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Computational Complexity of Generalized Golf Solitaire∗

Chuzo IWAMOTO†a), Member

SUMMARY Golf is a solitaire game, where the object is to move all
cards from a 5 × 8 rectangular layout of cards to the foundation. A top
card in each column may be moved to the foundation if it is either one rank
higher or lower than the top card of the foundation. If no cards may be
moved, then the top card of the stock may be moved to the foundation. We
prove that the generalized version of Golf Solitaire is NP-complete.
key words: computational complexity, NP-completeness, puzzle

1. Introduction

Golf is a solitaire game, where the object is to move all cards
from a 5×8 rectangular layout of cards to the foundation (see
Fig. 1). In the rectangular layout, the eight cards of the first
layer partially cover the second layer, which partially cover
the third layer, and so on. Initially, one card is placed on the
table as a foundation, and the remaining 11 cards are piled
up, which are the stock. (You can play Golf Solitaire at the
web site [1].)

A card is exposed if no cards cover it. Exposed cards
in the rectangular layout may be moved to the foundation if
they are either one rank higher or one rank lower than the
top card of the foundation, regardless of suit. If no cards
may be moved, then the top card of the stock may be moved
to the foundation. Once the stock is exhausted and no more
cards can be moved, the game ends. The aim of the game is
to move all cards of the rectangular layout to the foundation.

In Fig. 1, card ♠10 is initially on the table as a founda-
tion. Since card ♣J in the first layer is one rank higher than
♠10, it can be moved to the foundation. Then, ♠Q, ♥K, and
♦Q can be moved to the foundation. At this point, there are
no cards which can be moved to the foundation. Fortunately,
if the top card ♥A of the stock is moved to the foundation,
then ♣2, ♥3, and ♦2 can be moved to the foundation.

In this paper, we consider the generalized version
of Golf Solitaire. The generalized 4k-card deck includes
k ranks of each of the four suits, spades (♠), hearts (♥), di-
amonds (♦), and clubs (♣). The instance of the Generalized
Golf Problem is the initial layout of p × q cards, an initial
foundation card, and a stock of s cards, where s = 4k−pq−1.
The problem is to decide whether the player can move all of

Manuscript received February 27, 2014.
Manuscript revised June 13, 2014.
†The author is with the Graduate School of Engineering, Hiro-

shima University, Higashihiroshima-shi, 739–8527 Japan.
∗This research was supported in part by Scientific Research

Grant, Ministry of Japan.
a) E-mail: chuzo@hiroshima-u.ac.jp

DOI: 10.1587/transinf.2014FCL0001

Fig. 1 Initial layout of Golf Solitaire.

the p × q cards to the foundation. We will show that the
Generalized Golf Problem is NP-complete. It is not difficult
to show that the problem belongs to NP, since the player can
move at most 4k − 1 cards to the foundation.

There has been a huge amount of literature on the
computational complexities of games. In 2009, a survey
of games, puzzles, and their complexities was reported by
Hearn and Demaine [7]. Recently, Block Sum [6], Kaboo-
zle [2], Kurodoko [14], Magnet Puzzle [15], Pandemic [16],
Pyramid [10], Shisen-Sho [13], String Puzzle [12], Yosen-
abe [9], and Zen Puzzle Garden [8] were shown to be NP-
complete. Furthermore, it is known that Chat Noir [11] and
Rolling Block Maze [3] are PSPACE-complete.

2. Reduction from 3SAT to Generalized Golf Solitaire

The definition of 3SAT is mostly from [5]. Let U =

{x1, x2, . . . , xn} be a set of Boolean variables. Boolean vari-
ables take on values 0 (false) and 1 (true). If x is a variable
in U, then x and x are literals over U. The value of x is
1 (true) if and only if x is 0 (false). A clause over U is a
set of literals over U. It represents the disjunction of those
literals and is satisfied by a truth assignment if and only if at
least one of its members is true under that assignment.

An instance of 3SAT is a collection C = {c1, c2, . . . , cm}
of clauses over U such that |c j| ≤ 3 for each c j ∈ C. The
3SAT problem asks whether there exists some truth assign-
ment for U that simultaneously satisfies all the clauses in C.
This problem is known to be NP-complete.

