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PAPER

NOCOA+: Multimodal Computer-Based Training for Social and
Communication Skills

Hiroki TANAKA†a), Sakriani SAKTI†b), Members, Graham NEUBIG†c), Nonmember, Tomoki TODA†d),
and Satoshi NAKAMURA†e), Members

SUMMARY Non-verbal communication incorporating visual, audio,
and contextual information is important to make sense of and navigate the
social world. Individuals who have trouble with social situations often have
difficulty recognizing these sorts of non-verbal social signals. In this arti-
cle, we propose a training tool NOCOA+ (Non-verbal COmmuniation for
Autism plus) that uses utterances in visual and audio modalities in non-
verbal communication training. We describe the design of NOCOA+, and
further perform an experimental evaluation in which we examine its po-
tential as a tool for computer-based training of non-verbal communication
skills for people with social and communication difficulties. In a series of
four experiments, we investigated 1) the effect of temporal context on the
ability to recognize social signals in testing context, 2) the effect of modal-
ity of presentation of social stimulus on ability to recognize non-verbal
information, 3) the correlation between autistic traits as measured by the
autism spectrum quotient (AQ) and non-verbal behavior recognition skills
measured by NOCOA+, 4) the effectiveness of computer-based training in
improving social skills. We found that context information was helpful for
recognizing non-verbal behaviors, and the effect of modality was different.
The results also showed a significant relationship between the AQ com-
munication and socialization scores and non-verbal communication skills,
and that social skills were significantly improved through computer-based
training.
key words: computer-based training, multimodality, non-verbal behaviors,
context information

1. Introduction

Socialization and communication are important factors in-
fluencing human social life, but the number of people who
have trouble with social skills and communication have re-
cently been increasing for a variety of reasons [20]. It has
been noted that the extreme case of these traits is autism
spectrum disorders (ASD) [3], genetic disorders character-
ized by social interaction and communication difficulties,
as well as unusually narrow, repetitive interests [1], [21].
Given the impact of these problems on everyday life, there
has been considerable interest in tools to both identify the
degree of these difficulties and allow for training tools to
improve social and communication skills. One of the cen-
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tral psychological themes in ASD is empathizing [4]. Em-
pathizing is a set of cognitive and affective skills that we use
to make sense of and navigate the social world [12]. The
cognitive component of empathy is referred to as “theory of
mind” or “mindreading” and entails recognizing the men-
tal state of others. The affective component entails having
an emotional response to this recognized mental state. It is
well known that Social Skills Training (SST) can be used to
effectively improve empathizing ability [2].

We have previously proposed a tool NOCOA [27],
which is an application to help test and train non-verbal be-
haviors. NOCOA allows users to listen to an utterance, and
guess intention (is the speaker friendly, sociable, or deri-
sive?) and partner information (is the speaker conversing
with a friend or someone senior such as a teacher?), allow-
ing the user to improve their skills in recognizing this infor-
mation. Previous work with NOCOA confirmed a correla-
tion between non-verbal recognition skills and autistic traits,
and examined prospectives for intervention through system-
atically teaching nonverbal behaviors. While the overall de-
sign of NOCOA has proven advantageous in the previous
research, NOCOA used only short audio snippets for testing
and training the ability to recognize non-verbal behaviors.

On the other hand, there are reports mentioning that not
only audio, but also visual information is important to rec-
ognize basic and complex emotion [17], [18]. In addition,
other reports have mentioned that conversational context in-
fluences emotion recognition [7], with potential contextual
factors including location, identities of the people around
the user, date, time of day, season, temperature, emotional
state, and focus of attention [11], [14], [15], [24]. In most
previous definitions, the common contextual factor is time,
so we focus on temporal context.

In this work, we propose a method that improves the
training of non-verbal information recognition skills by in-
corporating the audio, visual, and contextual information
that has been shown to play an important role in recogniz-
ing basic and complex emotions. Specifically, we propose
an updated application NOCOA+ that uses the multimodal
and context information to help in training the ability to rec-
ognize non-verbal behaviors, as shown in Table 1. We do so
by collecting and incorporating data from several sensory
modalities, as well as data considering context. We perform
a series of four experiments examining

1. the effect of temporal context on the ability to recog-
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Table 1 Comparison of previous works and this work.

speech modality/context
emotions [Golan, 2007] [Golan, 2008; Barett, 2011]
non-verbal [Tanaka, 2013] this work

nize non-verbal behaviors in testing context,
2. the effect of modality of presentation of social stimulus

on ability to recognize non-verbal behaviors,
3. the correlation between autistic traits and non-verbal

behavior recognition skills measured by NOCOA+,
4. the effectiveness of computer-based training in improv-

ing social skills.

