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PAPER

Radar HRRP Target Recognition Based on the Improved Kernel
Distance Fuzzy C-Means Clustering Method

Kun CHEN†a), Nonmember, Yuehua LI†b), Member, and Xingjian XU†, Nonmember

SUMMARY To overcome the target-aspect sensitivity in radar high
resolution range profile (HRRP) recognition, a novel method called Im-
proved Kernel Distance Fuzzy C-means Clustering Method (IKDFCM)
is proposed in this paper, which introduces kernel function into fuzzy c-
means clustering and relaxes the constraint in the membership matrix. The
new method finds the underlying geometric structure information hiding in
HRRP target and uses it to overcome the HRRP target-aspect sensitivity.
The relaxing of constraint in the membership matrix improves anti-noise
performance and robustness of the algorithm. Finally, experiments on three
kinds of ground HRRP target under different SNRs and four UCI datasets
demonstrate the proposed method not only has better recognition accuracy
but also more robust than the other three comparison methods.
key words: fuzzy c-means clustering method (FCM), high-resolution range
profile (HRRP), radar automatic target recognition (RATR), kernel function

1. Introduction

The ability to detect and locate targets on a day/night, all-
weather basis, over wide areas, has long made radar a key
sensor in many military and civilian applications [1]. It is
well recognized that the utility of the information supplied
by a radar system would be hugely enhanced if targets could
additionally be recognized. Compared with other wideband
radar signals, such as synthetic aperture radar (SAR) im-
ages and inverse synthetic aperture radar (ISAR) images,
the HRRP is easy to obtain and needs less storage space.
Most of all, the HRRP provides the underlying geometry
structure of the target, which is promising information for
target recognition. Therefore, Radar HRRP target recogni-
tion (RATR) has received intensive attention by the RATR
community in recent years [1]–[19]. Several issues should
be taken into account when HRRP is used in the radar target
recognition [2]. The first one is target-aspect sensitivity of
HRRP, the scattering center model [3] and coherent averag-
ing [4] have been widely studied to surmount it. The HRRP
is the amplitude of the coherent summation of the complex
time, which returns from the target scattering centers in each
range resolution cell and the variation of target aspect will
lead to different range shift for different scattering centers
on the target. The scattering center model assumes that
one target can be modeled as a number of scatters and a
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small target aspect change leads to the HRRP change vio-
lently, however, if there is no migration through resolution
cell (MTRC) [3], [6], HRRP does not change much. Coher-
ent averaging looks an averaged HRRP as a template, which
gets a better signal to noise ratio (SNR) than other methods.
The second one is time-shift sensitivity. A HRRP is just
the radar echoes in a range window, the length of which is
decided by the radar parameters, different range windows
lead to different HRRPs. We can use the shift matching
method [7], [8] or extract the shift invariant features [9]–[11]
to solve this problem. The last one is amplitude-scale sen-
sitivity of HRRP. The amplitude of HRRP is determined by
the amplitude of target echoes, which is influenced by the
radar transmitting power, target distance, atmospheric atten-
uation and so on. All these lead the HRRP measured in a
different environment will have different result and increase
the difficulty of feature extraction. Considering the three
sensitivities of the radar HRRP target, how to mix the fea-
ture extraction method and classification algorithm in the
field of RATR is widely studied [11]–[18].

In the existing literatures, reference [3] and [18] dis-
cussed the properties of radar HRRP, the bispectra has been
well studied in [9], [10]. In order to avoid the huge com-
putation burden in bispectra method, some dimensionality
reduction methods were proposed in [6], [11], [15]. Hid-
den Markov model was used in radar HRRP target recogni-
tion and studied in [19]; some time-shift invariant features
of radar HRRP target were proposed in [5], [7]–[11]; the
statistical recognition model was studied in [12], [14], [17];
many classifiers were proposed in [13], [15], [16]. there has
been little work, however, in the field of radar HRRP target
based fuzzy clustering algorithm.

