Construction of an ROBDD for a PB-Constraint in Band Form and Related Techniques for PB-Solvers

Masahiko SAKAI ${ }^{\dagger \dagger}{ }^{\dagger}$, Fellow and Hidetomo NABESHIMA ${ }^{\dagger \dagger}$, Member

Abstract

SUMMARY Pseudo-Boolean (PB) problems are Integer Linear Problem restricted to $0-1$ variables. This paper discusses on acceleration techniques of PB-solvers that employ SAT-solving of combined CNFs each of which is produced from each PB-constraint via a binary decision diagram (BDD). Specifically, we show (i) an efficient construction of a reduced ordered BDD (ROBDD) from a constraint in band form $l \leq\langle$ Linear term $\rangle \leq$ h, (ii) a CNF coding that produces two clauses for some nodes in an ROBDD obtained by (i), and (iii) an incremental SAT-solving of the binary/alternative search for minimizing values of a given goal function. We implemented the proposed constructions and report on experimental results. key words: reduced ordered BDD, Pesudo-Boolean constraint, optimization problem

1. Introduction

A Pseudo-Boolean (PB) problem is the problem which answers the satisfiability of a given instance, which is a conjunction of linear inequality constraints over Boolean variables. Typical approaches to solve PB-constraints employ Integer Linear Programming (restricted to 0-1 variables), DPLL procedures (regarding PB-constraints as generalized clauses [1]), as well as transformations of PB constraints to a CNF (via adders, sorting networks, and BDDs [2], [3]). Abío et al. have shown that a conversion to a reduced ordered BDD (ROBDD) from a given PB-constraint in forms of \langle Linear term $\rangle \leq k$, and that two-clause coding of a BDD by using monotonic property [4].

This paper extends the ROBDD result [4] for a PBconstraint in band form, i.e., $l \leq\langle$ Linear term〉 $\leq h$. An expected benefit to construct a single ROBDD is the reduction of total nodes. The band form is practical, since an equality constraint \langle Linear term〉 $=k$ is equivalent to $k \leq$ \langle Linear term $\rangle \leq k$. We show experimental results of a MiniSat+ based solver, in which we incorporated the proposed ROBDD construction, including the binary search and the alternative search for the optimization problem, which minimize the value of a given function.

[^0]
2. Preliminaries

An interval is a set of consecutive integers. An interval $[\beta, \gamma]$ $(\beta, \gamma \in \mathbb{Z} \cup\{-\infty, \infty\})$ represents the set $\{i \in \mathbb{Z} \mid \beta \leq i \leq \gamma\}$, where any integer i satisfies $-\infty \leq i$ and $i \leq \infty$. We use usual notations like $(-\infty, i]$. The summation $I+j$ of an interval I and an integer j is defined as $\{i+j \mid i \in I\}$.

A valuation σ is a function that assigns 0 or 1 to variables. An application of σ to a propositional formula f, and so on, is naturally extended. A valuation σ satisfies a formula f if $\sigma(f)=1$. A formula f is satisfiable if there exists a valuation that satisfies f; otherwise it is unsatisfiable. Two propositional formulae f and g, which may have different variables, are equivalent if $\sigma(f)=\sigma(g)$ for any valuation σ. They are equisatisfiable if f is satisfiable whenever g is, and vice versa.

For a set V of variables, we say σ^{\prime} is a V-extension of σ if $\sigma^{\prime}(x)=\sigma(x)$ for any $x \notin V$. We write $\sigma_{[x \mapsto b]}$ for a $\{x\}$-extension of σ such that $\sigma_{[x \mapsto b]}(x)=b$. We say a propositional formula f is monotonically increasing (resp. monotonically decreasing) with respect to a variable x if $\sigma_{[x \mapsto 0]}(f)$ implies $\sigma_{[x \mapsto 1]}(f)$ (resp. $\sigma_{[x \mapsto 1]}(f)$ implies $\left.\sigma_{[x \mapsto 0]}(f)\right)$ for any valuation $\sigma . f$ is monotonically increasing if it is so with respect to all variables. A propositional formula with variables x_{1}, \ldots, x_{n} is regarded as a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$.

