
532
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

PAPER Special Section on Foundations of Computer Science—New Spirits in Theory of Computation and Algorithm—

A Fourier-Analytic Approach to List-Decoding for Sparse Random
Linear Codes

Akinori KAWACHI†a), Member and Ikko YAMANE†, Nonmember

SUMMARY It is widely known that decoding problems for random lin-
ear codes are computationally hard in general. Surprisingly, Kopparty and
Saraf proved query-efficient list-decodability of sparse random linear codes
by showing a reduction from a decoding problem for sparse random linear
codes to that for the Hadamard code with small number of queries even un-
der high error rate [11]. In this paper, we show a more direct list-decoding
algorithm for sparse random linear codes with small number of queries
from a Fourier-analytic approach.
key words: list-decoding, Fourier analysis

1. Introduction

The error-correcting code is one of the most significant tech-
nologies in the field of computer science. Recently, the so-
called list-decoding algorithms have been intensively stud-
ied in the coding theory and theoretical computer science
since it revealed deep connections among computational
complexity theory, cryptography and coding theory. (See
[15], [16] for the connections.)

While the standard decoding for a code C is required
to output a single correct message x from a received word
w that is provided by adding errors to codeword C(x), the
task of list-decoding is to output a short list of candidate
messages that contains the correct x from w even if it is im-
possible to uniquely decode x from w because of high error
rate.

Historically, the concept of list-decoding was proposed
in the context of coding theory by Elias and Wozencraft [4],
[17]. However, it was in the field of cryptography that the
first efficient list-decoding algorithm for an explicit error-
correcting code was discovered by Goldreich and Levin [6].

The Goldreich-Levin theorem provides a general con-
struction for a hardcore predicate, which generates a cryp-
tographic pseudorandom bit, from any one-way function.
The statement of the Goldreich-Levin theorem was quite far
from notions of coding theory, but the proof of the theorem
essentially constructed an efficient algorithm, which we call
the GL algorithm here, that list-decodes the Hadamard code.
This list-decoding algorithm is developed by a clever com-
bination of strong tools from complexity theory and cryp-
tography such as pair-wise independent sampling and self-
correcting of the Hadamard code.

Manuscript received March 28, 2014.
Manuscript revised August 1, 2014.
†The authors are with Tokyo Institute of Technology, Tokyo,

152–8552 Japan.
a) E-mail: kawachi@is.titech.ac.jp

DOI: 10.1587/transinf.2014FCP0016

Later, the Goldreich-Levin theorem was reproved by
an entirely different approach. Kushilevitz and Mansour de-
veloped an efficient simple algorithm for learning decision
trees using a Fourier-analytic technique [9]. It turned out
afterwards that the Kushilevitz-Mansour algorithm (KM al-
gorithm) was applicable to list-decoding for the Hadamard
code.

The KM algorithm is not only mathematically ele-
gant but also suggestive of a wide range of applications.
As mentioned above, the KM algorithm was originally de-
veloped for machine learning, and thus, it has essentially
shown an application of the list-decoding algorithm to ma-
chine learning. Furthermore, Akavia, Goldwasser and Safra
showed a unified framework that provides simple proofs for
many previously known hardcore predicates by extending
the KM algorithm rather than the GL algorithm [1]. From
these examples, we can say that KM algorithm has a great
potential to find new applications of list-decoding.

After the discovery of the connections, list-decoding
algorithms have been given to a lot of error-correcting codes.
(See [7], [8] for details.) Recently, studies of random lin-
ear codes have proceeded rapidly in the context of list-
decoding [5], [10], [11]. It is known that the random linear
codes can achieve excellent performance with high proba-
bility, but the decoding problem is strongly believed to be
computationally hard in general.

For example, the decoding problem is known to be NP-
hard [3] even in an approximate version with some prepro-
cessing [12]. Even in the case of average-case hardness, it is
shown that some integer lattice problems, which are also be-
lieved to be hard, reduce to decoding random linear codes in
some setting [2]. From such reasons, the problem of decod-
ing random linear codes has been applied to cryptographic
constructions (See, e.g., [13], [14]).

As mentioned above, the problem of decoding random
linear codes is widely believed to be hard. However, Kop-
party and Saraf most recently showed how to list-decode
sparse random linear codes efficiently from a viewpoint of
query complexity, i.e., the number of bits to which an algo-
rithm makes access in a received word [11].

They provided a reduction from decoding random lin-
ear codes to decoding the Hadamard code, which is effi-
ciently list-decodable by the GL and KM algorithms.

In this paper, we construct a more direct algorithm that
list-decodes sparse random linear codes efficiently in the
same sense as Kopparty and Saraf’s result from a Fourier-
analytic approach by extending the KM algorithm. This

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

KAWACHI and YAMANE: A FOURIER-ANALYTIC APPROACH TO LIST-DECODING FOR SPARSE RANDOM LINEAR CODES
533

provides a new mathematical viewpoint of list-decoding for
random linear codes as in the case of the KM algorithm for
the Hadamard code.

Let us observe more details of the previous results
and ours below. We define an inner product 〈·, ·〉 as
〈x, y〉 = x1 · y1 + · · · + xn · yn mod 2, where xi de-
notes the i-th coordinate of x ∈ {0, 1}n. Then, a code-
word of the Hadamard code of a message x is defined
as Had(x) := (〈x, 0 · · · 0〉, . . . , 〈x, 1 · · · 1〉), or equivalently,
Had(x) := xGHad, where the generating matrix GHad ∈
{0, 1}n×2n

consists of all the column vectors of n bits in the
lexicographical order.

Note that the length of Had(x) is exponential in n. We
need to construct a decoding algorithm that only reads a part
of a received word for efficiency of decoding. Indeed, the
GL and KM algorithms give efficient local list-decoding al-
gorithms for the Hadamard code, which means that the al-
gorithms can output a short list of candidate messages only
by locally reading a small portion of a long received word.

The result of Kopparty and Saraf provides some re-
duction from decoding random linear codes to decoding the
Hadamard code. The generating matrix of random linear
code C of length N is given by a random matrix GC ∈
{0, 1}n×N . We say C is sparse if N ≥ 2δn for some constant
δ > 0. Then, we can identify C(x) as random N bits sam-
pled from Had(x). (Note that a set of column vectors in GC

is a subset of those in GHad.) If C is sparse, their reduction
can simulate access to Had(x) from C(x) even under high
error rate by randomly XORing a constant number of bits
sampled from C(x) under some special distribution.