For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3, c4},
and c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4},
c4 = {x2, x3, x4} provide an instance of 3SAT. For this in-
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Fig. 2 Variable gadget for xi.

stance, the answer is “yes,” since there is a truth assignment
(x1, x2, x3, x4) = (1, 0, 1, 1) satisfying all clauses. It is known
that 3SAT is NP-complete even if each variable occurs ex-
actly once positively and exactly twice negatively in C [4].

2.1 Transformation from an Instance of 3SAT to an Initial
Layout of Cards

We present a polynomial-time transformation from an arbi-
trary instance C of 3SAT to a rectangular layout of cards, a
foundation card, and a stock of cards such that C is satis-
fiable if and only if all cards in the rectangular layout and
stock can be moved to the foundation. Note that the in-
stances of 3SAT considered in this paper have the restriction
explained just before Sect. 2.1.

Let n and m be the numbers of variables and clauses
of C, respectively. Without loss of generality, we can as-
sume that n is even and m is divisible by four. Each variable
xi ∈ U is transformed into 6 × 3 cards shown in Fig. 2. (See
also Fig. 4 when n = m = 4. The 6 × 3 cards for x1 are the
leftmost three columns.)

The first layer of Fig. 2 consists of cards ♠5i−4, ♠5i−2,
and ♠5i − 1 (labeled with “xi = 1”, “xi = 0”, and “xi = 0”,
respectively). If variable xi appears in clause c j1 positively
and in c j2 and c j3 negatively, then the three cards of the sec-
ond layer have ranks 5n+ j1 +2, 5n+ j2 +2, and 5n+ j3 +2,
respectively. If this is the first (resp. second, third) appear-
ance of a card of rank 5n+ j+2, the suit is ♠ (resp. ♥, ♦). (For
example, ♠23, ♥23, and ♦23 labeled with c1 appears in that
order in the second layer of Fig. 4, since clause c1 contains
variables x1, x2, and x3 in numerical order.)

Since cards ♥5i − 1, ♥5i − 2, ♦5i − 1, ♦5i − 2, ♦5i − 3,
♦5i−4, ♣5i−1, ♣5i−2, ♣5i−3, and ♣5i−4 are useless for the
simulation of variable xi, they are arranged in a 4 × 3 layout
of the variable gadget (see white cards in Fig. 2). Here, the
suit and the rank of cards in two empty boxes Y and Z are

Fig. 3 Conjunction gadget for clauses c1, c2, . . . , cm.

defined later. (Later, one can see 4 × 3 white cards of Fig. 2
can be removed trivially at the end of the game.)

Suppose ♠5i − 3 is on the top of the foundation (see
Fig. 2). If ♠5i− 4 is moved to the foundation, then card 5n+
j1 + 2 (labeled with c j1 ) will be exposed. This situation im-
plies the assignment xi = 1. On the other hand, if ♠5i−2 and
♠5i − 1 are moved to the foundation, then cards 5n + j2 + 2
and 5n + j3 + 2 (labeled with c j2 and c j3 ) will be exposed.
This implies xi = 0. (In Fig. 5, card ♠2 in the foundation and
♠7, ♠12, ♠17 in the stock are used for this purpose.)

We arrange n sets of the 6 × 3 cards in a line for the
n variables (see the 6 × 3n cards in Fig. 4). In the second
layer, there exist exactly three cards of label c j for every j ∈
{1, 2, . . . ,m}. If at least one of the three cards is exposed for
every c j (see Fig. 6), then all clauses of C are satisfied.

Figure 3 is a conjunction gadget for the m clauses. Sup-
pose that ♠5n + 1 is placed on the top of the foundation (see
also ♠21 in the foundation of Fig. 6). Then, card ♠5n + 2 at
the rightmost position in the first layer can be moved to the
foundation (see ♠22 in Fig. 6). If a card of rank 5n+ j+2 (la-
beled with c j) has been exposed for every j ∈ {1, 2, . . . ,m},
then cards of ranks 5n+3, 5n+4, . . . , 5n+m+2 (labeled with
c1, c2, . . . , cm) can be moved to the foundation in that order
(see ♠23,♥24,♥25, ♠26 in Fig. 6). Now, card ♠5n + m + 3
can be moved to the foundation (see ♠27 in Fig. 6). (Later,
one can see that ♠5n +m + 3 can be moved if and only if all
clauses are satisfied.) ♠5n + m + 3 is called a target card.

