot be deter-
mined. Thus, we compare SVFMM and SCMM using the
following three criteria which come from rather different
perspectives:

Probabilistic Rand (PR) Index [8] PR index is defined
between a segmentation and the set of ground truth seg-
mentations. PR index takes values in [0, 1] and higher
values indicate better results.

Variation of Information (VI) [9] Since VI is a measure
defined between two segmentations, the mean of VI
values obtained between a segmentation and all of the
human segmentations is used as the VI value for the
segmentation. VI takes nonnegative values and lower
values indicate better results.

F-measure of Boundary Detection [10] This measure is
defined based on the precision-recall framework for the
task to detect segment boundary pixels, in which true
positives are determined by the human segmentations.
Precision and recall are calculated based on the counts
accumulated over the 11 real images, and F-measure
is obtained from precision and recall. F-measure takes
values in [0, 1] and higher values indicate better results.

5.2.1 Experimental Setup

In this experiment, two covariance functions, SE and GE
described in Sect. 4.2 are used for our proposing SCMM.

Table 2 The parameters of SVFMM and the covariance functions SE
and GE of SCMM.

SVFMM
SCMM

SE GE

β = 0.5 l = 2 l = 0.5, γ = 0.1

In this section SCMM with SE and GE are referred to as
SCMM-SE and SCMM-GE, respectively. The parameters
of the covariance functions and the parameter β of SVFMM
are chosen so that they perform best in terms of mean PR
index. The tuned parameters are shown in Table 2.

In human segmentations, each connected segment has
its own label regardless of the luminance values of the pix-
els in the segment. On the other hand, in the segmentations
produced by SVFMM or SCMM, some disconnected seg-
ments can have the same label when they correspond to the
same component of the finite mixture. Thus, in this experi-
ment, the segmentations produced by SVFMM and SCMM
are relabeled so that any connected segment has a unique
label.

Throughout the experiment with real images, number
of classes, C is set to 4 because SVFMM and SCMM both
produce decent segmentations for the selected real images
when C = 4.
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5.2.2 Results

First, we compare the segmentation performance of
SVFMM and the proposed methods in terms of PR index.
Table 3 shows the means of the measured PR index values.
While SCMM-SE is comparable to SVFMM when the im-
ages not corrupted, the proposed methods achieve higher
values than SVFMM in other cases. A remarkable fact is
that although the performance of SVFMM is degraded for
the corrupted images as normally expected, the performance
of the proposed methods is comparable or even better.

Next, we examine the segmentation performance in
terms of VI. Table 4 shows the means of the measured
VI values. Although when the images are not corrupted,
SCMM-SE was comparable to SVFMM in terms of PR in-
dex, it outperforms in terms of VI. We again see the phe-
nomenon in which the proposed methods perform better
when the images are corrupted by noise.

Table 3 Means of PR index values for SVFMM and the proposed meth-
ods, SCMM-SE and SCMM-GE.

σ
PR Index (standard deviation)

SVFMM SCMM-SE SCMM-GE

0.00 0.704 (0.130) 0.704 (0.133) 0.723 (0.149)
0.05 0.703 (0.139) 0.705 (0.132) 0.721 (0.148)
0.10 0.681 (0.128) 0.712 (0.108) 0.736 (0.133)

Table 4 Means of VI values for SVFMM and the porposed methods,
SCMM-SE and SCMM-GE.

σ
VI (standard deviation)

SVFMM SCMM-SE SCMM-GE

0.00 2.18 (0.82) 2.07 (0.74) 1.89 (0.72)
0.05 2.24 (0.88) 2.08 (0.75) 1.90 (0.73)
0.10 2.51 (0.83) 2.00 (0.78) 1.81 (0.84)

Fig. 5 Example of segmentation results for the image #167062. (a)-(d) are examples of the ground
truth segmentations. (e) is the input real image corrupted by Gaussian noise of σ = 0.1. (f)-(h) are
segmentation results of SVFMM, SCMM-SE, and SCMM-GE, respectively.

Finally, we evaluate the quality of the segmentation re-
sults with the evaluating methodology developed in [10].
Table 5 shows F-measures along with precisions and re-
calls, which indicates that the proposed methods outper-
form SVFMM. Note that the recalls of SVFMM is very
high while its precisions are very low. We can understand
this fact from Fig. 5. As shown in Fig. 5 (f), the result
of SVFMM is highly over-segmented, which would cause
many false positives and few undetected boundary pixels.
The result of SCMM-GE shown in Fig. 5 (h) is similar to the
human segmentations shown in Fig. 5 (a)- 5 (d) and is not
so over-segmented and thus, its precision (recall) is much
higher (lower) than that of SVFMM.

This time, as normally expected, the segmentation per-
formance of our methods degenerate as the added noise in-
creases, although it dose so much more moderately than that
of SVFMM does. As seen from Table 5, adding more noise
leads to more over segmented results for any methods. Tak-
ing into account this fact, from the mysterious improvement
of the segmentation evaluations of the proposed methods
based on PR index and VI by adding noise, we can conjec-
ture that PR index and VI has the tendency of overestimation
for over segmented results.

We also measured CPU time of SVFMM and our
method for σ = 0. On average, SVFMM and SCMM took
roughly 50 and 10 minutes per image, respectively. Al-
though CPU time would depend on the parameters and the
details of implementation of the algorithms, it can be said

Table 5 F-measures with precisions and recalls for SVFMM and the pro-
posed methods, SCMM-SE and SCMM-GE.

σ
F-measure (Precision, Recall)

SVFMM SCMM-SE SCMM-GE

0.00 0.44 (0.30, 0.84) 0.57 (0.44, 0.78) 0.62 (0.63, 0.62)
0.05 0.29 (0.17, 0.88) 0.50 (0.37, 0.80) 0.61 (0.59, 0.63)
0.10 0.23 (0.13, 0.97) 0.44 (0.31, 0.79) 0.52 (0.43, 0.67)
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that our method is not so computationally intensive in com-
parison with SVFMM.

6. Conclusions and Future Work

We have proposed a new image segmentation algorithm
based on finite mixture modeling. In this algorithm, image
segmentation is achieved by finding MAP estimates of the
underlying functions that govern the mixing proportions of
a spatially correlated mixture model.

The effectiveness of the proposed approach has been
demonstrated by the experiments with synthetic and real im-
ages. The proposed approach achieved significantly higher
accuracy than SVFMM for noisy synthetic images. More-
over, in the experiment with real images, the proposed
method produced segmentation results which more closely
resemble human segmentations than those of SVFMM do.

The covariance function of the Gaussian process prior
of a SCMM plays a major role in the proposed method. We
can control behavior of the underlying functions, and hence
segmentation results by choosing a covariance function. Al-
though there is a wide variety of options for the covariance
function, only a small portion of it has been investigated.
There would be room for improvement in its segmentation
accuracy by choosing the covariance function considering
the statistics of the images to be segmented.

A possible extension to our technique is to incorpo-
rate some information from other techniques such as edge
detection. Since Gaussian process regression is based on
Bayesian framework, it would be relatively straightforward.
For example, if an edge segment which lies on the boundary
between consecutive image segments is detected for certain,
it might be beneficial to add a set of imaginary observations
of zeros located on the edge segment to the original obser-
vations F̃ML so that interchange of the largest one among
underlying functions is facilitated on the edge.
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