Therefore, the combination of their reduction with the
GL algorithm can work as a local list-decoding algorithm
for sparse random linear codes. The number of bits that the
algorithm reads is quite small, i.e., the algorithm is query-
efficient, but we need to solve some sampling problem from
the special distribution for the reduction. If we wish to make
the algorithm time-efficient, i.e., to run it in polynomial time
in message length n, we need to solve the sampling problem
efficiently in the sense of time complexity. As discussed
in [11], it is unknown whether this sampling can be done
efficiently in the sense of time complexity so far.

Suppose that a received word is of error rate (1 − ε)/2,
that is, the received word is generated by flipping (1−ε)N/2
bits of some codeword. The Kopparty-Saraf reduction pro-
vides a list-decoding algorithm that outputs a list of ε−O(1)

candidate messages, which contains a correct message with
a constant probability, say 2/3, by making ε−O(1) ·O(n log n)
queries to a received word of error rate (1 − ε)/2. The time
complexity is ε−O(1) · O(TKS(n) n log n)), where TKS(n) de-
notes the time complexity for determining a query position
by solving the above sampling problem. (In fact, the GL
algorithm can produce the i-th bit of the j-th candidate mes-
sage for any given i, j by reading only ε−O(1) bits of a re-
ceived word, and therefore, the list-decoding algorithm from
their reduction with the GL algorithm can obtain a list of
candidate messages by repeatedly running it for every bit of
the candidate messages.)

Our algorithm, which is an extension of the KM algo-
rithm and we call the extended KM algorithm below, is a
local list-decoder for sparse random linear codes as in the
case of the KM algorithm for the Hadamard code.

The (extended) KM algorithm is based on the depth-
first search for candidate messages with pruning. Our main
technical contribution is to provide a new criterion suitable
to sparse random linear codes for the pruning from a view-
point of the Fourier analysis.

Similarly to the reduction of Kopparty and Saraf, we
need to solve some other sampling problem for applying the
criterion, and thus, even in the extended KM algorithm, it
is also unknown whether we can list-decode sparse random
linear codes time-efficiently.

The extended KM algorithm outputs a list of ε−O(1)

candidate messages with a constant probability by making
ε−O(1) · O(n log n) queries to a received word of error rate
(1−ε)/2. The time complexity is ε−O(1) ·O(TEKM(n) n log n),
where TEKM(n) denotes the time complexity for determin-
ing a query position by solving the sampling problem in our
case.

Comparing Kopparty and Saraf’s and our approaches,
they have polynomial list size in ε−1 and polynomial query
complexity in ε−1 and n. Their time complexities depend on
those of the sampling problems. By trivial algorithms, we
have TKS(n) ≤ 2O(n) and TEKM(n) ≤ 2O(n).

However, we will show an efficient sampling procedure
that approximately solves our sampling problem by assum-
ing an efficient sampling procedure for Kopparty and Saraf’s
problem in this paper. This would suggest that our sam-
pling problem is easier and our Fourier analytic approach
has a higher potential to discover efficient list-decoding al-
gorithms for random linear codes.

In addition, the KM algorithm provided new applica-
tions of list-decoding algorithms to cryptography and ma-
chine learning, as mentioned above. Our approach extend-
ing the KM algorithm would also have a potential to new
applications to other fields like the KM algorithm.

The rest of this paper is organized as follows. In Sect. 2,
we introduce basic notions and notation necessary to show
the extended KM algorithm, and we briefly review the KM
algorithm. In Sect. 3, we describe the extended KM algo-
rithm and prove its correctness and performance. We con-
clude this paper with some remarks on the sampling prob-
lems of Kopparty and Saraf and of ours in Sect. 4.

2. Preliminaries

We deal with only F2 := {0, 1} as alphabet in this paper. For
k ≥ 1, we denote by wi the i-th coordinate of a row vector, or
a word, w = (w1, . . . , wk). Let |w| denote the length of w and
let vw denote a concatenation of two vectors v and w. We
denote by 0k the word of k zeros. It is also denoted by 0 if it
is clear from the context. The relative Hamming weight of a
word w is defined as wt(w) := |{i ∈ [k] | wi � 0}|/|w|, where
[k] := {1, . . . , k}. The relative Hamming distance is defined
as Δ(v, w) := wt(v − w).

534
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

2.1 List-Decoding Problem

We discuss decoding problems for error-correcting codes in
this paper. Our error model is the same as the previous
work [11], i.e., bit-flipping errors e ∈ FN

2 are adversarially
added to a codeword C(x) ∈ FN

2 (of a message x ∈ Fn
2) at

communication from a sender to a receiver. In this model,
we can only guarantee that the number of the errors (and
equivalently the error rate wt(e)) is bounded by some prede-
termined value. We say a received word w = C(x)+ e has an
advantage ε ∈ (0, 1) if wt(e) ≤ (1 − ε)/2.

The list-decoding problem that we consider in this pa-
per is the problem of outputting a short list of candidate mes-
sages from a given received word:

Problem 2.1 (List-Decoding for C) Given a received word
w ∈ FN

2 as an oracle and advantage ε ∈ (0, 1), find a list L
satisfying {x ∈ Fn

2 | Δ(C(x), w) ≤ (1 − ε)/2} ⊆ L.

Performance of list-decoding algorithms is often eval-
uated from two measures, the list size and the number of
queries. The list size is given by |L|, i.e., the number of el-
ements in L. The number of queries is given by the number
of the bits that the decoding algorithm makes access to the
received word.

In the standard setting of error-correcting codes, decod-
ing algorithms are normally supposed to read all the bits in
a given received word. However, it is significant for appli-
cations in theoretical computer science to suppose decoding
algorithms that only make local access to a received word.
In this setting, the received word can be formulated as an
oracle w : [N] → F2. When a decoding algorithm makes a
query i to the oracle w, it answers the i-th bit wi of the re-
ceived word. Thus, the number of queries is defined by how
many times the decoding algorithm asks the oracle to output
L.

2.2 Random-Linear Codes

The main target of this paper is to decode random linear
codes. A code C is a map from a message space to a
codeword space. In this paper, we focus on binary codes
C : Fn

2 → FN
2 . For a message x ∈ Fn

2, C(x) denotes the cor-
responding codeword of x. Then, message length of C is n
and codeword length N. We sometimes identify the map C
as a set of codewords, i.e., C := {C(x) ∈ FN

2 : x ∈ Fn
2}.

A random linear code is given from a random generat-
ing matrix G ∈ Fn×N

2 . Every entry of G is determined uni-
formly at random over F2. The linear code is defined from
the generating matrix as C = {xG ∈ FN

2 : x ∈ Fn
2}. We say

the code C is sparse if 2n ≤ poly(N) for message length n
and codeword length N. Namely, the codeword length of a
sparse code is exponentially longer than the message length.