Figure 4 is the initial layout of Golf Solitaire trans-
formed from C = {c1, c2, c3, c4}, where c1 = {x1, x2, x3},
c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. In
this figure, red cards of ranks 27 through 30 (ranks 5n+m+3
through 6n + m + 2 in general) are dummy so that the set of
cards forms a rectangular layout. Once, the target card ♠27
is moved to the top of the foundation, all red cards can easily
be moved to the foundation.

In Fig. 4, blue cards ♥1,♥6,♥11,♥16 in the stock and
♥2,♥7,♥12,♥17 in the rectangular layout are used for re-
moving all the remaining yellow cards in the first layer. For
example, if card ♥1 is moved from the stock to the founda-
tion, then card ♥2 can be moved to the foundation, and thus
either {♠1} or {♠3, ♠4} can be moved to the foundation. (In
case of Fig. 6, {♠3, ♠4} will be moved.)

Similarly, in Fig. 4, cards ♥21, ♦21 in the stock and
♥22, ♦22 in the sixth layer are used for removing all
the remaining green cards in the second layer. Without
loss of generality, we can assume that the instance C =

{c1, c2, . . . , cm} of 3SAT is such that 3 ≥ |c1| ≥ |c2| ≥ · · · ≥
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Fig. 4 The initial layout of Golf Solitaire transformed from C = {c1, c2, c3, c4}, where c1 =

{x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. The numbers of variables and
clauses are n = 4 and m = 4, respectively. The total number of cards is 4k = 30n + 8 = 4 · 32.

Fig. 5 Assignment (x1, x2, x3, x4) = (1, 0, 1, 1).

|cm| ≥ 2. (We need this assumption for removing all green
cards in the second layer sequentially.)

White cards ♠5,♥5, ♦5; ♠10,♥10, ♦10; ♠15,♥15, ♦15;
♠20,♥20, ♦20 in the stock are used for removing all
white cards in the rectangular layout. Grey cards
♣5,♣10,♣15,♣20 (in general, ♣5i for each i ∈ {1, 2, . . . , n})
are dummy; they are discarded to the foundation.

Cards ♣23,♣24,♣25,♣26 (in general, ♣5n + 3,♣5n +
4, . . . ,♣5n + m + 2) are stored in the 2n empty boxes (see
empty boxes labeled with Y and Z in Fig. 2). Since the num-
ber m of clauses satisfies m ≤ 3n/2 (< 2n), those m cards
can be stored in the 2n empty boxes. Green card ♣21 in the
stock and ♣22 in the sixth layer are used for removing all
green cards in the fifth and sixth layers. (In Fig. 4, no green
cards exist in the sixth layer).

The number of the remaining empty boxes is 2n − m
(= 4 when n = m = 4, see Fig. 4). The value of 2n − m is
divisible by four, since we assumed that n is even and m is
divisible by four. Let r be an integer such that 2n − m = 4r
(= 4 · 1 when n = m = 4). The bottom four cards of the
stock are ♣31, ♦31,♥31, ♠31 (in general, ♣6n+m+ 3, ♦6n+
m + 3,♥6n + m + 3, ♠6n + m + 3). The 2n − m empty boxes

in the rectangular layout are filled by

♠6n + m + 4, ♠6n + m + 5, . . . , ♠6n + m + r + 3,

♥6n + m + 4, ♥6n + m + 5, . . . , ♥6n + m + r + 3,

♦6n + m + 4, ♦6n + m + 5, . . . , ♦6n + m + r + 3,

♣6n + m + 4, ♣6n + m + 5, . . . , ♣6n + m + r + 3.

The total number 4k of cards of the initial layout of
Golf Solitaire is 4k = 6 × (3n + n) + (6n + 8) = 30n + 8.

