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PAPER

A Real-Time Cascaded Video Denoising Algorithm Using Intensity
and Structure Tensor

Xin TAN†a), Yu LIU†, Nonmembers, Huaxin XIAO†, Student Member, and Maojun ZHANG†, Nonmember

SUMMARY A cascaded video denoising method based on frame av-
eraging is proposed in this paper. A novel segmentation approach using
intensity and structure tensor is used for change compensation, which can
effectively suppress noise while preserving the structure of an image. The
cascaded framework solves the problem of noise residual caused by single-
frame averaging. The classical Wiener filter is used for spatial denoising
in changing areas. Our algorithm works in real-time on an FPGA, since it
does not involve future frames. Experiments on standard grayscale videos
for various noise levels demonstrate that the proposed method is competi-
tive with current state-of-the-art video denoising algorithms on both peak
signal-to-noise ratio and structural similarity evaluations, particularly when
dealing with large-scale noise.
key words: cascaded framework, change segmentation, real-time capabil-
ity, structure tensor, video denoising

1. Introduction

Denoising is an important issue in image and video process-
ing. Video denoising can enhance image quality, increase
compression efficiency, reduce transmission bandwidth, and
improve the robustness of the subsequent processes, such as
feature extraction, object detection, and pattern classifica-
tion.

Some basic image denoising ideas and algorithms are
also used in video denoising, since videos consist of a se-
quence of images associated in time. These common al-
gorithms include Gaussian filter, bilateral filter [1], [2], do-
main transformation [3]–[6], similar blocks matching [6]–
[10], and sparse representations [11]–[13]. Video, compared
to an image, provides sufficient additional information from
nearby frames; thus, a better estimate of the original signal is
expected. However, in order to exploit the extra information,
video denoising algorithms have to handle a critical prob-
lem - motion estimation. The presence of motion between
frames makes a video denoising method more complicated
than image denoising. The changes caused by illumination
or shadow should also be estimated. A recent and popular
change estimation method is nonlocal patch based match-
ing [6], [8]–[10]. In VBM3D [6] for example, change infor-
mation is obtained by adaptively clustering similar patches
across frames (space plus time). The position of the patch
indicates the motion trajectory. Besides nonlocal matching,
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there are several other change estimation schemes. A multi-
resolution motion analysis method in the wavelet domain
was proposed in [14]. In [15], the change estimation was
in the 3D DCT domain. Lian et al. [16] used vector esti-
mation of wavelet coefficients. Some other algorithms used
advanced statistical models, such as [17].

In this paper, we not only propose an effective video
denoising algorithm, but also ensure the ability to imple-
ment it in hardware, such as an FPGA. Thus, it can be used
in digital imaging devices in the future.

Frame averaging is one of the simplest video denoising
methods, which has been studied since the 1990s [18]–[21].
The direct averaging can lead to motion blurring. Thus,
change compensation is needed. Frame averaging is suitable
for videos with a fixed background. In real life, the applica-
tions of such videos are numerous such as recording of the
teleconference, stadiums, concerts, and museums. In partic-
ular, surveillance cameras with fixed installation are ubiq-
uitous over streets, stations, airports, buildings, and parks.
In this paper, our algorithm also aims at this kind of videos
with stationary background.

A simple change compensated frame averaging method
is weighted averaging by inter-frame pixels’ similarity.
However, in the changing areas, the denoising result is
worse than the still background area, because fewer frames
are averaged. Spatial filtering is applied for denoising in the
changing areas [22], [23]. This simple weighted frame aver-
aging method is detailed in Sect. II. The ASTA method [2]
proposed by Bennett and McMillan is based on the simple
framework above. The existing pixels’ similarity-weighted
averaging method is simple with low resource use and easy
hardware implementation. However, its denoising perfor-
mance is poor in low light. The reason is that the effective-
ness of this method implies a prerequisite that the flicker-
ing change of the noise is lower than motion or illumination
caused changes. Under bright light, this prerequisite can be
satisfied. While under low light, the prerequisite is not met,
because noise is amplified. At this time the weight cannot
indicate the difference between noise and motion or lighting
changes. How to accurately distinguish the changing areas
from the stationary areas is the key to obtaining good results
in the frame averaging method.