This paper is an extension of work originally reported
in [26]. We implemented four experiments with larger num-
ber of participants and discuss the results in more detail.

2. Related Work

The use of computers to aid people with communication dif-
ficulties has flourished in the last decade However, most ap-
plications tend to be rather specific (e.g. focusing only on
emotion recognition of facial expressions from still photos)
and are often not scientifically evaluated [19].

An application “FEFFA” was proposed to help users
recognize emotion from still pictures of facial expressions
and strips of the eye region [8]. “Emotion Trainer” teaches
emotion recognition of four emotions from facial expres-
sions [25]. “Lets Face It” teaches emotion and identity
recognition from facial expressions [28]. Golan and Baron-
Cohen [16] proposed a training tool “Mind Reading” which
implements an interactive guide to emotions and teaches
recognition of 412 emotions and mental states, systemati-
cally grouped into 24 emotion groups, and 6 developmen-
tal levels. Experiments found that this method can enable
adults with ASD to learn mental state recognition, with
an improvement of mental state recognition skills indicated
during three months of intervention. However, learning
skills that generalize beyond the stimuli used in training is
still difficult. Although people with ASD improved their
ability to recognize emotions from trained stimuli, they had
difficulty in recognizing emotions from films in more real-
istic situations. This is in concert with reports that people
with social communication difficulties have trouble in ap-
plying learned skills to unseen situations [2].

In previous work, the training typically tended to focus
on skills of emotion recognition, and did not include non-
verbal behaviors [27]. In this paper, we propose an applica-
tion NOCOA+ that uses utterances in several modalities and
context to help users recognize non-verbal behaviors.

3. Categorization of Non-verbal Behavior

Non-verbal behavior includes various factors (e.g., eye con-
tact, emotion, intention, partner, gesture, and gender). We
have previously performed a factor analysis [27] to con-
firm the important non-verbal factors [29] contributing to

social and communication skills, and their relationship with
autism-spectrum quotient (AQ), which is a standard method
to measure social and communication skills [5]. We found
five important factors: 1) intention & interest, 2) polite-
ness/impoliteness & new friends, 3) social places and situa-
tions, 4) chit-chat and feelings, 5) other. We selected the first
two factors (intention & interest, politeness/impoliteness
& new friends) as non-verbal behaviors, and named these
groupings as representing “intention” and “partner informa-
tion” respectively. For example, an AQ question related to
intention is “I find it difficult to work out people’s inten-
tions,” and a question related to partner information is “other
people frequently tell me that what I’ve said is impolite.”
These two factors were also used as the non-verbal behav-
iors to be trained and tested by NOCOA+. The categories
of partner information were utterances spoken to a “friend”
and utterances spoken to a “teacher,” and categories for in-
tention were utterances in a “derisive” situation, utterance
in a “social” situation, and utterances in a “friendly” situa-
tion [27].

4. Recording and Annotation

We next recorded a number of videos representing each of
the categories of non-verbal behavior defined in the previous
subsection in as natural a manner as possible. In order to en-
sure that we are able to collect video samples of “derisive,”
“social,” and “friendly” utterances in the intention category,
we had each subject perform a conversation according to
the following procedure: (a) read the sports section of the
newspaper, (b) converse about the content of the article for
10 minutes, (c) read the society section of the newspaper,
(d) converse for 10 minutes. The sports and society sections
were expected to elicit friendly and derisive behaviors re-
spectively. In addition, to make it easier to collect two types
of partner information, we had each subject converse with
both a close friend and a teacher.

In this study, four students (4 males, mean age: 23.5)
acted as subjects, with each having a score of under 32
on the overall AQ test (the cut-off value of ASD [5]). A
video camera (SONY HDR-CX560) was used, and placed
in the middle of the two conversants to take frontal shots.
A pin microphone (Olympus ME52W) was used for record-
ing each person’s speech data. Movie data and speech data
are synchronized using the Windows movie maker, and each
speech interval (utterance) was detected using the power
value extracted by the Snack Tcl/Tk toolkit†. Detected ut-
terances were automatically divided into speech and video.
We also created utterances including temporal context infor-
mation from the 5s and 10s prior to the actual utterance.