The bias of a code C is defined as bias(C) :=
maxc∈C−{0}|1/2 − wt(c)|, and we say C is unbiased if there
is a constant γ > 0 such that bias(C) ≤ N−γ. It is easy to

show the following proposition by the Chernoff bound and
union bound.

Proposition 2.2: For every β ∈ (0, 1) and every n,N ∈
N, we have bias(C) ≤ β with probability at least 1 −
O(2n exp{−β2N/6}).

Actually, the extended KM algorithm we show in this
paper can work for every unbiased linear codes as well as
Kopparty and Saraf’s result [11]. From the above theorem,
the extended KM algorithm can also work for sparse ran-
dom linear codes with high probability, and thus, we only
focus on decoding unbiased linear codes rather than sparse
random-linear codes.

2.3 Fourier Analysis

The Fourier analysis is a strong tool for our target. In this
section, we briefly review fundamentals of the Fourier anal-
ysis to be used in our analysis.

Below, we consider randomized functions. If we in-
voke a randomized function f : Fk

2 → R on a fixed in-
put x ∈ Fk

2, it outputs an independent random sample in
R. Then, f (x) denotes the sample in R and a random vari-
able over R of the output of f on x. Let Fk be a set of
randomized functions f : Fk

2 → R for k ∈ N. For two ran-
domized functions f , g ∈ Fk, we define the inner product
〈 f , g〉 := EX∼Uk , f (X),g(X)[f (X)g(X)], where Uk is the uniform
distribution over Fk

2. Since a (deterministic) function is a
special case of the randomized functions, we can similarly
define the inner products of functions and of randomized
and deterministic ones.

For x, i ∈ Fk
2, let χx(i) := (−1)〈x,i〉, where 〈x, i〉 =

x1i1 + · · · + xkik. It is easy to check that
∑
v∈Fk

2
χv(i) =

2k EX∼Uk

[
χi(X)

]
= 2k δk(i), and

〈
χx, χy

〉
= δk(x + y) if

|x| = |y|, where δk(x) = 1 if x = 0k and δk(x) = 0 other-
wise. {χx}x∈Fk

2
is an orthonormal basis, called the Fourier ba-

sis. We call each χx a Fourier basis vector. From a property
of an orthogonal basis, we have f (y) =

∑
x∈Fk

2
〈 f , χx〉χx(y).

For technical reasons, we exploit some extensions of
the inner product and self-convolution in this paper.

Definition 2.3 (μ-semi-inner product, μ-self-convolution)
Let μ be any distribution over Fk

2. For f , g ∈ Fk, l ∈
N, we define μ-semi-inner product of f and g as

〈 f , g〉μ := EY∼μ, f (Y),g(Y)[f (Y)g(Y)]. For Y (1), . . . ,Y (l) i.i.d.∼
μ, denoting by μ(l) the distribution according to Y (1) +

· · · + Y (l), we define l-th μ-self-convolution of f as
f [μ,l](y) := E

[∏l
i=1 f (Y (i)) | ∑l

i=1 Y (i) = y
]
, where the expec-

tation is taken over the random variables Y (1), . . . ,Y (l) and
f (Y (1)), . . . , f (Y (l)), if μ(l)(y) > 0, and as f [μ,l](y) := 0 if
μ(l)(y) = 0. Hence, f [μ,l] is a deterministic function.

Note that Uk-inner product and Uk-self-convolution coin-
cides with the standard inner product and self-convolution.
We can show the following proposition as a basic property
of these notions.

KAWACHI and YAMANE: A FOURIER-ANALYTIC APPROACH TO LIST-DECODING FOR SPARSE RANDOM LINEAR CODES
535

Proposition 2.4: For every f ∈ Fk, every x ∈ Fk
2 and every

distribution μ over Fk
2, we have

〈
f [μ,l], χx

〉
μ(l)
= 〈 f , χx〉lμ.

Proof. Let Y ∼ μ(l) and Y (1), . . . ,Y (l) i.i.d.∼ μ. Then, we have
〈

f [μ,l], χx

〉
μ(l)
= EY

[
f [μ,l](Y)χx(Y)

]

= EY

⎡⎢⎢⎢⎢⎢⎢⎣E{Y (i)}li=1,{ f (Y (i))}li=1

⎡⎢⎢⎢⎢⎢⎢⎣
l∏

i=1

f (Y (i))

∣∣∣∣∣∣∣
l∑

i=1

Y (i) = Y

⎤⎥⎥⎥⎥⎥⎥⎦ χx(Y)

⎤⎥⎥⎥⎥⎥⎥⎦

= E{Y (i)}li=1,{ f (Y (i))}li=1

⎡⎢⎢⎢⎢⎢⎢⎣
l∏

i=1

f (Y (i))χx(Y (i))

⎤⎥⎥⎥⎥⎥⎥⎦

=

l∏
i=1

EY (i), f (Y (i))

[
f (Y (i))χx(Y (i))

]

= 〈 f , χx〉lμ.
�

2.4 Kushilevitz-Mansour Algorithm

The Kushilevitz-Mansour algorithm (KM algorithm) was
originally developed for learning decision trees [9]. This
provides an efficient list-decoding algorithm for the
Hadamard code from a Fourier-analytic approach.

First, we review a Fourier-analytic property of the
Hadamard code. As described in Sect. 1, a code-
word of the Hadamard code is defined as Had(x) =
(〈x, 0 · · · 0〉, . . . , 〈x, 1 · · · 1〉) for a message x ∈ Fn

2.
Recall the definition of a Fourier basis vector χx(i) =

(−1)〈x,i〉. Then, a vector (χx(0 · · · 0), . . . , χx(1 · · · 1)) exactly
corresponds to Had(x) by conversions 0 �→ +1 and 1 �→ −1.
If a received word w is error-free, decoding w corresponds
to finding a Fourier basis vector χx satisfying 〈χx, w̃〉 = 1 for
w̃ : i �→ (−1)wi since the Fourier basis is orthogonal.

Even if adding relatively small errors to the codeword,
we can expect 〈χx, w̃〉 is relatively large. So, the list-
decoding problem for the Hadamard code can be formalized
by the following problem:

Problem 2.5 (Enumeration problem of Fourier basis
vectors) Given a randomized function f : Fn

2 → [−1,+1]
as an oracle i �→ f (i) and a threshold ε ∈ (0, 1), find a list
L ⊆ Fn

2 satisfying {x ∈ Fn
2 | ε ≤ |〈 f , χx〉|} ⊆ L.