The fuzzy c-means clustering method (FCM) is a type
of fuzzy clustering algorithm, which was proposed by Dunn
in [20] and developed by Bezdek [21]. Both the analysis
and experiments show that the FCM is susceptible to the
noise and can’t guarantee convergence to the global op-
timal. To solve this problem, the possibilistic clustering
method (PCM) [22] and possibilistic fuzzy c-means cluster-
ing method (PFCM) [23] were proposed. Although the PCM
and the PFCM have better robustness to the noise than FCM,
the PCM is easy to get the overlap clustering result and the
PFCM needs to initialize various parameters, both of them
are sensitive to the initial value of parameters. Thankfully,
the kernel function can solve the problems mentioned above
perfectly [24], [25]. The introducing of kernel function into
the fuzzy c-means clustering algorithm makes the algorithm
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has the capacity to find the non-convex structure in the clus-
tering data.

In this paper, we considered the target-aspect sensitiv-
ity problem in the radar HRRP target and the shortcomings
of the clustering algorithm mentioned above. Based on pre-
existing algorithms, we proposed an improved algorithm for
the recognition of radar HRRP target, called improved ker-
nel distance fuzzy c-means clustering method (IKDFCM).
We first introduce the kernel function into the fuzzy c-means
method (FCM) algorithm. The function of the kernel func-
tion is tantamount to map the non-linear radar HRRP tar-
get data from the original low-dimensional data space to the
high-dimensional feature space, and use the inner product
to calculate the distance between two points in the high-
dimensional feature space. The kernel function can find
the steady underlying geometric structure information in the
HRRP target and uses it to surmount the target-aspect sen-
sitivity. Besides, we relax the column sum constraint of the
membership matrix in FCM algorithm from one to n. This
change makes the IKDFCM have the better anti-noise and
robust performance. Finally, recognition experiments based
on radar HRRP of three different targets and four UCI public
datasets are made, the result show that the proposed method
not only has the better recognition accuracy, but more robust
to noise compared with the other three contrast methods. In
the IKDFCM algorithm, we choose the radial basis function
(RBF) as the kernel function and the Euclidean distance as
the distance of two points in the high-dimensional feature
space.

The rest of paper is organized as follows: In Sect. 2,
we review the related work in the field of radar HRRP target
recognition and the theory of FCM. In Sect. 3, the Improved
Kernel Distance Fuzzy C-means Clustering Method algo-
rithm is discussed in detail. In Sect. 4, we perform experi-
ments on the electromagnetic simulation radar HRRP target
to evaluate the effectiveness of our method. Conclusions and
summary are made in Sect. 5.

2. The Related Work

2.1 The Target-Aspect Sensitivity of Radar HRRP

According to the scattering model in [4], the radar target
doesn’t appear as a “point target” any longer if the target
is much larger than the wavelength of millimeter radar, but
consists of many scatters separated in range cells along the
radar line of sight (LOS). The HRRP is the amplitude of the
coherent sum of the complex time returns from the scatters
in each range cell as showed in Fig. 1. From the Fig. 1 we
know that the slight variation of target-aspect caused scat-
ters remove from one range cell to another and conspicu-
ous change of the HRRP, we call this phenomenon MTRC.
The limitation of target-aspect change for avoiding MTRC
is given in literature [2] and [6].

δϕ ≤ (δϕ)MTRC =
C

2BLx
(1)

Fig. 1 HRRP of an aircraft, it shows the discriminative information on
the geometry of aircraft. This figure is cited from [5].

Where B is the bandwidth of the radar signal, Lx is the max-
imum target size in cross range and C is the speed of light.

The HRRP of the ground target has the exact same
characteristics with the aircraft target. In this paper the
HRRP we used are three different ground targets. They are
BMP2, T72 and BTR70. As the real targets and real radar
echoes data is hard to obtain, we just set up the electromag-
netic scattering model according to the geometric model of
the real target and use the step frequency wave (SFW) radar
to get the simulated HRRP of the target through Matlab. Op-
tical images and corresponding HRRP of the three targets
are shown in Fig. 2. The azimuth of (d), (e), (f) is 30◦ and
the azimuth of (g), (h), (i) is 60◦, compared the (d) with (g),
(e) with (h) and (f) with (i) in Fig. 2, we can see the target-
aspect sensitivity clearly.