A Binary Decision Diagram (BDD) is a rooted, directed and acyclic graph, which consists of decision nodes and terminal nodes N_{0} and N_{1}. Each node N represents a Boolean function, denoted by Fun (N). For terminal nodes, $\operatorname{Fun}\left(N_{0}\right)=0$ and $\operatorname{Fun}\left(N_{1}\right)=1$. A decision node has two children, and is labelled with a selector variable x, which is simply called a selector. We call the child connected with a solid (resp. dotted) edge true-child (resp.falsechild). A decision node N represents the Boolean function $\left(x \wedge \operatorname{Fun}\left(N_{t}\right)\right) \vee\left(\bar{x} \wedge \operatorname{Fun}\left(N_{f}\right)\right)$ determined by its true-child N_{t} and false-child N_{f}. A variable order is a total order on variables. This paper assumes that BDDs are ordered (OBDDs), i.e., there exists a variable order < such that for any path the sequence x_{1}, \ldots, x_{n} of selectors along the path satisfies $x_{1}<\cdots<x_{n}$. An ordered BDD is reduced (ROBDD) [5] if Boolean functions represented by the nodes are all different. ROBDDs are a canonical representation for Boolean functions under a given variable order.

A Pseudo-Boolean constraint (PB-constraint) is a linear inequality with integer coefficients, where variables have

Fig. $1 \quad$ ROBDD of $6 x+5 y+3 z \leq 7$.

Boolean domain $\{0,1\}$. A PB-constraint has a standard form $a_{n} \ell_{n}+\cdots+a_{1} \ell_{1} \leq k$, where the a_{i} 's and k are integers such that $a_{i}>0$ and each ℓ_{i} is a positive literal x_{i} or a negative literal $\overline{x_{i}}$. Note that a negative literal $\overline{x_{i}}$ is equal to $1-x_{i}$. A PB-constraint $a_{n} \ell_{n}+\cdots+a_{1} \ell_{1} \leq k$ can be seen as a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$, and has a BDD representation. Note that a standardized PB-constraint is unsatisfiable if $k<0$, and is valid if $a_{1}+\cdots+a_{n} \leq k$.

Example 1: An ROBDD for $6 x+5 y+3 z \leq 7$ with a variable order $x<y<z$ is shown in Fig. 1.

3. ROBDD Construction for Band Form

This section explores a construction of a single ROBDD from a PB-constraint of the form $k_{l} \leq a_{n} \ell_{n}+\cdots+a_{1} \ell_{1} \leq k_{h}$, which we call a band form, which is an extension of an efficient construction of ROBDDs for PB-constraints in standard form developed in the Ref. [4]. The following lemma suggests a construction of BDD nodes for a PB-constraint.

Lemma 2: Let C be a PB-constraint $k_{l} \leq a \ell+e \leq k_{h}$, where e stands for a linear expression. Let N_{t} (resp. N_{f}) be a node of a BDD such that $\operatorname{Fun}\left(N_{t}\right)\left(\right.$ resp. $\left.\operatorname{Fun}\left(N_{f}\right)\right)$ is equivalent to $k_{l}-a \leq e \leq k_{h}-a$ (resp. $k_{l} \leq e \leq k_{h}$). Then $\operatorname{Fun}(N)$ is equivalent to C, where N has a selector x,

1. N_{t} as true-child and N_{f} as false-child if $\ell=x$, and
2. N_{f} as true-child and N_{t} as false-child if $\ell=\bar{x}$.

Proof If $\ell=x$, from the definition of BDDs, $\operatorname{Fun}(N)$ is $\left(x \wedge\left(k_{l}-a \leq e \leq k_{h}-a\right)\right) \vee\left(\bar{x} \wedge\left(k_{l} \leq e \leq k_{h}\right)\right)$, which is equivalent to $k_{l} \leq a x+e \leq k_{h}$. The other case is similar.

The notion of intervals [4] for an efficient ROBDD construction is extended for PB-constraints in band form.

Definition 3: Let $k_{l} \leq e \leq k_{h}$ be a PB-constraint. We say that a pair $\langle L, H\rangle$ of intervals is consistent to e if L and H are maximal intervals (with respect to set inclusion) that satisfy the following condition $(*)$:

PB-constraints $l \leq e \leq h$ such that $l \in L$ and $h \in H$ are all equivalent (seen as Boolean functions).

We use $L \leq e \leq H$ to denote the expected Boolean function. Moreover, for $k_{l} \in L$ and $k_{h} \in H$, we say that a pair $\langle L, H\rangle$ of intervals is consistent to $k_{l} \leq e \leq k_{h}$.