The KM algorithm actually solves this problem efficiently.
Now we explain the behavior of the KM algorithm

briefly. We consider the following complete binary tree.
Each node corresponds to a distinct element in F≤n

2 and the
root corresponds to the null word. The node α ∈ F<n

2 has
two children α0 and α1. The leaves correspond to messages
in Fn

2. We say x ∈ Fn
2 is good if it satisfies ε ≤ |〈 f , χx〉|.

The KM algorithm traverses this tree like the depth-
first search, but the algorithm evaluates at every node α if a
subtree rooted at α has good leaves or not by some criterion.
If the algorithm decides the subtree has no good leaves, it

prunes the subtree.
In order to give the criterion for pruning, we define

an estimator S KM
2 (α) :=

∑
α′∈Fn−k

2
〈 f , χαα′ 〉2 for α ∈ Fk

2. If

S KM
2 (α) < ε2, the subtree rooted at α has no good leaves.

Thus, the algorithm can prune the subtree. Due to pruning,
we can show that the number of the nodes the KM algorithm
visits is bounded by poly(n, 1/ε), and thus, the size of the list
that the algorithm outputs is also bounded by poly(n, 1/ε).

Notice that it possibly takes exponential time to ex-
actly apply the criterion S KM

2 (α) < ε2 for pruning. How-
ever, by using the orthogonal property of the Fourier basis,
the criterion S KM

2 can be transformed to the following form:
S KM

2 (α) = E
X(1),X(2) i.i.d∼ Un, f (X1), f (X2)

[f (X(1)) f (X(2))χα(X(1)≤k +

X(2)≤k) | X(1)
>k+X(2)

>k = 0],where X≤k denotes (X1, . . . , Xk)
for X = (X1, . . . , Xn) and X>k denotes (Xk+1, . . . , Xn). From
the above form, we can efficiently approximate S KM

2 (α) by
sampling X(1) and X(2). By applying the approximate crite-
rion efficiently at each node, we can run the KM algorithm
efficiently in total.

3. Fourier-Analytic List-Decoding Algorithm

As mentioned in Section 2.2, a sparse random linear code is
unbiased with high probability, and thus, our goal is reduced
to a construction of list-decoding algorithm for unbiased lin-
ear code. The following is the main theorem of this paper,
which gives a query-efficient list-decoding algorithm for un-
biased linear codes.

Theorem 3.1: There exists a randomized algorithm that
solves Problem 2.1 for any unbiased linear code C with
probability at least 2/3. Then, the algorithm outputs a list
of size at most ε−O(1) by at most ε−O(1) · O(n ln n) queries in
ε−O(1) · 2O(n) time.

We prove this theorem in this section.
In order to prove this theorem, we reduce Problem 2.1

to another problem, Problem 3.2, in Section 3.1, and then,
we construct the extended KM algorithm in Section 3.2. We
also analyze the algorithm in Section 3.3.

If 1/ε = 2Ω(n) a trivial algorithm suffices for the proof
of Theorem 3.1. Thus, we suppose 1/ε = 2o(n) in what fol-
lows.

3.1 Enumeration Problem of Fourier Basis Vectors for μ-
Semi-Inner Product

We now show a reduction from Problem 2.1 to a somewhat
general problem using μ-semi-inner product:

Problem 3.2 (Enumeration problem of Fourier basis
vectors for μ-semi-inner product) Given a randomized
function f : Fn

2 → [−1, 1] as an oracle i �→ f (i) and thresh-
old ε ∈ (0, 1), find a list L ⊆ Fn

2 satisfying the following
two conditions: (1) {x ∈ Fn

2 | ε ≤ |〈 f , χx〉μ|} ⊆ L and (2)
|L| = poly(n, 1/ε), where μ is a distribution over Fn

2.

Let G := (g1, . . . , gN) be a generating matrix of a linear

536
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

code C and let V be a multi-set {g1
T, . . . , gN

T}. (Hence, it
may hold that gi

T = g j
T for some i � j in V .) For a received

word w, we define a randomized function fw : Fn
2 → [−1, 1]

as fw(x) := (−1)wi for i ∼ Ux, where Ux is the uniform
distribution over {i ∈ [N] : gi = x}. We then have fw(x) := 0
for x � V with probability 1. We define a distribution μ
associated with C as the uniform distribution over V . Then,
the following lemma holds:

Lemma 3.3: If the Problem 3.2 for μ associated with C can
be solved with Q queries and list size |L|, the Problem 2.1
can be solved with Q queries and list size |L|.
Proof. Our goal is to solve Problem 2.1 on a given received
word w ∈ FN

2 and advantage ε ∈ (0, 1). Note that an answer
fw(x) from an oracle fw to a query x can be simulated with
an oracle w : i �→ wi by making 1 query to w.

Suppose that we have an algorithm for Problem 3.2.
This algorithm outputs a list L on fw and ε for a distribution
μ associated with C. By a simple calculation, if Δ(w,C(a)) ≤
(1 − ε)/2 for a candidate message a, we have ε ≤ 〈 fw, χa〉μ.
Since a ∈ L from the condition (1) of Problem 3.2, L is a
solution to Problem 2.1. �

3.2 Construction of Extended KM Algorithm

The most naive approach to solving Problem 3.2 is to di-
rectly apply the original KM algorithm. However, this ap-
proach fails since the original KM algorithm tries to find
good leaves defined from the standard inner product, while
Problem 3.2 requires us to find good leaves in the sense of
the semi-inner product.

More specifically, if we apply the KM algorithm to
Problem 3.2 in our setting for the list-decoding that code-
word length N of a code C is quite smaller than 2n, say,
N = 2.1n, by setting μ to a distribution associated with C, the
threshold given to the algorithm can be exponentially small.
Let C(x) = (〈x, g1〉, . . . , 〈x, gN〉) be a codeword of a message
x ∈ Fn

2 and let w be a received word given from C(x) satisfy-
ing Δ(C(x), w) ≤ (1 − ε)/2. Note that χx(gi) = (−1)C(x)i .
Therefore, we have |〈 fw, χx〉| = N/2n|〈 fw, χx〉μ| ≥ 2−.9nε,
where fw is the randomized function given below Prob-
lem 3.2. Then, the KM algorithm needs exponentially many
queries to the oracle fw for more precise approximation.

The next attempt is to fit the algorithm to μ-semi-inner
product. We replace the estimator S KM

2 in the original KM
algorithm to S 2(α) :=

∑
α′∈Fn−k

2
〈 fw, χαα′ 〉2μ for a distribution μ

associated with C. Then, we need to prune a subtree rooted
at α if (an approximated value of) S 2(α) is lower than some
threshold. Unfortunately, the pruning with S 2(α) does not
work correctly from the following reason.