2.2 Theory of the FCM Algorithm

The principle of the FCM algorithm is to minimize the ob-
jective function which based on a certain norm or clustering
prototype. It’s aims at pointing out what degree of the sam-
ple data is affiliated to these clusters and classifying n sam-
ple data X = {x1, x2, . . . , xn} ⊂ Rs into c (c > 1) categories so
as to compute the clustering centroid V = {v1, v2, . . . , vc} ⊂
Rs of each group, s is the dimension of the sample, n is the
number of the samples, c is the number of categories. The
merit function of the FCM algorithm can describe as Eq. (2).

Min J f cm(U,V) =
c∑

i=1

n∑
j=1

um
i jd

2
i j (2)

Subject to

c∑
i=1

ui j = 1, 1 ≤ j ≤ n.

n∑
j=1

ui j > 0, 1 ≤ i ≤ c.

ui j ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ n.

(3)

Where m is called the fuzzy exponent, it has influence
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Fig. 2 The optical images [33] and the HRRP of the three targets. (a) the optical image of BMP2;
(b) the optical image of BTR70; (c) the optical image of T72; (d)–(f) the HRRP of the corresponding
three targets above when the azimuth is 30◦; (g)–(i) the HRRP of the corresponding three targets above
when the azimuth is 60◦.

on the clustering performance of FCM, U = ui j (i = 1,
2, . . . , c, j = 1, 2, . . . , n) is the membership matrix, and ui j

represents the affiliating degree that the j th sample belongs
to the j th class, V = [v1, v2, . . . , vc] is the vector composed
by clustering centroid. di j = ‖xi − v j‖ is the Euclidean norm
between x j and vi. The clustering centroid and the respective
membership functions that solve the constrained optimiza-
tion problem of the independent variables U and V in Eq. (2)
are given by the following Eqs. (4) and (5).

vi =

n∑
j=1

um
i j x j

n∑
j=1

um
i j

, i = 1, 2, . . . , c (4)

ui j =

⎡⎢⎢⎢⎢⎢⎢⎣
c∑

r=1

(
di j

dr j

) 2
m−1

⎤⎥⎥⎥⎥⎥⎥⎦
−1

i = 1, 2, . . . , c, j = 1, 2, . . . , n

(5)

Equations (4) and (5) compose an iterative optimization pro-
cedure. The goal of the iterative procedure is to get a se-
quence of fuzzy clustering centroid until no further improve-
ment in J f cm(U,V) is possible and the gengeral steps of the
FCM algorithm are defined as follows:

Step1: Preset a number of clusters c (1 < c < n) and a
value of the fuzzy exponent m (1 ≤ m < +∞), initialize the
clustering centroids V (0) set the convergence accuracy ε > 0,
set the number of the iteration k = 0;

Step2: Use the Eq. (5) to calculate the U(k+1);
Step3: Use the Eq. (4) to calculate the V (k+1) and k =

k + 1;
Step4: Repeat the Step2 and Step3 until the improve-

ment in J f cm(U,V) is no more than ‖V (k)−V (k−1)‖ ≤ ε, k ≥ 1.
In FCM, the sum of membership ui j that x j belongs to

all c classes is one, the membership value of the x j assigned
to j th class is only depend on the sum of the ratio of di j and
dr j, as shown in Eq. (5). So the membership value ui j can’t
reflect the true distance di j. This defect caused the FCM
sensitive to noise and the initial parameters.

3. The IKDFCM Algorithm

Based on the analysis above, we know that the FCM algo-
rithm assigns membership of xk is inversely depended on the
relative distance of xk to the cluster centroid Vi in the FCM
model. If there are two points (one is noise), they both have
the same distance to the two cluster centroid (one short dis-
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tance is real data point, one long distance is the noise data
point), so the memberships of the two points will be the
same (ui j = 0.5), this makes the FCM algorithm sensitive
to the noise. The FCM algorithm uses the iterative gradi-
ent descent to accomplish, it is sensitive to the initialization
parameters of cluster centroid and the membership matrix,
this method can’t guarantee converge to the global optimal.
To overcome these shortcomings, we proposed a novel clus-
tering model used in radar HRRP target recognition, named
IKDFCM.