We annotated the recorded movies with correct cat-
egory labels. In video recording, we prepared a total of
1200 audiovisual utterances without contextual information,
and asked annotators to annotate them. Because annotators
are required to have good social skills to recognize non-

†http://www.speech.kth.se/snack/
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Table 2 Examples of selected utterances

Did you go skating? Why did you start to play baseball? We can know whether a company we are employed at is good after ...
Yes, I agree. I played with one person and maybe he knew my name. I think people watch figure skating only during big competitions ...
That is an overstatement. I do not frequently watch figure skating in TV. And, I think no-one does frequently watch that.

verbal behaviors, we selected three annotators for whom the
sums of the AQ subarea scores for communication and so-
cial skills were low (the sum of both areas was one for all
three annotators). The annotators labeled each utterance into
friend, teacher, or others for partner information and into de-
risive, social, friendly, or others for intention respectively. A
total of 109 utterances (9.1%††) for which all three annota-
tors agreed on both partner and intention information were
chosen for use in NOCOA+. The Cronbach alpha coeffi-
cient value was 0.89, indicating that the coding is reliable.
We did not select utterances based on discussion between
the annotators. Examples of selected utterances are listed in
Table 2.

5. Design of NOCOA+

Using these movie samples, we next designed an applica-
tion to test and train ability to recognize intention and part-
ner information. NOCOA+ was designed according to sev-
eral principles. First, correlation with AQ: one of the fac-
tors influencing the ability to empathize is the severity of
ASD [31]. The AQ test is generally used for measuring a
person’s position on the autism spectrum in both people with
and without ASD. Thus, non-verbal behaviors as tested by
NOCOA+ should correlate with the AQ, and we have used
this to guide our design. Second, systematic design: while
individuals with ASD have difficulty in socialization and
communication, they also show good and sometimes even
superior skills in non-social areas such as “systemizing” [4].
Systemizing is the drive to analyze or build systems, to un-
derstand and predict the behavior of events in terms of un-
derlying rules and regularities, and previous work has noted
that learning materials can be presented in a manner that
utilizes these systemizing skills for increased learning ef-
fect [16]. The use of computer-based training for individuals
with ASD can take advantage of this systemizing tendency
because computer-based environments are predictable, con-
sistent, and free from social demands, which individuals
with ASD may find stressful. Users can work at their own
pace and level of understanding, and lessons can be repeated
over and over again, until mastery is achieved. In addition,
interest and motivation can be maintained through different
and individually selected computerized rewards [9], [22].
To create an application that satisfies these desiderata, we
adopted two types of training and a quiz format that in-
cludes computerized reward, where the user of the applica-
tion chooses from several categories of intention and part-
ner information, modality, contextual information, and dif-
ficulty levels.

††The chance rate was 2.7%

Fig. 1 Screenshot of the training mode in the English version. The user
selects modalities (speech and/or movie) and non-verbal behaviors (inten-
tion and partner information).

5.1 Training Mode

Training mode was designed to enhance the user’s social-
ization and communication skills. Baron-Cohen et al. [4]
speaks of the extreme male brain theory of individuals with
ASD, which states that people with ASD prefer things that
function in a rule-governed way. In contrast, previous work
mentioned that a large number of inputs were needed to train
social skills [16], [27]. Thus, we designed training mode to
provide two types of training, “listen to a large number of
examples” and “check the rules.” The former is a conven-
tional method and developed to enable users to learn by lis-
tening to and watching utterances for training. 79 utterances
were randomly selected from the total of 109 utterances as a
closed training set used in training mode. Users can work at
their own pace and level of understanding by selecting non-
verbal behaviors, difficulty levels, types of modality, and
contextual information (Fig. 1). The latter rule-based train-
ing regimen is a new approach. The first author created ex-
planations of the eye-movement, prosody, and posture rules
that provide hints about the correct answer by listening to
the samples, and the user can see these descriptions. An
example of this explanation is “People in derisive situation
tend to speak with short duration and with lower variation
of pitch, and look down.” The explanation was reviewed
and modified by two other people. The user can select the
preferred training regimen from the training menu.
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Fig. 2 Screenshot of the test mode interface in the English version. The
movie stimulus is displayed, and then the user selects the appropriate in-
tention and partner information.