In our previous work [24], we improve the simple
change compensated frame averaging method described
above by suppressing the influence of noise on change com-
pensation with a strong Gaussian filter. Nevertheless, the
edge of the motion area is highly blurred by the Gaussian
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filter, and some details are lost.
In this paper, a structure tensor is employed to as-

sist and enhance segmentation of the change areas. Struc-
ture tensor [25]–[27] is a powerful tool for analyzing im-
age structures. Compared to image gradient, linear structure
tensor can better extract structure information from noisy
images. This structure information repairs the blurring defi-
ciency of the strong pre-filter. Besides, in practical applica-
tions the number of frames averaged is limited, as a result of
storage space limitation. Only a few frames are frequently
used. In this case, even if the change segmentation is accu-
rate, 1/N amount of noise still stays. Thus, we propose a
cascaded framework to address this problem.

The remainder of paper is organized as follows: Sec-
tion 2 introduces the simple inter-frame pixels’ similarity-
weighted averaging method as a background. Section 3 pro-
poses our intensity and structure tensor combined change
segmentation. Section 4 proposes a novel cascaded denois-
ing framework and analyzes the implementation on FPGA.
In Sect. 5, experiments on standard grayscale videos for var-
ious noise levels demonstrate the effectiveness of the pro-
posed method. Finally, Sect. 6 summarizes the work and
suggests future work.

2. Simple Inter-Frame Pixels’ Similarity-Weighted Av-
eraging

Supposing the simple inter-frame pixels’ similarity-
weighted averaging method is centered at current frame (t0).
The smaller the difference of the inter-frame pixel values
is, the larger the weight is. Every pixel of each frame is
weighted averaged as

qo
i =

∑
k∈T (i)

wk · pk

∑
k∈T (i)

wk

wk =
1√
2πσ

exp

(
−d2(k, i)

2σ2

)

d(k, i) =

{ |pk − pi|, k � i

0, k = i

(1)

where k is the temporal index of the frame; i is the current
frame’s index, namely, k = · · · , i−2, i−1, i, i+1, i+2, · · · ;
T (i) is the frame set consisting of N frames centered at frame
i; pk is the pixel value at (x, y) of the frame k, in particular,
pi is the pixel value of the current frame i of the same po-
sition (x, y); d(k, i) is the absolute distance of pixels pk and
pi. The distance d(k, i) is spatially variant for the different
space position (x, y); wk is the Gaussian weight with stan-
dard deviation σ controlling how quickly the Gaussian falls
off; and qo

i is the averaged pixel value for current frame (t0)
at position (x, y). Here, we do not use the spatial coordinates
in (1) because every pixel at different position has the same
computation formula as (1).

The Gaussian weight wk decreases with increase of the
absolute distance d(k, i). Here the pixel value distance d(k, i)

directly acts as the change segmentation criterion. Gener-
ally, under bright light the changes caused by motion or il-
lumination are often large enough to get a zero weight.

Suppose the brightness difference that human eyes can
distinguish is above L. Generally, L is about 10 (brightness
range from 0 to 255). The selection of weight controlling
parameter σ should make those weights whose correspond-
ing d(k, i) is above L close to zero.

3. Intensity and Structure Tensor Based Change Seg-
mentation

The effectiveness of the method described in Sect. 2 relies
on the distance measure d(k, i) can correctly discriminate
the changes caused by motion or illumination from noise.
However, when noise change is larger than L, the weight is
also close to 0. Thus, the noise is falsely estimated as normal
change area. In this section, this drawback is rectified by our
intensity and structure tensor combined scheme.

3.1 Strong Pre-Filter Based Intensity Segmentation

Intensity is one of the basic attributes of an image. Its mea-
sure is explicitly the pixel value. The changes in an image
are attributable to the intensity variations. However, noise
also causes intensity variations, which disturbs the normal
change area segmentation. Carefully observing the noisy
images (see Fig. 1 (a1)-(a2)), the noise caused intensity vari-
ation is disorderly. In a local area, some pixel intensities are
enlarged, while some others are reduced. By contrast, nor-
mal motion or illumination variations results in an overall
change, such as the moving hand of a person.