3.1 The IKDFCM Algorithm

Suppose X ∈ Rs, x1 and x2 are s-dimensional vector in Rs

space, then the inner product of x1 and x2 can be written
as 〈x1, x2〉. Define a mapping from original data space X
to the feature space H, φ : X → H; φ(x) = y, use the inner
product in feature space H, we can define the kernel function
as Eq. (6).

K(x1, x2) = 〈y1, y2〉 = 〈φ(x1), φ(x2)〉 (6)

Kernel clustering is just use the kernel distance function to
replace the distance function in the FCM model and rede-
fine criterion function. The new criterion function can be
rewritten as Eq. (7).

Jikdfcm(U,V) =
c∑

i=1

n∑
j=1

um
i j

∥∥∥φ(x j) − φ(vi)
∥∥∥2

H

=

c∑
i=1

n∑
j=1

um
i j(Kj j + K(vi, vi) − 2 · K(vi, x j))

(7)

Where K is the n × n kernel matrix of the kernel function
K(x, y). It can be proved that K is symmetric positive semi-
definite (PSD) and meets the Mercer theorem.

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K(x1, x1) · · · K(x1, xn)
...

...
...

K(xn, x1) · · · K(xn, xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈φ(x1), φ(x1)〉 · · · 〈φ(x1), φ(xn)〉

...
...

...
〈φ(xn), φ(x1)〉 · · · 〈φ(xn), φ(xn)〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

We define the set Q = (i, j), the members (i, j) in set Q
satisfies the Eq. (9) under the constraint 1 ≤ i ≤ c, 1 ≤ j ≤
n, and use the KKT condition which makes the Lagrange
function obtain the extremum under the variables U and V .

Kj j + K(vi, vi) − 2 · K(vi, v j) = 0 (9)

The IKDFCM algorithm is obtained by separately minimiz-
ing Jikd f cm(U,V) over the variable U and V using Lagrange
multipliers. A complete statement of the IKDFM algorithm
is given next and included safeguarding in case any squared
distance d2

i j = ‖φ(x j) − φ(vi)‖2H = 0. If the set Q is null, we
have

ui j =
n · (Kj j + K(vi, vi) − 2 · K(vi, v j))

1
1−m

c∑
r=1

n∑
j=1

(Kj j + K(vr, vr) − 2 · K(vr, v j))
1

1−m

1 ≤ i ≤ c, 1 ≤ j ≤ n

(10)

If the set Q is non-null, we have: (1) For any i (1 ≤ i ≤ c),
there exist j (1 ≤ j ≤ n) satisfies the Eq. (9), then the ui j

could be any real number under the constraint in Eq. (11)
and ui j = 0 if Kj j + K(vi, vi) − 2 · K(vi, v j) � 0.

n∑
j=1

ui j > 0, 1 ≤ i ≤ c; ui j ≥ 0,
c∑

i=1

n∑
j=1

ui j = n (11)

(2) When exist i (1 ≤ i ≤ c) for any of j (1 ≤ j ≤ n)
satisfies the Eq. (12), the ui j could be any real number under
the constraint in Eq. (13) and ui j = 0 if Kj j + K(vi, vi) − 2 ·
K(vi, v j) � 0.

Kj j + K(vi, vi) − 2 · K(vi, v j) � 0 (12)

ui j ≥ 0,
c∑

i=1

n∑
j=1

ui j = n. (13)

Finally, the clustering centroid V is the solution of the
following iterative equation.

n∑
j=1

(
∂K(vi, vi)
∂vi

− 2 · ∂K(vi, x j)

∂vi

)
· um

i j = 0, 1 ≤ i ≤ c

(14)

In the iterative equations of IKDFCM, we relax the column
sum constraint in Eq. (3) to the looser constraint in Eq. (11)
from one to n. In other words, each element of the k th col-
umn in matrix K could be any number between 0 and 1, as
long as one of them is positive at least. We put the steps of
the IKDFCM algorithm summarized below.

Step1: Set the parameters of the kernel function
K(x, y); set the number of the clusters c; the value of m; the
convergence accuracy ε and the number of iterations k = 0.
Use the FCM algorithm to initialize the clustering centroid
matrix V (0).