As briefly reviewed in Section 2.4, the original KM al-
gorithm decides if the subtree rooted at α should be pruned
or not by the estimator S KM

2 computed from the standard
inner products 〈·, ·〉 between an oracle f and leaves, or
equivalently, Fourier basis vectors, of the subtree. Recall
〈χa, χb〉 = 1 if a = b and 〈χa, χb〉 = 0 otherwise. If f is close

enough to some leaf x of the subtree rooted at α (namely, the
subtree has a good leaf x), S KM

2 (α) takes a large value since
so does 〈 fw, χx〉. Furthermore, S KM

2 should be low enough if
x is not among the leaves of the subtree rooted at α (namely,
the subtree has no good leaf), since

〈
fw, χy

〉
should be al-

most zero for every y � x. Therefore, the KM algorithm can
distinguish whether the subtree should be pruned or not by
approximating S KM

2 .
In the case of the μ-semi-inner product for a distribu-

tion μ associated with C, 〈χa, χb〉μ = 1 if a = b, but we
cannot say 〈χa, χb〉μ = 0 for a � b if bias(C) > 0. Therefore,

if f is close enough to χx, 〈 fw, χx〉μ is high, but
〈

fw, χy
〉
μ

for y � x can be relatively high depending on bias(C). As
a result, it would be impossible to distinguish between two
cases whether α has good leaves or not since there would be
no gap at S 2 between these two cases.

In order to circumvent this difficulty, we introduce an
l-th estimator

S l(α) :=
∑
α′∈Fn−k

2

〈 f , χαα′ 〉lμ

for a randomized function f , where l is an even number.
This coincides with S 2 if l = 2. The parameter l controls
how much we amplify gaps among absolute values of the
semi-inner product. One can see that, if 〈 fw, χx〉 is large and
y � x, a ratio 〈 fw, χx〉μl/〈 fw, χy〉μl grows up rapidly in l. This
property enables us to distinguish whether α has good leaves
or not query-efficiently by balancing the number of queries
for approximating S l and the gap amplification depending
on bias(C).

It is easy to see that εl ≤ S l(α) holds for every prefix α
if ε ≤ |〈 fw, χa〉μ| for a ∈ Fn

2. Therefore, even if we use the
condition S l(α) < εl for pruning, the algorithm does not fail
to find the correct message with high probability.

We give the description of the extended KM algorithm
as Algorithm 1. Similarly to the original KM algorithm,
the algorithm performs pruning with approximated values
of S l(α) for query-efficiency. This approximation is given
by S̄ f

l (α) in Algorithm 2. The definition of the distribution
μ|l≤k will be given later.

Algorithm 1 EKM f (α, ε)

1: if S̄ f
l (α, ε) < εl/2 then return . //Pruning

2: else if |α| = n then Output α.
3: else EKM f (α0, ε), EKM f (α1, ε).
4: end if

Algorithm 2 S̄ f
l (α, ε)

1: m← O(ε−2l ln(n/ε)), k ← |α|
2: (z(i,1), . . . , z(i,l))← μ |l≤k for i ∈ [m]

3: return 1
m

∑m
i=1 f

(
z(i,1)
)
· · · f
(
z(i,l)
)
χα
(
z(i,1)≤k + · · · + z(i,l)≤k

)

KAWACHI and YAMANE: A FOURIER-ANALYTIC APPROACH TO LIST-DECODING FOR SPARSE RANDOM LINEAR CODES
537

3.3 Correctness and Performance of the Extended KM Al-
gorithm

We prove the correctness and performance of the extended
KM algorithm in this section. Below, let λ denote the null
string and let ρ(μ) := maxa�b|〈χa, χb〉μ| (a, b ∈ Fn

2).

Theorem 3.4: EKM f (λ, ε) solves Problem 3.2 with prob-
ability at least 2/3 for every distribution μ over Fn

2 if ρ(μ) =
2−Ω(n) and 1/ε = 2o(n). EKM f (λ, ε) then outputs the list
of size O(ε−l) by at most O(nε−3l ln(n/ε)) queries for some
constant l > 0 that depends solely on ρ(μ).

ρ(μ) intuitively measures non-orthogonality of the
Fourier basis vectors with respect to the semi-inner product
〈·, ·〉μ. The smaller ρ(μ) becomes, the stronger orthogonality
the Fourier basis vectors have with respect to the semi-inner
product.

Note that ρ(μ) = 2 bias(C) holds for a dis-
tribution μ associated with a code C since ρ(μ) =

maxa�b|EX∼μ[χa−b(X)]| = maxa�0|EX∼μ[(−1)〈a,X〉]| =

maxc∈C−{0}|EX∼μ[(−1)cX]| = maxc∈C−{0}|1 − 2 wt(c)| =
2 bias(C). Since C is unbiased and sparse, we have
bias(C) ≤ N−γ ≤ 2−γδn for some constants γ and δ from
the definitions. Thus, ρ(μ) = 2−Ω(n). It follows that The-
orem 3.4 implies Theorem 3.1 immediately. (For the time
complexity, see Remark 3.14.)

The algorithm EKM uses an approximated version
S̄ f

l (α, ε) < εl/2 of the criterion S l(α) < εl for prun-

ing. First, we prove how precisely S̄ f
l can approximate

S l. Let Y (1), . . . ,Y (l) ∼ μ be independent random vari-
ables and let μ|l≤k be a distribution of (Y (1), . . . ,Y (l)) un-
der the condition Y (1)

>k + · · · + Y (l)
>k = 0. We de-

fine El(α) := E
[
f (Z(1)) · · · f (Z(l))χα(Z(1)≤k + · · · + Z(l)≤k)

]
,

where the expectation is taken over (Z(1), . . . ,Z(l)) ∼ μ|l≤k

and f (Z(1)), . . . , f (Z(l)). In fact, El(α) is close to S l(α) for
sufficiently large l.

Lemma 3.5: If ρ(μ) = 2−Ω(n) and 1/ε = 2o(n), there exists
some constant even number l > 0 such that we have |S l(α)−
El(α)| ≤ εl/8 for every k ≤ n and every α ∈ {0, 1}k.

In addition to Lemma 3.5, assuming that the random-
ized algorithm S̄ f

l (α, ε) approximates El(α), we can prove

that S̄ f
l (α, ε) also approximates S l(α) from the triangle in-

equality. Therefore, our task is to prove the following
lemma.