5.2 Test Mode

In the test mode quiz, 10 questions for measuring the user’s
non-verbal recognition skills are provided. The 10 question
set is chosen at random each time. The questions have the
two types of generalization levels shown below: 1) closed:
testing is performed using data that was included in the
training mode, 2) open: testing is performed using data that
was not included in the training mode. The user watches a
video or listens to audio of an utterance, and then attempts
to guess the intention and partner information corresponding
to the utterance (Fig. 2).

For both partner information and intention the maxi-
mum score of each question is five. For partner informa-
tion, the user gets a score of five when the correct partner
is chosen and zero otherwise. For intention, the score for
mistakes between derisive and social is two, between social
and friendly is three, and between derisive and friendly is
zero. The intention category’s score penalty for mistakes
between derisive and social is higher than for those between
social and friendly because these are critical misses in social
situation [27].

The test mode score is calculated after answering 10
questions, and 100 is the best obtainable score. During the
test, the system does not show feedback. After the test,
the system shows total score, intention score, partner score,
and comments based on the score aimed to encourage the
user. These scores are automatically sent to a web server
and users can watch their ranking to maintain their motiva-
tion.

Table 3 Relationship between difficulty levels and contextual informa-
tion.

Easy [%] Normal [%] Hard [%]
No context 32 58 10
Context 5 63 37 0
Context 10 70 30 0

6. Experimental Evaluation

In this section, we describe a series of experiments that use
NOCOA+ to evaluate contextual differences, modality dif-
ferences, the relationship between NOCOA+ score and AQ,
and the effect of training. The Research Ethic Committee of
the Nara Institute of Science and Technology has reviewed
and approved our experiments. Written informed consent
was obtained from all subjects before the experiments.

6.1 Difficulty Level and Contextual Differences

We expanded the test mode by setting a difficulty level for
each utterance. We did this by having participants other than
the annotators use test mode. Three difficulty levels were
set according to each question’s accuracy rate: 1) easy, 2)
normal, 3) hard. The accuracy rate of each difficulty level is
easy: 81–100%, normal: 51–80% and hard: 0–50%.

In the first experiment, we clarify the benefit of tem-
poral context information in the form of the content directly
proceeding the utterance. We hypothesized that contextual
information can help the subjects answer questions.

6.1.1 Method

We used the NOCOA+ test mode including three contextual
levels: no context, 5 seconds context, and 10 seconds con-
text, which indicate that the user watches not only the utter-
ance itself, but also video from the 0s, 5s, and 10s prior to
the actual utterance. First, we collected data corresponding
to each level of context (in Sect. 4). Three types of diffi-
culty level were set; easy, normal, and hard according to the
criterion mentioned previously. To categorize difficulty lev-
els, 10 participants (8 males and 2 females, mean age: 23.7)
answered all questions with each level of contextual infor-
mation. This experiment conducted using a within subjects
design.

6.1.2 Results

In Table 3, we show the relationship between difficulty lev-
els and contextual information. We can see that the percent-
age of each difficulty category is related to the contextual
level. In the 5s and 10s contexts, more than 60% of ques-
tions were categorized as the easy difficulty level. This re-
sult indicates that contextual information helped people to
infer the correct answer.
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Fig. 3 Modality differences in terms of intention and partner score with standard error bars. A.V.
indicates audiovisual.

6.2 Modality Differences

In the second experiment, we investigated the effect that
modality differences have on recognition of non-verbal in-
formation. We set a hypothesis that modality of stimulus has
an effect on the ability to identify non-verbal information,
and performed experiments to test this hypothesis using the
testing mode of NOCOA+.

6.2.1 Method

We recruited a total of 14 participants (11 males and 3 fe-
males, mean age: 22.5) for the experiment. This experi-
ment is conducted using a within subjects design. Here, be-
cause we only sought to investigate the effect of modality
differences, we controlled for difficulty level. Participants
took the NOCOA+ test mode, and answered 10 questions
randomly selected from the easy difficulty level, which in-
clude four modalities: audiovisual, audio, visual, and verbal
(where the first author of this article transcribed the speech
in the audiovisual data and read it in a flat tone without emo-
tion). The closed data was used, and scores were averaged.