Step2: Use the Eqs. (10) and (11) to calculate the mem-
bership matrix U(k).

Step3: Solve the Eq. (14), whose solution is V (k), for
k = k + 1.

Step4: If ‖Vk+1 − Vk‖ < ε or exist i (1 ≤ i ≤ c) satisfies
n∑

j=1
ui j = 0, then stop. Otherwise go back to step 2.

3.2 The Validity Index

To show the effectiveness of the clustering algorithm, many
cluster validity indexes have been proposed. In this pa-
per, we use the well-known validity index VFS proposed by
Sugeno and Fukuyama in [27] and VPCAES proposed by Wu
and Yang in [28] to compare the clustering validity of the
FCM and IKDFCM method. The two validity indexes are
defined as follows:
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VFS = J f cm(U,V) − Km(U,V)

=

c∑
i=1

n∑
j=1

um
i j‖x j − xi‖2 −

c∑
i=1

n∑
j=1

um
i j‖vi − v‖2

(15)

Where v =
n∑

j=1
x j/n.

VPCEAS =

c∑
i=1

n∑
j=1

u2
i j

uM
−

c∑
i=1

exp
(
−min

k�i

{
‖vi − vk‖2βT

})

(16)

Where uM = min
1≤i≤c

{
n∑

j=1
u2

i j

}
, βT =

c∑
i=1
‖vi−v‖2

c , and v =
n∑

j=1
x j/n.

From the defining of the index, it’s easy to see that the VFS

takes the properties of the membership degree and the data
geometric structure into consideration together. Smaller
VFS means more compact and better separated clusters.
Larger value of VPCAES index implies internal aggregation
in each class and well separability between classes.

4. The Experimental Result on the Radar HRRP Tar-
get

4.1 Experiment Setting

In the recognition experiment, we use the simulated radar
HRRP of three ground targets to evaluate the performance of
the proposed algorithm. Depending on the geometric model
of the real target, corner reflectors with different positions
are utilized as the scattering center models to simulate the
target and the SFW radar is used to get the HRRP of the
targets. We add noise to the echoes to make the simulated
HRRP closer to the radar HRRP in real environment. For
the sake of illustrating the target-aspect sensitivity problem,
the azimuth of each target is from 0◦ to 179.5◦ interval 0.5◦
and the elevation angle constantly is 30◦. Thus, each tar-
get is comprised of 360 HRRP samples and each sample is
a 256-dimensional vector because of the HRRP with size
of 256-point. The testing process is mainly divided into
three steps: pre-processing phase, training phase and test
phase. In the preprocessing phase, HRRP alignment with
target geometric center and L2 normalization are applied to
overcome time-shift sensitivity and amplitude-scale sensi-
tivity at first. In order to reduce the computation burden, the
KPCA method in [15] is utilized to achieve dimensionality
reduction.

To show the effectiveness of the proposed method,
we compare the IKDFCM with the fuzzy c-means method
(FCM), k-nearest neighbor (K-NN) [26] and the template
matching method under the maximum correlation coeffi-
cient (MCC-TMM) [9]. TMM is a fundamental method in
HRRP recognition. The MCC-TMM utilizes the correla-
tion coefficient between testing samples and the template
as the matching score; four samples with nearest azimuth
are averaged as a template for MCC-TMM. For all the four
methods, we set the nearest neighbor k = 5 and choose j

( j = 30, 60, . . . , 180) labeled samples equally interval from
each target HRRPs as the training set, however, the 180 test
samples are randomly selected from the rest samples. All
experiments are performed for 100 times so as to get the
average result as the recognition accuracy.

4.2 Recognition Result Analysis

We get the average recognition rate versus the number of
training samples is presented in Fig. 3 and the average con-
fusion matrix is shown in Table 1 with 180 training samples
and SNR = 35dB. From the Fig. 3, we can see that, firstly,
the IKDFCM outperforms the other three over all the test
number of training samples. When the training samples are
fewer than 80, the performance of all methods is poor. Sec-
ondly, the recognition rates rise along with the increasing
number of training samples, which means all the methods
need a bigger training set to achieve a good recognition ac-
curacy. Besides, after the training samples more than 90, the
recognition rates of the other three methods rise sharply, but
the IKDFCM method rises sharply after the training sam-
ples more than 70. That is to say, our method can achieve
the same recognition accuracy with fewer training samples.
Finally, the performance of MCC-TMM catches up with and
surpasses both the FCM and K-NN after the training sam-
ples more than 110, which means MCC-TMM needs many
of templates to obtain a good performance.