In order to suppress the influence of noise, a strong spa-
tial filter is used to pre-process the noisy images. Pre-filter
is frequently used in many denoising algorithms. For ex-
ample, VBM3D [6] and BM3D [28] use a hard-thresholding
operator on the transform domain coefficients as a coarse
pre-filtering to improve the accuracy of block matching. The
strong pre-filter must be used to effectively suppress large-
scale noise. Considering the algorithm’s complexity and
noise suppression ability, we employ the Gaussian filter with
a large kernel size. The new intensity distance is:

dI(k, i) =

⎧⎪⎪⎨⎪⎪⎩
|Kρ1 (pk) − Kρ1 (pi)|, k � i

0, k = i
(2)

where Kρ1 is the Gaussian filter kernel with standard devi-
ation ρ1. Since too large a kernel causes heavy blur at the
edge and small kernel cannot effectively suppress the noise,
we set the Gaussian kernel through careful experiments. In
our algorithm, the choice of the filter kernel follows the
noise level; i.e, the larger the noise the larger the kernel size.
In Fig. 1, the noise standard deviation is σn = 50. A 10× 10
Gaussian filter with ρ1 = 5 is used for pre-processing the
noisy images. The filtered result is shown in (b1) and (b2)
which are quite blurred. The intensity distance is shown in
(b3). Compared to no pre-filtered intensity distance in (a3),
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Fig. 1 Strong pre-filter on image intensity. (a1) and (a2) are the past and
current frame with additive Gaussian white noise (σn = 50). (a3) is the
intensity distance of (a1) and (a2). (b1) and (b2) are the pre-filtered results
of (a1) and (a2) with a 10 × 10 Gaussian filter whose ρ1 = 5. (b3) is the
intensity distance of (b1) and (b2).

the strong filter is more powerful in suppressing noise.

3.2 Structure Tensor Based Segmentation

Although the strong pre-filter effectively suppresses large-
scale noise, it also destroys the edges of the change area.
Some detail variations are also damaged and even lost.
Shown in Fig. 2 (a3) is the original intensity distance with-
out noise. The outlines of the head, eyes, and arm of the
salesman are clear. This indicates the motion of the sales-
man’s body. But the strong filtered result in Fig. 2 (b3)
nearly loses these outlines. In order to fix this drawback,
we introduce structure tensor.

Structure tensor [25]–[27] is proposed by Weickert et
al. It is a tool for analyzing the image structure by extract-
ing the geometric features. Here, we use the simple linear
structure tensor to analyze an image. It is defined as:

Jρ2 (p) = Kρ2 ∗ (∇pσ′ ⊗ ∇pT
σ′ )

= Kρ2 ∗
(

(Ix(pσ′ ))2 Ix(pσ′ )Iy(pσ′ )

Ix(pσ′ )Iy(pσ′ ) (Iy(pσ′ ))2

)
(3)

where ∇ is the image gradient operator; pσ′ is the Gaus-
sian filtered image of input p with Gaussian standard de-
viation σ′; ⊗ is the structure tensor product, its computa-
tion uses the image gradients Ix(pσ′ ) and Iy(pσ′ ) in x and y
directions; ∗ is the convolution of Gaussian filter Kρ2 with
standard deviation ρ2 and the structure tensor product. In
general, ρ2 > σ

′. The Gaussian filter σ′ before gradient op-
eration and the filter Kρ2 play the role of the strong pre-filter
too. The Gaussian filter Kρ2 isotropically synthesizes the lo-
cal neighborhood structure tensor information, so it is called
a linear structure tensor.

Jρ2 contains the image geometric structure information.
Orthogonally decomposing Jρ2 , the eigenvalues and eigen-

vectors can be obtained. Note Jρ2 =

(
a b
b c

)
, the eigen-

values λ1,2 = (a + c ± √
(a − c)2 + 4b2)/2, eigenvectors

�e1 = [cos(θ) sin(θ)]T , and �e2 = [− sin(θ) cos(θ)]T where

Fig. 2 Structure tensor based segmentation. (a1) and (a2) are the original
images without noise pollution. (a3) is the original intensity distance of (a1)
and (a2) which functions as the ground truth. (b3) is the strong pre-filtered
intensity segmentation of (b1) and (b2) like that in Fig. 1. (c1) and (c2) is
the maps of the structure tensor strength λ1 + λ2 of the noisy images. (c3)
is the Log-Euclidean metric distance of (c1) and (c2).