For example, $\langle[1,1],[1,2]\rangle$ is the unique pair of intervals that is consistent to $1 \leq x+3 y \leq 2$.
Proposition 4: Let $k_{l} \leq e \leq k_{h}$ be a satisfiable PBconstraint. Then its consistent pair $\langle L, H\rangle$ of intervals is unique.

Proof Let $\langle L, H\rangle$ be a pair of intervals that is consistent to $k_{l} \leq e \leq k_{h}$. From the definition, $k_{l} \in L$ and $k_{h} \in H$ follow. Let

$$
\begin{aligned}
& I_{l}=\left\{\sigma(e) \mid \sigma(e)<k_{l}\right\} \cup\{-\infty\}, \\
& I=\left\{\sigma(e) \mid k_{l} \leq \sigma(e) \leq k_{h}\right\}, \\
& I_{h}=\left\{\sigma(e) \mid k_{h}<\sigma(e)\right\} \cup\{\infty\} .
\end{aligned}
$$

Since $k_{l} \leq e \leq k_{h}$ is satisfiable, I is not an empty set. From the definition of consistency, the interval $\langle L, H\rangle$ is uniquely determined as $\left\langle\left[\max \left(I_{l}\right)+1, \min (I)\right],\left[\max (I), \min \left(I_{h}\right)-1\right]\right\rangle$.

Remark that an unsatisfiable PB-constraint may have two consistent pairs of intervals. For example, $5 \leq x+$ $y \leq-5$ has two consistent pairs $\langle(-\infty, \infty),(-\infty,-1]\rangle$ and $\langle[3, \infty),(-\infty, \infty)\rangle$. Also consistent pairs of $5 \leq 0 \leq-5$ are $\langle(-\infty, \infty),(-\infty,-1]\rangle$ and $\langle[1, \infty),(-\infty, \infty)\rangle$.

In the rest of this section, we assume that a given PBconstraint is $C: k_{l} \leq a_{n} \ell_{n}+\cdots+a_{1} \ell_{1} \leq k_{h}$, and construct an ROBDD, which is equivalent to C, under a fixed variable order $x_{n}<x_{n-1}<\cdots<x_{1}$. We use e_{i} to denote the subexpression $a_{i} \ell_{i}+\cdots+a_{1} \ell_{1}$.

An important observation in the ROBDD construction is that the pair of intervals for a node is directly calculated from those of its children as shown in the following lemma.
Lemma 5: Let pairs $\left\langle L_{t}, H_{t}\right\rangle$ and $\left\langle L_{f}, H_{f}\right\rangle$ intervals be consistent to e_{i}. If both of intervals $L=\left(L_{t}+a_{i+1}\right) \cap L_{f}$ and $H=\left(H_{t}+a_{i+1}\right) \cap H_{f}$ are non-empty, $\langle L, H\rangle$ is consistent to e_{i+1}.

Proof Assume that $\left({ }^{*}\right)$ in Definition 3 does not hold for e_{i+1} and $\langle L, H\rangle$. Then, there exists $l, l^{\prime} \in L, h, h^{\prime} \in H$, and a valuation σ that satisfies $l \leq e_{i+1} \leq h$ but does not satisfy $l^{\prime} \leq e_{i+1} \leq h^{\prime}$. In the case that $\sigma\left(\ell_{i+1}\right)=0$, we have $\sigma\left(e_{i+1}\right)=\sigma\left(a_{i+1} \ell_{i+1}+e_{i}\right)=\sigma\left(e_{i}\right)$. Thus, σ satisfies $l \leq e_{i} \leq h$, but does not satisfy $l^{\prime} \leq e_{i} \leq h^{\prime}$. Since $l, l^{\prime} \in L_{f}$ and $h, h^{\prime} \in H_{f}$ from the construction of L and H, this is a contradiction to the consistency of $\left\langle L_{f}, H_{f}\right\rangle$ to e_{i}. In the case that $\sigma\left(\ell_{i+1}\right)=1$, we have $\sigma\left(e_{i+1}\right)=a_{i+1}+\sigma\left(e_{i}\right)$. Thus σ satisfies $l-a_{i+1} \leq e_{i} \leq h-a_{i+1}$, but does not satisfy $l^{\prime}-a_{i+1} \leq e_{i} \leq h^{\prime}-a_{i+1}$. Since $l-a_{i+1}, l^{\prime}-a_{i+1} \in L_{t}$ and $h-a_{i+1}, h^{\prime}-a_{i+1} \in H_{t}$, this is a contradiction to the consistency of $\left\langle L_{t}, H_{t}\right\rangle$ to e_{i}. Therefore $\langle L, H\rangle$ is consistent to e_{i+1}.