Lemma 3.6: We say EKM f (λ, ε) succeeds at α if the out-
come of S̄ f

l (α, ε) invoked in EKM f (λ, ε) satisfies |S̄ f
l (α, ε)−

El(α)| ≤ εl/8. Let VISIT be a set of nodes α that
EKM f (λ, ε) takes as an input in all the recursive invocations.
Then, EKM f (λ, ε) succeeds at every α ∈ VISIT with proba-
bility at least 2/3 for some even number l ∈ N.

Furthermore, we can show the following lemma on the
output of EKM and the number of queries.

Lemma 3.7: If EKM f (λ, ε) succeeds at every α ∈ VISIT,
the following three hold: (a) {x ∈ Fn

2 | ε ≤ 〈 f , χx〉μ} ⊆
L, (b) |L| ≤ O(ε−l), and (c) EKM f (λ, ε) makes at most
O(nε−3l ln(n/ε)) queries.

Assuming these lemmas, we can immediately prove
Theorem 3.4. So, we now prove the lemmas. We identify
a distribution μ over Fn

2 as a function μ : x �→ PrX∼μ[X =
x] and a vector (μ(0 · · · 0), . . . , μ(1 · · · 1)) ∈ [0, 1]2n

in the
proofs. Also, let Y ∼ μ(l) be a random variable.

Proof of Lemma 3.5. This lemma immediately follows
from Claims 3.8, 3.9 and 3.10. We show these three claims
below.

Claim 3.8: S l(α) = 2n−k Pr[Y>k = 0]El(α).

Proof. For f ∈ Fs, g ∈ Ft, we define f • g ∈ Fs+t as f • g :
xy �→ f (x)g(y). Note that χxy = χx • χy holds for every
x ∈ Fs

2, y ∈ Ft
2. Then, we have by Proposition 2.4

S l(α) =
∑
α′

〈
f [μ,l], χαα′

〉
μ(l)
=

〈
f [μ,l], χα •

∑
α′
χα′

〉
μ(l)

= 2n−k
〈

f [μ,l], χα • δn−k

〉
μ(l)
.

Note that
∑
α′ χα′ (x) =

∑
α′ χx(α′) = 2n−kδn−k(x), where

δn−k(x) = 1 if x = 0n−k and δn−k(x) = 0 otherwise. Fur-
thermore, we have〈

f [μ,l], χα • δn−k

〉
μ(l)

= E
[
f [μ,l](Y)(χα • δn−k)(Y)

]
= E
[
f [μ,l](Y)χα(Y≤k) δn−k(Y>k)

]
= Pr[Y>k = 0] E

[
f [μ,l](Y)χα(Y≤k) | Y>k = 0

]
= Pr[Y>k = 0]El(α).

Therefore, the claim holds. �

Claim 3.9: |Pr[Y>k = 0] − 1/2n−k | ≤ 2nρ(μ)l.

Proof. Firstly, we have
∣∣∣Pr[Y>k = 0] − 1/2n−k

∣∣∣ ≤∑
x∈Fn

2

∣∣∣μ(l)(x) − Un(x)
∣∣∣ .

Secondly, from the Fourier expansion and the fact that Un =

χ0n/2n, we have∣∣∣μ(l)(x) − Un(x)
∣∣∣

=

∣∣∣∣∣∣∣∣
∑
a∈Fn

2

(〈
μ(l), χa

〉
− 〈χ0n/2n, χa〉

)
χa(x)

∣∣∣∣∣∣∣∣
≤
∑
a∈Fn

2

∣∣∣∣〈μ(l), χa

〉
− 〈χ0n/2n, χa〉

∣∣∣∣
=
∑
a�0n

∣∣∣∣〈μ(l), χa

〉∣∣∣∣ .

538
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

Thirdly, |〈μ(l), χa〉| ≤ 2−nρ(μ(l)) for every a � 0n holds from
the definition of ρ(·) and the following calculation:
〈
μ(l), χa

〉
= EX∼Un [μ(l)(X)χa(X)]

= 2−n
∑
x∈Fn

2

μ(l)(x)χa(x)

= 2−n EY∼μ(l) [χa(Y)]

= 2−n〈χ0n , χa〉μ(l) .

Finally, we also have

ρ(μ(l))= max
a�b

∣∣∣EY∼μ(l) [χa−b(Y)]
∣∣∣

= max
a�0n

∣∣∣E[χa(Y (1) + · · · + Y (l))]
∣∣∣

= max
a�0n

∣∣∣E[χa(Y (1))] · · ·E[χa(Y (1))]
∣∣∣

≤ ρ(μ)l.

Thus the inequality holds. �

Claim 3.10: If ρ(μ) = 2−Ω(n) and 1/ε = 2o(n), there exists
some constant even number l ∈ N such that 22nρ(μ)l ≤ εl/8
for every sufficiently large n.

Proof. There exists a constant d > 0 such that ρ(μ) ≤ 2−n/d

for every sufficiently large n. Set l to the minimum even
number strictly larger than 2d. Then, there exists a constant
κ > 0 such that 22nρ(μ)l ≤ 2−κn for every sufficiently large
n. Since ε = 2−o(n), we have 22nρ(μ)l ≤ εl/8 for every suffi-
ciently large n. �

Lemma 3.5 holds from the above three claims. �

In what follows, we consider only μ satisfying ρ(μ) =
2−Ω(n), and we fix l to a constant even number given from
Claim 3.10.

In order to prove Lemma 3.6, we first show Claims
3.11, 3.12 and 3.13.

Claim 3.11: Let α be any node at which EKM f (λ, ε) suc-
ceeds. If εl ≤ S l(α), we have εl/2 ≤ S̄ f

l (α, ε). Conversely,

if εl/2 ≤ S̄ f
l (α, ε), we have εl/4 ≤ S l(α).

Proof. From Lemma 3.5, |S̄ f
l (α, ε) − S l(α)| ≤ |S̄ f

l (α, ε) −
El(α)| + |S l(α) − El(α)| ≤ εl/4, and thus, the claim holds.
�

We define SURVIVE := {α ∈ VISIT | εl/2 ≤
S̄ f

l (α, ε)}, VISITk := VISIT ∩ Fk
2, SURVIVEk :=

SURVIVE ∩ Fk
2, VISIT≤k :=

⋃
i≤k VISITi, SURVIVE≤k :=⋃

i≤k SURVIVEi, and Ak(θ) := {α ∈ Fk
2 | θ ≤ S l(α)}. Then,

the following claim holds.

Claim 3.12: For every k ∈ [n], if EKM f (λ, ε) succeeds
at every α ∈ VISIT≤k, we have Ak(εl) ⊆ SURVIVEk ⊆
Ak(εl/4).