θ = arctan((
√

(a − c)2 + 4b2 + (a − c))/2b). The maximum
eigenvalue λ1’s corresponding eigenvector �e1 points to the
maximum gradient contrast direction, namely normal direc-
tion. The eigenvalue λ2’s corresponding eigenvector �e2 is
the tangential direction. λ1 + λ2 shows the strength of the
structure. In Fig. 2, (c1) and (c2) are the maps of the struc-
ture strength extracted from the noisy images in Fig. 1 (a1)
and (a2).

If changes occur, the variation of structure tensor is un-
avoidable. Thus, we can use structure tensor to detect the
change. Similar to intensity distance, the structure tensor
distance is also measured. Since structure tensor resides in
a non-Euclidean space, a new metric called Log-Euclidean
metric [29] is used. It is computed as:

dST (k, i) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

Trace
{[

log
(
Jρ2 (pk)

)
− log

(
Jρ2 (pi)

)]2
}
, k � i

0, k = i
(4)

where
√

Trace
(
(·)2

)
is the ‘Frobenius norm’; log(·) is struc-

ture tensor logarithmic operator defined in [29]. Suppose
the matrix A = (ai j)n×n, thus Frobenius distance is:

√
Trace

(
(A)2

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

n∑
j=1

a2
i j

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

. (5)

The logarithm of a tensor is defined as a vector:

log(Jρ2 ) =
(
log (a) , log (c) ,

√
2 log(b)

)T
. Figure 2 (c3)

shows the Log-Euclidean metric distance of (c1) and (c2).
The outlines of the head, eyes, and arm are extracted. This is
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Fig. 3 Strong pre-filtered intensity and structure tensor combined change
segmentation.

a good supplement for strong filtered intensity segmentation
(b3). The intensity and structure tensor combined change
segmentation is shown in Fig. 3. The combination is as fol-
lows:

dIST (k, i) = α · dST (k, i) + dI(k, i) (6)

where α is the scale factor. Although Gaussian filter σ′ and
Kρ2 are used, noise still brings about more or less distur-
bance on structure tensor distance dST . In the stationary ar-
eas, dST does not exactly equal zero. Since the structure
tensor Log-Euclidean metric distance dST does not have the
same range as intensity distance dI , the scale factor α is em-
ployed to make noise caused dST less than the brightness
sensitivity L o f human eyes. In Fig. 3, α = 0.1.

4. Cascaded Video Denoising with Frame Averaging

Now, we come back to Eq. (1). The final denoising result, in
fact, is related to two factors. One is the weight wk based on
change segmentation; the other is the noisy image pk. The
new change segmentation scheme in Sect. 3 aims to acquire
more accurate weight. As for noisy images pk, how can we
improve their qualities?

4.1 Use of Denoised Images

The pre-filter idea is utilized during the computation of
dST (k, i) and dI(k, i). Can noisy images pk be pre-filtered
too? Obviously, as for the past frames, each frame’s de-
noising result can be directly used as the pre-filtered result.
However, there is no such readily pre-filtered result for fu-
ture frames. If a good pre-filtered result for future frames
is required, then additional filter is needed. Considering the
complexity and real-time capability for FPGA, we choose
the strategy that avoids pre-filtering on the future frames and
does not even use them for weighted averaging. Now, the
proposed method can be described as:

qt
i =

∑
k∈T ′ (i),k�i

wk · qk +
∑

k∈T ′ (i),k=i
wk · pi

∑
k∈T ′ (i)

wk

wk =
1√
2πσ

exp

⎛⎜⎜⎜⎜⎝−d2
IST (k, i)

2σ2

⎞⎟⎟⎟⎟⎠
dIST (k, i) = α · dST (k, i) + dI(k, i)

dI(k, i) =

{ |Kρ1 (qk) − Kρ1 (pi)|, k � i

0, k = i

dST (k, i) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

Trace
{[

log
(
Jρ2 (qk)

)
− log

(
Jρ2 (pi)

)]2
}
, k � i

0, k = i

(7)

where T
′
(i) is the frame set consisting of the past and current

frames, totally N frames; k = i − N + 1, . . . , i − 1, i; qk is the
denoising result of frame k; and qt

i is the temporal denoising
result.