Next we show the maximality of $\langle L, H\rangle$. Since L and H are non-empty, it is enough to show that any extension causes inconsistency. Let $L=[\beta, \gamma]$ and $L^{\prime}=[\beta, \gamma+1]$ for $\gamma \neq \infty$. We show only that $\left\langle L^{\prime}, H\right\rangle$ is not consistent to e_{i+1} since the other cases are similar. Let $L_{t}=\left[\beta_{t}, \gamma_{t}\right]$ and $L_{f}=\left[\beta_{f}, \gamma_{f}\right]$. Since $L=\left(L_{t}+a_{i+1}\right) \cap L_{f}$, we have two cases

Fig. 2 ROBDD of $3 \leq 6 x+5 y+3 z \leq 7$.

$$
\begin{aligned}
& \text { Input: A PB-constraint } k_{l} \leq a_{n} \ell_{n}+\cdots+a_{1} \ell_{1} \leq k_{h} . \text { We assume the } \\
& \text { variable order } x_{n}<\cdots<x_{1} . \\
& \text { Initialization: } \\
& \qquad \begin{array}{r}
\quad D_{0}:=\begin{array}{r}
\left\langle 0,(-\infty, \infty),(-\infty,-1], N_{0}\right\rangle, \\
\\
\left\langle 0,[1, \infty),(-\infty, \infty), N_{0}\right\rangle,
\end{array} \\
\left.\qquad\left\langle 0,(-\infty, 0],[0, \infty), N_{1}\right\rangle\right\}, \\
\text { where } N_{0} \text { and } N_{1} \text { are the terminal nodes. } \\
\text { Output: The BDD } N \text { obtained by } \\
\qquad\langle L, H, N, D\rangle:=\text { CreateBDD }\left(n, k_{l}, k_{h}, D_{0}\right) . \\
\text { Function CreateBDD }(i, l, h, D)= \\
\text { Step a): Seek }\langle i, L, H, N\rangle \text { in } D \text { such that } l \in L \text { and } h \in H . \text { If suc- } \\
\text { ceeded, return }\langle L, H, N, D\rangle . \\
\text { Step b): Let } \\
\quad\left\langle L_{t}, H_{t}, N_{t}, D_{1}\right\rangle:=\text { CreateBDD }\left(i-1, l-a_{i}, h-a_{i}, D\right) \text { and } \\
\left\langle L_{f}, H_{f}, N_{f}, D_{2}\right\rangle:=\text { CreateBDD }\left(i-1, l, h, D_{1}\right) . \\
\text { If } N_{t}=N_{f} \text { then set } N:=N_{t}, \text { otherwise: } \\
\text { Create a node } N \text { with } x_{i} \text { as a label with } N_{t} \text { as true-child, and } \\
N_{f} \text { as false-child. Swap children if } l_{i} \text { is negative literal } \overline{x_{i} .} \\
\text { Return }\left\langle L, H, N, D_{3}\right\rangle, \text { where } L=\left(L_{t}+a_{i}\right) \cap L_{f}, H=\left(H_{t}+a_{i}\right) \cap \\
H_{f}, \text { and } D_{3}=D_{2} \cup\{\langle i, L, H, N\rangle\} .
\end{array}
\end{aligned}
$$

Fig. 3 Algorithm for the first stage.
that $\gamma=\gamma_{f}$ and $\gamma=\gamma_{t}+a_{i+1}$.
Consider the former case. Since $\left\langle L_{f}, H_{f}\right\rangle$ is consistent to e_{i}, there exist $l \in L_{f}, h, h^{\prime} \in H_{f}$, and a valuation σ that satisfies either $l \leq e_{i} \leq h$ or $\gamma_{f}+1 \leq e_{i} \leq h^{\prime}$, exclusively. Let σ^{\prime} satisfies $\sigma^{\prime}\left(\ell_{i+1}\right)=0$ and $\sigma^{\prime}(x)=\sigma(x)$ for any x $\left(\neq x_{i+1}\right)$. Then σ satisfies $l \leq e_{i} \leq h$ if and only if σ^{\prime} satisfies $l \leq e_{i+1} \leq h$, and also σ satisfies $\gamma_{f}+1 \leq e_{i} \leq h^{\prime}$ if and only if σ^{\prime} satisfies $\gamma_{f}+1 \leq e_{i+1} \leq h^{\prime}$. Since $l, \gamma_{f}+1 \in L^{\prime}$ and $h, h^{\prime} \in H$, the pair $\left\langle L^{\prime}, H\right\rangle$ is not consistent to e_{i+1}. The latter case is similar.