Proof. By induction on k. In the base case k = 0, the

claim holds by Claim 3.11 if α ∈ VISIT≤k = {λ}. As-
sume that the claim holds for k = k′ − 1 < n. Then, if
EKM f (λ, ε) succeeds at every α ∈ VISIT≤k′−1, we have
Ak′−1(εl) ⊆ SURVIVEk′−1 ⊆ Ak′−1(εl/4). Assume also
that EKM f (λ, ε) succeeds at every α ∈ VISIT≤k′ . Fix any
β ∈ Ak′ (εl). From the monotonicity of S l, a prefix β′ of β of
length |β| − 1 satisfies β′ ∈ Ak′−1(εl) ⊆ SURVIVEk′−1. Then
β ∈ {β′0, β′1} ⊆ {α′0, α′1 | α′ ∈ SURVIVEk′−1} = VISITk′ .
Since it succeeds at β, we have β ∈ SURVIVEk′ from Claim
3.11. Namely, Ak′ (εl) ⊆ SURVIVEk′ . We next fix any
β ∈ SURVIVEk ⊆ VISITk. Since it succeeds at β, we have
β ∈ Ak′ (εl/4) from Claim 3.11. �

Claim 3.13: |Ak(θ)| = O(1/θ).

Proof. Let Y ∼ μ(l). Then, it follows that

|Ak(θ)| θ ≤
∑
α∈Ak(θ)

S l(α) ≤
∑
α∈Fk

2

〈
f [μ,l],

∑
α′∈Fn−k

2

χαα′

〉

μ(l)

=

〈
f [μ,l],

∑
a∈Fn

2

χa

〉
μ(l)

= 2n
〈

f [μ,l], δn
〉
μ(l)

= 2n Pr[Y = 0] f [μ,l](0) ≤ 2n Pr[Y = 0].

(Recall that δn(x) = 1 if x = 0n and δ(x) = 0 otherwise.) By
Claim 3.9, the righthand side is bounded by 1+ εl/8 = O(1)
since 22nρ(μ)l ≤ εl/8. �

We now prove Lemma 3.6 by these claims.

Proof of Lemma 3.6. By the Höffding bounds, the prob-
ability that S̄ f

l (α, ε) fails, namely, |S̄ f
l (α, ε) − El(α)| > εl/8

is at most q := 2 exp
{
−ε2lm/128

}
independently of α. From

the union bound, the probability that EKM f (λ, ε) does not
succeed at some α ∈ VISITk is at most |VISITk | · q. As-
sume that EKM f (λ, ε) succeeds at every α ∈ VISIT≤k−1.
By Claim 3.12, we have SURVIVEk−1 ⊆ Ak−1(εl/4). Since
VISITk = {α0, α1 | α ∈ SURVIVEk−1}, |VISITk | =
2|SURVIVEk−1| ≤ 2|Ak−1(εl/4)| = O(1/εl) by Claim 3.13.
Therefore, it holds that

Pr

⎡⎢⎢⎢⎢⎢⎣
n⋃

i=1

SUCCESSi

⎤⎥⎥⎥⎥⎥⎦ = Pr[SUCCESS0]

×
n∏

i=1

Pr[SUCCESSi | SUCCESSi−1]

≥ (1 − O(1/εl)q)n+1 ≥ 1 − O(n/εl)q,

where SUCCESSi is the event that EKM f (λ, ε) succeeds at
every α ∈ VISITi. The righthand side is at least 2/3 by
setting m = cε−2l ln(n/ε) for some appropriate constant c. �

We finally prove Lemma 3.7.

Proof of Lemma 3.7. Assume that EKM f (λ, ε) succeeds

KAWACHI and YAMANE: A FOURIER-ANALYTIC APPROACH TO LIST-DECODING FOR SPARSE RANDOM LINEAR CODES
539

at every α ∈ VISIT. (a) For every x ∈ Fn
2, if ε ≤ 〈 f , χx〉μ,

we have x ∈ An(εl). Also, by Claim 3.12, An(εl) ⊆
SURVIVEn = L. Thus, x ∈ L. (b) By Claim 3.12, we have
L = SURVIVEn ⊆ An(εl/4). Also, |An(εl/4)| = O(1/εl)
from Claim 3.13. (c) VISITk = {α0, α1 | α ∈ SURVIVEk−1}
for every k ∈ [n] by definition. By Claims 3.13 and 3.12,
|VISITk | = 2|SURVIVEk−1| ≤ 2|Ak−1(εl/4)| = O(1/εl).
Since |VISIT| ≤ (n + 1)O(1/εl) = O(n/εl), the number of
invocations of S̄ f

l is at most O(n/εl). Since each invocation

of S̄ f
l makes ml = O(ε−2l ln(n/ε)) queries, the total number

of queries is at most O(nε−3l ln(n/ε)). �

Remark 3.14: It is easy from the analysis of the query
complexity to see that the running time of the extended KM
algorithm for Problem 3.2 is T (μ, l) ·O(nε−3l ln(n/ε)), where
T (μ, l) denotes the time complexity to obtain a sample from
μ |l≤k. In the case of list-decoding for the sparse random
linear codes, T is bounded by O(Nl) · nO(1) = 2O(n) using
the following trivial algorithm: Generate a list of all l-tuples
(y(1), . . . , y(l)) from {g1, . . . , gN} and pick up a uniform sam-
ple satisfying y(1)

>k + · · ·+y(l)
>k = 0. Taking into accout the time

complexity for the oracle simulation in Lemma 3.3, the total
time complexity for the list-decoding is at most ε−O(1) ·2O(n),
as given in Theorem 3.1.

4. Concluding Remarks

Finally, we conclude this paper with some remarks on sam-
pling problems of Kopparty and Saraf and of ours.

Let μ be any distribution over Fn
2 such that ρ(μ) ≤ 2−n/d

for some constant d > 1. If the following sampling problem
for μ can be solved efficiently, Kopparty amd Saraf’s result
provides an efficient local-list decoding algorithm for sparse
random linear codes, as mentioned in [11]. We suppose l be
some sufficiently large constant.

Problem 4.1 (Kopparty and Saraf’s back-sampling prob-
lem) Given x ∈ Fn

2, sample y(1), · · · , y(l) from μ under the
condition

∑
y(i) = x.

On the other hand, our algorithm works in polynomial
time if we can perform the sampling from the distribution
μ|l≤k in polynomial time in n.

Problem 4.2 (Our sampling problem) Given k ∈ [n], sam-
ple y(1), · · · , y(l) from μ under the condition that

∑
(y(i))>k =

0n−k.