In addition, in changing areas, due to the small weight
of past frames, the denoising is worse than the stationary
background. Spatial filtering is required for helping de-
noising in these areas. In our method, classical and sim-
ple Wiener filter [30] is chosen, which estimates the local
mean and variance around each pixel. Note that the in-
put image is p = (amn)W×H where m and n are the spa-
tial coordinates, and W × H is the image resolution. For
each pixel amn, the local mean μwie = 1/(MN)

∑
m,n∈η

amn,

where η is the M × N local neighborhood, and the variance
σ2

wie = 1/(MN)
∑

m,n∈η
a2

mn − μ2
wie. Thus, the denoised pixel

is bmn = μwie + (σ2
wie − ν2)/σ2

wie · (amn − μwie) where ν2 is
the noise variance. If the noise variance is not given, the
average of all the local estimated variances is used. In our
experiment in Sect. 5, it equals the given noise variance σ2

n.
Note that the spatial filtering result for input image pi

is qs
i . Weighted averaging is also used for the combination

of the spatial filtering result qs
i and the temporal filtering

result qt
i.

Suppose that the past N − 1 frames are all copies of
the current frame. Namely, the scene is completely static.
The weighted sum S w of the past N − 1 frames reaches its
maximum value (N−1)·wk(dIST (k, i) = 0). When the scene is
changing, S w is less than this maximum value. The smaller
the S w is, the more intense the change is; thus, the larger the
weight of qs

i is. Let us consider a threshold of thr, which is
larger than 0, and less than the maximum sum weight (N −
1) ·wk(dIST (k, i) = 0). When S w ≤ thr, the denoising quality
of the temporal filter is not enough and the spatial filtering
result qs

i is added in. Therefore, the final spatio-temporal
result is:

qi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qt

i, S w > thr

S w · qt
i + (thr − S w) · qs

i

thr
, S w ≤ thr.

S w =
∑

k∈T ′ (i),k�i

wk (dIST (k, i))

(8)
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Fig. 4 Flow chart of our cascaded video denoising algorithm.

4.2 Cascaded Framework

In practical applications, the denoising resulting from (7)
and (8) is limited, because of restrictions on image memory.
Only several frames can be used; usually N = 5, 7 or 9.
Suppose all past frames are denoised so well that they equal
the original one and the weight calculation is also very accu-
rate making it equal to 1/N for the stationary background.
The noise standard deviation is σn for the current frame.
After frame averaging, the standard deviation is reduced to
σn/N. This residual is still not negligible. For example,
when N = 5, and σn = 50, the noise residual reaches about
10.

Associated to the above pre-filter idea, we design a cas-
caded framework, as shown in Fig. 4. Through the cascaded
framework, the denoising result of the first stage is the pre-

Fig. 5 The hardware implementation platform.

filtered result for the next stage. Noise can be suppressed to
1/N3 in theory for a three-stage framework. If the number
of frames N = 5, noise residual is less than 1%, which is ac-
ceptable. As for parameters selection, the parameters of the
next stage are different from the first stage, because the noise
level is different. Consider the intensity strong pre-filter ρ1

for example. The kernel size and its standard deviation ρ1

should both be decreased so as to adapt to the low noise
level.

4.3 FPGA Implementation

To embed our algorithm into digital imaging devices, we
have implemented our algorithm on an FPGA processor for
evaluation. The implementation is carried out on an FPGA
development board ‘GENESIS’ from DIGILENT company,
as shown in Fig. 5. The FPGA processor is Xilinx Virtex-5
XC5VLX50T. The image sensor is a SONY imx122 CMOS.

Our algorithm is real-time and suitable for FPGA im-
plementation. Since it does not involve the future frames,
the time latency is less than one frame. Moreover, each step
of the proposed algorithm can be easily implemented on an
FPGA. These implementation steps are described below.