We set a hypothesis that characteristics of intention and
partner information are different. To verify the hypothesis
we analyzed the score for intention and partner information
separately, and used one-way ANOVA to measure statisti-
cal significance. We also performed a pairwise comparison
using Bonferroni’s method [23].

6.2.2 Results

The results in Fig. 3 indicate that there were significant dif-
ferences in each modality’s score in terms of intention and
partner information. The ANOVA showed [F(3,52)=29.64,
p < .01, η2

p = 0.63] for intention score and [F(3,52)=15.77,
p < .01, η2

p = 0.48] for partner information score respec-
tively. In the case of the verbal modality, a large number of

errors were found in the intention category, and in the case
of the visual modality, a relatively large number of errors
were found in the partner information category. Post-hoc
comparison showed that in the case of intention the verbal
score was significantly lower than audiovisual (p < .01), au-
dio (p < .01) and visual (p < .01) scores, and in the case
of partner information, the visual score was significantly
lower than audiovisual (p < .01), audio (p < .01) and verbal
(p < .01) scores.

The results showed that people have difficulty correctly
inferring others’ intention by only the linguistic information
of speech, and people have difficulty correctly inferring oth-
ers’ partner information by only visual signals.

6.3 Relationship of Autistic Traits

In the third experiment, we investigated the relationship be-
tween the AQ score and non-verbal communication skills
measured using NOCOA+.

6.3.1 Method

12 participants (11 males and 1 female, mean age: 23.1) per-
formed the easy and normal difficulty levels with the closed
data set using audiovisual data one time. The averaged score
of the easy and normal difficulty levels was calculated. Fi-
nally, they took the Japanese version of AQ [30], and the
sum of the two AQ subareas (communication and social
skill) was measured. We calculated the relationship and cor-
relation coefficients between NOCOA+ score and AQ, and
performed a linear regression analysis.

6.3.2 Results

Figure 4 shows the results indicating the relationship of
the sum of social and communication scores and test mode
score of NOCOA+. The maximum score of test mode is
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Fig. 4 Relationship between the sum of social and communication AQ
scores and test mode score of NOCOA+ with a regression line.

100, and a high score indicates high non-verbal communi-
cation skills. On the AQ test, the maximum social and com-
munication scores are each 10, and a high score indicates
a high level of autistic traits. As Fig. 4 shows, there is a
correlation between the sum of the AQ subareas and aver-
aged test mode score with a correlation coefficient of 0.82
(p < .01). We also fitted a regression line using the least
squares method with a coefficient of determination of 0.67.

These results confirmed that there is a strong relation-
ship between the ability to recognize non-verbal information
in video and the AQ subareas.

6.4 Training Effect

In the fourth experiment, we investigated whether computer-
based training results in an increase in ability to recognize
non-verbal information. We hypothesized that computer-
based training is effective in allowing users to train their
ability to recognize intention and partner information, and
that the effectiveness is not related to difficulty and gener-
alization level. To verify the hypothesis, we investigated
whether users are able to maintain high scores even in un-
seen open questions.

6.4.1 Method

We recruited 12 participants (11 males and 1 female,
mean age: 23.0). This experiment was conducted using a
between-subjects design. The participants were randomly
assigned to the training group (6 males) or the non-training
group (5 males and 1 female). The mean value of initial
scores of two groups were not significantly different for both
easy difficulty level (training: 85.5 (SD: 4.5), non-training:
90.3 (SD: 5.6)) [t(10)=−1.62, p > .1] and normal diffi-
culty level (training: 78.2 (SD: 9.0), non-training: 81.3 (SD:

8.7)) [t(10)=−0.62, p > .1], which is similar to the result of
Sect. 6.3.2.

The procedure includes a training session in which the
subject: (a) Enters a laboratory and receives a description
by first author, (b) Practices how to use NOCOA+, (c) Per-
forms the easy and normal difficulty levels using the closed
data set one time, (d) Either uses training mode for 20 min-
utes (training group), or waits for the same 20 minutes (non-
training group), (e) Repeats procedure (c) using test mode
with open data as well. The training group is instructed
to first use rule-based training and then use statistics-based
training. Almost all participants were able to complete train-
ing on all utterances in 20 minutes. The absolute improve-
ment in score ((e) score - (c) score) was calculated and av-
eraged for each group. We also test whether the training
group scored higher than the non-training group in the case
of open data. The significant differences were tested by Stu-
dent’s t-test.