2.2 NP-Completeness of Generalized Golf Solitaire

In this section, we will show that the instance C of 3SAT
is satisfiable if and only if all the cards of the rectangular
layout and the stock can be moved to the foundation.

Assume that the instance C of 3SAT is satisfiable.
When card ♠5i− 3 is placed on the top of the foundation for
every i ∈ {1, 2, . . . , n} (see cards ♠2, ♠7, ♠12, ♠17 in Fig. 5),
either {♠5i − 4} or {♠5i − 2, ♠5i − 1} is moved from the first
layer to the foundation. If ♠5i − 4 (resp. ♠5i − 2, ♠5i − 1) is
moved, then a card with label c j1 (resp. c j2 , c j3 ) is exposed,
if xi appears in c j1 positively and in c j2 , c j3 negatively.
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Fig. 6 All clauses c1, c2, . . . , cm are satisfied if and only if at least one of the literals of every
clause c j ∈ {c1, c2, . . . , cm} has value 1.

Since C is satisfiable, we can choose {♠5i − 4} or
{♠5i − 2, ♠5i − 1} so that at least one of the three c j-cards of
rank 5n+ j+ 2 (in the second layer) is exposed for every j ∈
{1, 2, . . . ,m} (see Fig. 5). Therefore, by placing cards ♠5n+1
and ♠5n+2 on the foundation (see ♠21 and ♠22 in Fig. 6), we
can move cards of ranks 5n+3, 5n+4, . . . , 5n+m+2 (labeled
with c1, c2, . . . , cm) and the target card of rank 5n +m + 3 to
the foundation (see ♠23,♥24,♥25, ♠26 and ♠27 in Fig. 6).

Once the target card is moved, then all red cards, all
blue cards, and all of the remaining yellow cards of Fig. 4
can trivially be moved to the foundation. Then, all green
cards, all white cards, and all grey cards can also be moved
to the foundation. Hence, if the instance C of 3SAT is sat-
isfiable, then all the cards of the rectangular layout and the
stock can be moved to the foundation.

Assume the player can move all the cards of the rect-
angular layout and stock to the foundation. Consider a card
of rank 5n + m + 3 (see ♠27, ♦27 in the first layer in Fig. 4).
This card can be moved to the foundation only if a card of
rank 5n+m+2 or 5n+m+4 (rank 26 or 28) is on the top of the
foundation. However, all of the four cards of rank 5n+m+4
(= 28) are located beneath cards of rank 5n + m + 3 (= 27)
(see red cards in Fig. 4). Thus, a card of rank 5n+m+ 3 can
be moved to the foundation only if a card of rank 5n+m+ 2
(= 26) is placed on the top of the foundation.

As we explained in Fig. 6, a card of rank 5n +m + 2 (=
26) can be placed on the top of the foundation only if a card
of rank 5n + j + 2 (labeled with c j) is exposed for every j ∈
{1, 2, . . . ,m} in the second layer (see ♠23,♥24,♥25, ♠26 in
Figs. 5 and 6).

In the first layer, any of the three yellow cards ♠5i −
4, ♠5i − 2, ♠5i − 1 (see Fig. 2) can be removed only if a card
of rank 5i − 3 is placed on the foundation, for every i ∈
{1, 2, . . . , n}. (Note that all cards of rank 5i are buried deep
within the stock. See the 4n cards of ranks 5, 10, 15, 20
in the stock in Fig. 4.) Card ♠2 (= ♠5i − 3 when i = 1) is
initially placed on the table as a foundation, and cards ♠5i−
3 ∈ {♠7, ♠12, . . . , ♠5n− 3} are the topmost n− 1 cards of the
initial stock (see Fig. 4).

Thus, the set of yellow cards removed from the first
layer in Fig. 5 indicates the truth assignment satisfying

all clauses of C. (From Figs. 5 and 6, one can see that
(x1, x2, x3, x4) = (1, 0, 1, 1) satisfy all the clauses.) Hence,
if the player can move all the cards of the rectangular layout
and the stock to the foundation, then C is satisfiable.
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