The Gaussian filter, in fact, is spatial weighted aver-
aging in a local neighborhood. A 5 × 5 kernel only needs
25 multiplications, 25 additions, and one division. Storage
of 5 image lines in Block RAM on FPGA or memory chip
is also required. For structure tensor calculation, the image
gradient is a convolution operation, and its implementation
is the same as the Gaussian filter but with different multiply-
ing factors. Logarithmic and square root operators in Log-
Euclidean metric can be designed as look-up tables, since
they are monotonic functions. The Gaussian weight wk cal-
culation is only related to the brightness sensitivity L of the
human eyes. It is fixed after the initialization. So, it can be
implemented as a look-up table too. For Wiener filter, it is
a local operator, which needs several lines of storage. Other
computations, such as mean and variance, only need several
additions, divisions and subtractions. Similarly, the weight
averaging of (7) and (8) is not complex either and only in-
volves several multiplications, additions, subtractions and
divisions.

The working of FPGA has a pipeline mode like CMOS
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Fig. 6 The pipeline structure and DDR read/write design on FPGA. Here only one stage is presented.
The calculations on the dash lines only work at the final stage.

or CCD sensors. The output of an image is pixel by pixel
and line by line. The video forms a pixel stream. The
processing unit is a pixel. The pipeline structure and DDR
read/write design of one stage is shown in Fig. 6. Here we
use four past frames, which is also the number in our exper-
iment in Sect. 5.

At first, the input image ‘Ori img’ is written to mem-
ory. Meanwhile, the intensity distance and the Log struc-
ture tensor metric are calculated. The past 4 Gaussian pre-
filtered images ‘Gf img’ and 4 Log structure tensor images
‘St img’ are read. After the weight look-up, 4 frames’
‘weight’ is written back to the memory. Here, the weight
of the current frame is constant, for Δqik = 0 when k = i. In
the weighted averaging of the current and past frames, the
‘weight’, the denoised past 4 frames ‘den img’, and the cur-
rent frame ‘Ori img’ are read from memory. After Stage 3,
the final denoised result ‘den img c’ and its Gaussian pre-
filtered result ‘small img c’ and Log structure tensor result
‘St img c’ are written into the memory for the denoising of
next frame.

The working performance of our algorithm on FPGA
is shown in Table 1. The FPGA working frequency is
90 MHz, whereas the maximum frequency of our algorithm
is 116.3 MHz. The frame rate is 30 fps. The physical power
consumption is 1.216 W measured by the Xpower Analyzer
of the Xilinx ISE tool. The horizontal blank is 580 pixels,
and the vertical blank is 120 lines. So the full Resolution of
our 1080P (1920 × 1080) video is 2500 × 1200. Thus, one
line consumes 1/90 × 2500 = 27.78 μs. The time latency
comes from the two aspects. One is the delay of the large
size Gaussian filter, since the operation is executed until the
data is ready. For a 20×20 kernel, which is the largest size in
our algorithm, 20-line delay is required. The other aspect is
the temporal weighted averaging. Since the weight is read
from memory chip, it should be prepared in DDR before

Table 1 Working performances of the proposed algorithm on FPGA.

the temporal weighted averaging calculation. So some more
ready weights in DDR lead to the stability of system. In our
algorithm, the temporal weighted averaging starts work un-
til 20 weight lines are ready. Thus, the total time latency is
40 lines, namely, 40×27.78 = 1111.11 μs (1.11 ms). It is the
maximum time latency for one stage. For three stages, the
maximum time latency is 3.33 ms. The time of one frame
is 33.33 ms for 30 fps. Thus, our time latency is approxi-
mately 1/10 of one frame. Other time consumptions caused
by hundreds of calculations, such as multiplications, divi-
sions, subtractions, additions and looking up tables can be
ignored. Since the working frequency is as high as 90 MHz,
in general, their time latency is less than 1 μs. Since no ex-
tra future frame is needed, our algorithm attains real-time
capability.

5. Experiments and Analysis

In this section, the performance of the proposed algorithm
is evaluated. Standard test videos are downloaded from the
video sequence database [31]. There are two types of videos
in this database: ones with stationary background and the
other ones with moving background. Since our method is
aimed at videos with stationary background, we choose four
of the former type of videos in our experiment: Salesman,
Bridge close, Hall monitor, and Paris. The frame resolution
of these videos is 288× 352, and the duration is 300 frames.
The experiments are carried out on the luminance channel
of the video.