Table 1 shows the confusion matrix and Table 2 shows
the average recognition rate and standard deviations of the
four methods with 180 training samples at SNR = 35dB.
It is easy to see that the performance of IKDFCM is the
best, MCC-TMM is the next one, the average recognition
rate of which is approximately 2.7 percentage point higher
than K-NN, the FCM is the last one. The standard devia-
tion of the IKDFCM is slightly larger than the MCC-TMM.
By analyzing the theories and experimental results, we can
easily find that the method, which only considers the dis-
tance between the clustering centroid and the test samples
but ignore the samples’ inner structure information, cannot
achieve good recognition accuracy. The FCM and K-NN
obey the assumption that the neighboring samples have the

Fig. 3 The recognition rate versus the number of training samples when
SNR = 35dB.
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Table 1 The confusion matrix and the average recognition rates on HRRP with 180 training samples
and SNR = 35dB.

FCM K-NN MCC-TMM IKDFCM
Target BMP2 T72 BTR70 BMP2 T72 BTR70 BMP2 T72 BTR70 BMP2 T72 BTR70
BMP2 148.77 33.55 16.2 149.89 18.62 15.9 157.88 25.31 11.26 163.21 18.16 10.21

T72 15.11 130 9.8 17.44 137.68 10.94 9.27 144.68 16.15 3.89 152.46 7.29
BTR70 16.12 16.45 154 12.66 23.7 153.16 12.85 10.01 152.59 12.90 9.38 162.5

accuracy (%) 82.65 72.22 85.55 83.27 76.49 85.09 87.71 81.38 84.77 90.67 84.7 90.28

Table 2 Average recognition rate and standard deviations.

FCM K-NN MCC-TMM IKDFCM
mean 80.14 81.95 80.14 88.55
std 5.72 6.39 2.58 2.73

Fig. 4 The average recognition rate versus the SNR (the training samples
are 180).

same label, so they can’t find the underlying structure infor-
mation hiding in the samples. The IKDFCM use the kernel
function to map the HRRP from original low-dimensional
space to high-dimensional feature space. It has the ability to
find inner structure information hides in the HRRP, which is
depending on the structure of the target and not be affected
by the target-aspect variation.

According to the introduction in Sect. 1, there always
exists noise in the radar echoes. And, we add noise in the
echoes so as to be closer to the true target environment. For
ground targets we assumed the noise in the inphase and
quadrature echoes of targets to be Gaussian white noise.
The average recognition rates of the four methods versus
SNR are shown in Fig. 4. The figure shows that, for all the
methods, the recognition performance improves along with
the increasing of the SNR, the recognition rate of the IKD-
FCM remains stable after the SNR higher than 25dB and the
threshold of the others is 30dB, then a very rapid deteriora-
tion of the recognition rate can be observed after the SNR
under 20dB. The relatively high accuracy at high SNR can
be partly explained by the fact that the HRRP is a combi-
nation of smaller magnitude and larger magnitude scatters
that determined the recognition rate. The smaller magni-
tude scatters are more likely to be affected by the increas-
ing noise, which corrupts the inward structure of HRRP and
quickly have an impact on reducing the recognition rate.
Obviously, the FCM is most sensitive to noise and the IKD-

Table 3 Summary of selected UCI data sets.

Dataset Instance Class Attribute
Annealing 798 6 38

Chess 3196 2 36
Redwine 1599 6 11

Yeast 1484 10 8

Table 4 The average classification accuracy (%) on four various UCI
datasets using four different algorithms.