6.4.2 Results

Almost all participants were able to complete training on all
utterances in 20 minutes. Figure 5 shows the improvement
of test mode score before and after 20 minutes. In terms
of difficulty level easy (left side of Fig. 5), the improvement
in score was 8.0 (SD: 2.7) in the training group and −0.5
(SD: 4.7) in the non-training group respectively [t(10)=3.86,
p < .01]. In terms of difficulty level normal (right side of
Fig. 5), the improvement in score was 16.3 (SD: 5.4) in the
training group and 0.8 (SD: 6.1) in the non-training group
respectively [t(10)=4.66, p < .01].

In the case of open data, for easy difficulty level, the
averaged score was 96.0 (SD: 4.5) in the training group and
91.7 (SD: 3.3) in the non-training group, indicating that the
training group had a score significantly higher than that of
the non-training group [t(10)=1.90, p < .05] (one-tailed
test). For normal difficulty level, the averaged score was
91.5 (SD: 6.0) in the training group and 85.5 (SD: 7.4) in the
non-training group, indicating that there is a tendency that
the training group was higher than the non-training group
[t(10)=1.54, p < .1] (one-tailed test).

Thus, we found that in both difficulty levels, 20 min-
utes of training was helpful for participants of the training
group with both closed and open data, and we confirmed
effectiveness by systematic training in both audio data and
visual data.

7. Conclusion

In this paper, we proposed a training tool NOCOA+ that
uses utterances in several modalities and context. We used
NOCOA+ to examine computer-based social skills training
that uses not only audio data, but also visual and contex-
tual data. NOCOA+ was designed for systematic computer-
based communication training, and thus users can work
at their own pace and level of understanding by selecting
modality, contextual information, and difficulty level. To
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Fig. 5 Test mode score before and after training. The left figure indicates difficulty level easy, and the
right figure indicates difficulty level normal. Dotted lines indicate scores of the non-training group, and
solid lines indicate scores of the training group. Pre and post 20 minutes (closed data) is shown as well
as post 20 minutes (open data). Each line indicates a different participant.

measure effect of training, we designed a test mode includ-
ing 10 questions in closed and open sets. Users can be mo-
tivated by seeing their total score and generated comments.

For evaluation of NOCOA+, we recruited a total of
48 participants, and performed a series of four experiments:
1) We analyzed contextual differences, and found that con-
textual information was helpful for answering questions.
This result showed similar tendencies to emotion recogni-
tion in previous work [7]. 2) We found that these were dif-
ferences in each modality’s score in the cases of both in-
tention and partner information. We also confirmed that the
audio modality, which was used in NOCOA, allowed users
to accurately recognize non-verbal behaviors. 3) We inves-
tigated the relationship between autistic traits measured by
the AQ and non-verbal behavior recognition skills measured
by NOCOA+. The results showed a correlation between AQ
scores of the communication and socialization subcategories
and non-verbal communication skills. This result showed
an improvement in the correlation coefficient of NOCOA+
(r = 0.82) compared with NOCOA (r = 0.71). 4) We found
that participants significantly improved in score through
computer-based training in terms of closed and open ques-
tion sets.

Although each experiment was performed with a lim-
ited number of participants, we found that multimodality
and context information is useful to accurately recognize
non-verbal behaviors, and two types of training regimen
have effective to improve social skills. In social commu-
nication, skills for recognition of non-verbal behaviors are
one of the important components. These results also imply
that it is better to take into consideration the effect of mul-
timodality and context information than only using a single
modality in communication training.

One potential direction for the future is considera-
tion of individual differences (e.g., the relationship be-
tween tendency of mistakes and autistic traits) as well
as the relationship between autistic traits and training ef-

fect. In addition, NOCOA+ proposed two types of train-
ing methods, “listen to a large number of examples” and
“check the rules.” Differences in the effect of these train-
ing methods in terms of social communication training
should be examined in the future. NOCOA+ has been dis-
tributed in the Apple store as an educational application
(https://itunes.apple.com/us/app/nocoa+/id622502354?
ls=1&mt=8).
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