The noise is additive Gaussian white noise with stan-
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dard deviation σn. We choose two state-of-the-art video de-
noising methods for comparison. They are VBM3D [6] and
SURE-LET [5], which can be downloaded from authors’
websites: [32] and [33]. In addition, the method with only
pre-filtered intensity based change segmentation is chosen
so as to show the structure tensor’s effect.

In the experiments, there is only one parameter in
VBM3D. It is the noise level estimator, which equals σn.
The same parameter exists in SURE-LET. Besides, two
more parameters are used in SURE-LET. One is the Num-
ber of Cycle-spin (Ncs). Increasing Ncs makes the denois-
ing quality higher with a longer computation time. Similar
to [5], the experiment chooses Ncs = 5. The other parame-
ter is the Number of adjacent frames, Naf, which is used for
multi-frame denoising. Here, we choose Naf = 5 like that
in our algorithm.

For our algorithm, there are three sizes for strong Gaus-
sian pre-filter at the first stage: 3×3 with standard deviation
ρ1 = 1 for σn = 5, 15; 10 × 10 with ρ1 = 3 for σn = 30,
50; and 20 × 20 with ρ1 = 5 for σn = 75, 100. The second
and third stages have smaller kernel sizes. The parameters
for structure tensor are fixed for all noise levels. In the first
stage, the Gaussian filter σ′ is 5 × 5 with standard deviation
σ′ = 1.5, and the filter Kρ2 is 5 × 5 with standard devia-
tion ρ2 = 2. In the second and third stages, the Gaussian
filter σ′ is 3 × 3 with σ′ = 0.5, and Kρ2 is 3 × 3 with stan-
dard deviation ρ2 = 1. The scale factor α is fixed at 0.1.
The Wiener filter size is 5 × 5 for the first stage and 3 × 3
for the second and third stages. The threshold thr is set to
thr = 0.8 × (S w)max = 0.8 × 4wk(0).

Two objective criteria, PSNR (Peak Signal to Noise
Ratio) and SSIM (Structure SIMilarity), are employed to
provide quantitative quality evaluations. PSNR is defined
as:

PSNR = 10 log10

(
R2

MSE

)
, (9)

where R is the dynamic range of the image. In our exper-
iments, R equals 255 for 8 bits images. MSE is the mean
squared error between the original and distorted images.
SSIM is first calculated in the local windows with:

SSIM(x, y) =
(2μxμy +C1)(2σxy +C2)

(μ2
x + μ

2
y +C1)(σ2

x + σ
2
y +C2)

, (10)

where x and y are respectively the image blocks from the
original and distorted images at the same location. μx, μy,
σ2

x, σ2
y and σxy are the mean, variance, and cross-correlation

within the block, respectively. C1 and C2 are constants to
keep the calculations stable. In our experiments, C1 = 6.5
and C2 = 58.5. The SSIM of one frame is the average of
each block’s SSIM values. The larger the SSIM is, the bet-
ter the structure integrity is. Its maximum value is 1. SSIM
is believed to be a better criterion for evaluating the image
quality [34]. In our experiments, the final PSNR and SSIM
for a video is the average of each frame’s score. The de-
noised pixels are clipped to the range 0-255.

Table 2 shows the comparison results using PSNR on

Table 2 PSNR(dB) comparison result.

Table 3 SSIM comparison result.

the test videos. Table 3 shows the comparison results us-
ing SSIM. From the tables we can see that the proposed
algorithm is slightly inferior to VBM3D at low noise lev-
els. The reason is that although our Wiener spatial filtering
method can be implemented on FPGA, it only operates on
the single frame. However, VBM3D and SURE-LET both
use block-matching across frames for motion compensation
which can exploit the information from nearby frames. As
a result, the motion compensation performance of our algo-
rithm is inferior to those conventional methods. The tem-
poral filters of them are also works well at the low noise
levels. Thus, our method is not just equally effective to
them. The proposed algorithm, however, is better at high
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Fig. 7 Denoising result of a frame in Salesman video with noise level
σn = 50. (a1)-(a3) Original image. (b1)-(b3) noisy image (PSNR = 14.14,
SSIM = 0.165). (c)-(f) denoising result of VBM3D (PSNR = 28.10,
SSIM = 0.758), SURE-LET (PSNR = 27.23, SSIM = 0.715), proposed
method but without structure tensor based segmentation (PSNR = 27.35,
SSIM = 0.747), proposed method (PSNR = 27.58, SSIM = 0.761). The
red box enlarges the drape of the clothes at the arm; the green box enlarges
the branches at the background.