FCM K-NN MCC-TMM IKDFCM
Annealing 72.08 71.52 77.08 80.82

Chess 72.34 76.38 75.56 81.66
Redwine 75.67 72.84 77.92 79.39

Yeast 74.92 67.42 77.49 77.54

FCM performs the best. Compared with the FCM, in the
step 1 of IKDFCM algorithm, we relax the column sum con-
straint in Eq. (3) from one to n, in other words, each mem-
bership value ui j can be any number between 0 and 1. This
change improves the anti-noise performance and the robust-
ness of the original algorithm, therefore, the IKDFCM can
obtains better recognition rate than the other methods under
the same SNR.

To further assess the performance of the proposed
method, the real data sets in Table 3 are used to carry out
our experiments, which are from the UCI machine learning
repository [34]. Since no test sets are included in the An-
nealing, Chess, Redwine and Yeast datasets, 5-fold cross-
validation is used to evaluate the accuracy of the above four
methods. That just says, each dataset is randomly split into
five folds, each of which is tested with the remaining four as
training set. The classification accuracy is regarded as the
performance measure.

In Table 4 the average results based on the four datasets
are shown. We can see that the classification accuracy of the
proposed method is preferable than the other methods in all
the test datasets. In Yeast dataset, the classification accu-
racy is slightly, 0.05%, higher than the MCC-TMM method,
the possible reason is the performance affected by number
of the attribute, which is 8 in Yeast dataset, lower than the
three others 38, 36, 11. Owing to this, the performance of
IKDFCM become worse. In other datasets, the advantage is
obvious. Comparing Table 2 with Table 4, we find that the
best accuracy based on the true datasets is lower than the
simulated HRRP data, the result in line with common sense
of the algorithms.
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Table 5 The validity index and recognition rates of FCM and IKDFCM.

VFS VPCAES Accuracy (%)
FCM 0.48 3.27 80.14

IKDFCM 0.41 3.89 88.55

Table 6 The time costs of the four methods on the test set.

algorithm elapsed time (ms)
FCM 21.1ms
K-NN 17.8ms

MCC-TMM 50.3ms
IKDFCM 22.6ms

4.3 Validity and Complexity Analysis

As the K-NN and MCC-TMM don’t have the validity index
of clustering, we just compare the validity index of the FCM
and IKDFCM. First initialize the parameters in the kernel
function and set the fuzzy exponent m = 2, the convergence
accuracy ε = 0.001, FCM runs for a maximum of 100 in-
teractions. The result is shown in Table 5. It shows that the
IKDFCM algorithm outperforms the FCM algorithm with
smaller value of VFS index and larger value of VPCAES in-
dex. Through the analysis of the clustering validity index in
Sect. 3.2, we can get the conclusion that IKDFCM is more
accurate than the FCM in terms of clustering accuracy and
validity for radar HRRP target. For a recognition system, the
computation cost in the training phase can be expected to be
completed in advance, we should only evaluate the method’s
computation cost in the testing phase. It is difficult to eval-
uate the difference of these computation costs in quantity;
we just give the cost of time to classify a HRRP test sample
by the four algorithms under completely the identical ex-
periment condition. The configuration of the computer is 8
cores; frequency of each core is 3.2GHz; memory is 16G.
We analyze the average results of all methods after execut-
ing 100 times and all the parameters are set to be the same
as the experiments above. The result is shown in Table 6.
Obviously, from the average running time, the fastest K-NN
just uses about 17.8ms. The FCM and IKDFCM are the
succeeding; the MCC-TMM uses 50.3ms in the last. Com-
paring to the 21.1ms of FCM method, our method just uses
a little more than it, however, our method gets the higher
accuracy. Taking all sides into consideration, the proposed
method has relatively low computation complexity and bet-
ter performance of HRRP recognition.

5. Conclusions

In this paper, based on the FCM, we proposed an improved
algorithm, called IKDFCM, to recognize the radar HRRP
target. We introduce the kernel function to replace the dis-
tance function and relax the column sum constraint of the
membership matrix in the FCM. Then we evaluate the per-
formance of the proposed method with three additional con-
trast algorithms on three radar HRRP targets and four UCI
datasets. All the experiments result show that the IKDFCM

method not only has a better recognition performance than
the other three, but also better robustness and lower time
complexity and space complexity. Further research is to
study the influence of different kernel functions and distance
functions on radar HRRP target recognition accuracy.
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