Inspecting these two sample problems, it seems to be
easier to solve the second problem since the condition of
the distribution in the first problem must be controlled by an
arbitrarily given x, but that in the second problem is partially
fixed only by 0n−k.

Actually, an approximate version of the second prob-
lem is reduced to the first problem, and hence we can obtain
an efficient list decoding algorithm for sparse random linear

codes from our Fourier-analytic approach if we have an effi-
cient algorithm that solves the first problem approximately.

Theorem 4.3: Assume that there exists a randomized al-
gorithm A1 that outputs samples under the distribution D1

of Problem 4.1 in polynomial time in n. Then, there exists
a randomized algorithm A2 that samples under the distribu-
tion D′2 which is statistically 2−Ω(n)-close to the distribution
D2 of Problem 4.2, i.e., 1

2

∑
x∈Fn

2
|PrX∼D′2 [X = x]−PrX∼D2 [X =

x]| = 2−Ω(n).

Proof. We explicitly describe the sampling procedure A2 by
using A1: Sample x ∈ Fk

2 uniformly at random, and then,
output the samples from A1 on input x0n−k.

We now observe why this procedure works well. If we
could sample x0n−k from the distribution μ(l) under the con-
dition that the lower n−k bits are all zeros, we could exactly
solve Problem 4.2 by using A1 on input x0n−k. However,
it does not look to be easy to directly do the sampling yet.
Instead of the sampling, we just sample x uniformly at ran-
dom as done in A2. Actually, μ(l) is statistically close to Un

by taking a sufficiently large l from Lemma 4.1 in [11].
Therefore, the statistical distance Δ between μ(l) under

the condition that the lower n − k bits are all zeros and Un

under the same condition is bounded from above by 2−Ω(n)

as follows.
Let X ∼ μ(l) and Y ∼ Un. The statistical distance Δ

between the two distribution is

Δ =
1
2

∑
x∈Fk

2

|Pr[X = x0|X>k = 0] − Pr[Y = x0|Y>k = 0|]

=
1
2

∑
x∈Fk

2

|Pr[X = x0]/Pr[X>k = 0] − 2−k]|.

Let Pr[X = x0] := 2−n + dx and Pr[X>k = 0] := 2−(n−k) + e.
Then,

Δ =
1
2

∑
x∈Fk

2

∣∣∣∣∣∣
dx − 2−ke

2−(n−k) + e

∣∣∣∣∣∣ ≤
1
2

∑
x∈Fk

2
|dx| + |e|

2−(n−k) − |e|

by the triangle inequality. Then, we can show Δ is bounded
by 2−Ω(n) by taking a sufficiently large l from Lemma 4.1
in [11] since

∑
x∈Fk

2
|dx| and |e| are bounded by the statistical

distance between μ(l) and Un.
Thus, the uniform sampling x works well alternatively,

and the sampling procedure A2 approximately solves Prob-
lem 4.2. �

This reduction suggests that the first problem is as at
least hard as the second problem. Therefore, it would be
easier to improve our algorithm by adding further algorith-
mic tricks towards efficient list-decoding of random linear
codes.

As briefly mentioned in Sect. 1, the Fourier-analytic ap-
proach for the Hadamard code shown by the KM algorithm
provided many applications by introducing a new mathe-
matical viewpoint. Similarly, our Fourier-analytic approach

540
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

to random linear codes would be suggestive of further appli-
cations.

References

[1] A. Akavia, S. Goldwasser, and S. Safra, “Proving hard-core predi-
cates using list decoding,” Proc. 44th IEEE Symposium on Founda-
tions of Computer Science, pp.146–157, 2003.

[2] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé,
“Classical hardness of learning with errors,” Proc. 45th Annual
ACM Symposium on Theory of Computing, pp.575–584, 2013.

[3] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Trans. Inf.
Theory, vol.24, pp.384–386, 1978.

[4] P. Elias, “List decoding for noisy channels,” 1957.
[5] V. Guruswami, J. Håstad, and S. Kopparty, “On the list-decodability

of random linear codes,” IEEE Trans. Inf. Theory, vol.57, no.2,
pp.718–725, 2011.

[6] O. Goldreich and L.A. Levin, “A hard-core predicate for all one-way
functions,” STOC ’89, pp.25–32, 1989.

[7] V. Guruswami, “List decoding of error-correcting codes,” LNCS
3238, 2002. Winning Thesis of the 2002 ACM Doctoral Disserta-
tion Competition.

[8] V. Guruswami, “List decoding of binary codes – A brief survey of
some recent results,” 2nd International Workshop on Coding and
Cryptography, pp.97–106, 2009.

[9] E. Kushilevitz and Y. Mansour, “Learning decision trees using the
fourier spectrum,” SIAM J. Comput., vol.22, no.6, pp.1331–1348,
1993.

[10] T. Kaufman and M. Sudan, “Sparse random linear codes are locally
decodable and testable,” FOCS ’07, pp.590–600, 2007.

[11] S. Kopparty and S. Saraf, “Local list-decoding and testing of ran-
dom linear codes from high error,” SIAM J. Comput., vol.42, no.3,
pp.1302–1326, 2013.

[12] O. Regev, “Improved inapproximability of lattice and coding prob-
lems with preprocessing,” IEEE Trans. Inf. Theory, vol.50, no.9,
pp.2031–2037, 2004.

[13] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” J. ACM, vol.56, no.6, article 34, pp.1–40, 2009.

[14] O. Regev, “The learning with errors problem,” Proc. 25th Annual
IEEE Conference on Computational Complexity, pp.191–204, 2010.

[15] M. Sudan, “List decoding: Algorithms and applications,” in Theo-
retical Computer Science: Exploring New Frontiers of Theoretical
Informatics, pp.25–41, Springer Berlin Heidelberg, 2000.

[16] S. Vadhan, “The unified theory of pseudorandomness,” SIGACT
News, vol.38, no.3, pp.39–54, 2007.

[17] J.M. Wozencraft, “List decoding,” Quarterly Progress Report,
vol.48, pp.90–95, 1958. Research Laboratory of Electronics, MIT.

Akinori Kawachi is an assistant profes-
sor of Department of Mathematical and Com-
puting Sciences, Tokyo Institute of Technology.
Received B.E., M.Info., and Ph.D. degrees from
Kyoto University in 2000, 2002, and 2004, re-
spectively. His research interests are compu-
tational complexity, quantum computing, and
foundations of cryptography.

Ikko Yamane is a master student of Depart-
ment of Computer Science, Tokyo Institute of
Technology. Received a B.E. degree from Tokyo
Institute of Technology in 2013. His research in-
terests are randomized algorithms and machine
learning.