noise levels. This is due to that block-matching lose its
effectiveness under large-scale noise environment. Conse-
quently, the motion estimation and compensation which are
based on block-matching also do not work effectively. The
proposed intensity and structure tensor based change seg-

Fig. 8 Denoising result of a frame in Salesman video with noise level
σn = 100. (a1)-(a3) Original image. (b1)-(b3) noisy image (PSNR =
8.12, SSIM = 0.053). (c)-(f) denoising result of VBM3D (PSNR = 23.03,
SSIM = 0.524), SURE-LET (PSNR = 23.56, SSIM = 0.544), proposed
method but without structure tensor based segmentation (PSNR = 23.31,
SSIM = 0.578), proposed method (PSNR = 23.78, SSIM = 0.587). The
red box enlarges the drape of the clothes at the arm; the green box enlarges
the branches at the background.

mentation, however, can do a better job when dealing with
the high level noise. It leads to a better denoising perfor-
mance of our method. Therefore, our method is particu-
larly suitable for high level noise at low light illumination.
It should be noted that in practical applications the most im-
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Fig. 9 Comparison for different scale factor α on Salesman video.

portant role of denoising is under low light conditions with
large noise.

Figure 7 shows the denoising results of some frames in
the Salesman video with σn = 50. From the figure we can
see that VBM3D has the best smoothing result but with blur-
ring effect. As for detail structure preservation, our method
is the relatively better one. Take branches with green box in
the background for example. After denoising, the branches
are highly blurred by VBM3D, while our method still keeps
the branches clear. SURE-LET is superior to VBM3D and
inferior to ours at the branches. The effect of structure ten-
sor is reflected at the edges of the motion area. Looking at
the drape of the clothes at the elbow in the red box, the re-
sult of no structure tensor segmentation method (see Fig. 7
(e2)) loses this detail, while the complete proposed method
restores this drape. VBM3D also restores this detail. The
result of SURE-LET is in the middle position at this point.
As for the denoising result of the whole image, the PSNR
and SSIM indices indicate that our method is the best for
structure preservation (SSIM), while VBM3D is the best in
PSNR index for smoothness.

Figure 8 shows the denoising results of the frame in
Fig. 7 with larger noise σn = 100. Our method is the best
considering both PSNR and SSIM indices. The prominent
effect comes from the details of the background, such as
branches and contour of the book. VBM3D is the worst
with extensive blurring of the image. The effect of structure
tensor is still obvious, such as the salesman’s eyes and the
drape of the clothes at the elbow in the red box. Only our
method retains the drape to a great extent.

In the proposed algorithm, the scale factor α is impor-
tant. The influence of this parameter on denoising perfor-
mance is shown in Fig. 9. The test video is Salesman here
and three noise levels (σn = 15, 50, 100) are chosen. The
variable α begins from 0 to 0.25 with an interval value of
0.05. It demonstrates that the best result is obtained when
α = 0.1. The performance degrades with smaller or larger
α values. Thus, an appropriate setting of this scale factor is
required.

6. Conclusion

In this paper, focusing on videos with stationary back-
ground, we propose a cascaded video denoising method

based on frame-weighted averaging. The weight calculation
depends on our intensity and structure tensor based change
segmentation algorithm. We found that the direct intensity
distance cannot differentiate motion or illumination change
from large noise. A strong pre-filter is used to solve this
problem. However, it leads to blurring at the edges or de-
tails in changed areas. To address this drawback, structure
tensor was employed to aid change segmentation. On the
other hand, because the average is computed over a limited
number of frames, at

least 1/N noise is left behind by a single-stage frame
averaging, where N is the total frame number. A cascaded
framework was introduced to deal with this noise residual.
The first stage acts as the pre-filter of the next stage. Our
experimental comparisons with state-of-the-art algorithms
demonstrated that the proposed method is competitive in
both PSNR and SSIM evaluations, especially when deal-
ing with the large-scale noise. Furthermore, our method is
a real-time algorithm that has been implemented on FPGA
for evaluation. Therefore, it is a suitable option for hardware
devices.
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