Thanks to Lemma 5, consistent intervals $\langle L, H\rangle$ for a node of a BDD for a PB-constraint can be immediately calculated from its children.

Example 6: An ROBDD for $3 \leq 6 x+5 y+3 z \leq 7$ with an order $x<y<z$ is shown in Fig. 2.

The algorithm for the ROBDD construction shown in Fig. 3 works in depth first way with memorizing the interval
information, which is a natural extension of the algorithm proposed in Sect. 5 of the Ref. [4] for constraints in standard form. The essential difference from [4] is on memorizing a pair of intervals instead of an interval for each BDD node.

We use a set D each of whose elements is a tuple of a natural number i, intervals L and H, and a node N of BDD in constructing, where i is used to identify the selector variables x_{i}.
Definition 7: We say D is consistent, if $D_{0} \subseteq D$ and for every $\langle i, L, H, N\rangle \in D$
(i) $\langle L, H\rangle$ is consistent to e_{i}, and
(ii) $\operatorname{Fun}(N)$ is equivalent to $L \leq e_{i} \leq H$.

Lemma 8: D_{0} is consistent.
Proof Consider the element $\left\langle 0,(-\infty, \infty),(-\infty,-1], N_{0}\right\rangle$. Since $e_{0}=0, l \leq e_{0} \leq h$ is not satisfied for any $l \in(-\infty, \infty)$ and $h \in(-\infty,-1]$, which is equivalent to $\operatorname{Fun}\left(N_{0}\right)=0$. The maximality is trivial. The other elements are similarly shown.

The function CreateBDD eventually goes into Step a) if $i=0$, because the intervals in D_{0} cover all pairs of integers. Thus the termination of the algorithm is easily derived.
Lemma 9: Let $\left\langle L, H, N, D^{\prime}\right\rangle:=$ CreateBDD (i, l, h, D) for a consistent D and $0 \leq i \leq n$,
(1) $l \in L, h \in H,\langle i, L, H, N\rangle \in D^{\prime}$, and
(2) D^{\prime} is consistent,

Proof By induction on i. In the case that $i=0$, Step a) succeeds to find $\langle 0, L, H, N\rangle$ in $D_{0} \subseteq D$. Thus (1) and (2) follow directly from the consistency of D.

Consider the case that $i>0$. If $\langle i, L, H, N\rangle$ such that $l \in$ L and $h \in H$ is found in D at the Step a), then $D=D^{\prime}$. Thus (1) is trivial and (2) follows directly from the consistency of D. Otherwise $\left\langle L_{t}, H_{t}, N_{t}, D_{1}\right\rangle:=$ CreateBDD $\left(i-1, l-a_{i}, h-\right.$ $\left.a_{i}, D\right)$ and $\left\langle L_{f}, H_{f}, N_{f}, D_{2}\right\rangle:=\operatorname{CreateBDD}\left(i-1, l, h, D_{1}\right)$ are invoked in the algorithm. Here D_{1} and D_{2} are consistent by induction hypothesis (2), and $l-a_{i} \in L_{t}, h-a_{i} \in H_{t},\langle i-$ $\left.1, L_{t}, H_{t}, N_{t}\right\rangle \in D_{1}, l \in L_{f}, h \in H_{f}$, and $\left\langle i-1, L_{f}, H_{f}, N_{f}\right\rangle \in$ D_{2} by induction hypothesis (1). Since $L=\left(L_{t}+a_{i}\right) \cap L_{f}$, we obtain $l \in L$ and hence of L is not empty. Similarly $h \in H$ and H is non-empty.

We show (i) and (ii) in Definition 7 for $\langle i, L, H, N\rangle$. By Lemma 5, (i) follows. Since $l-a_{i} \leq e_{i-1} \leq h-a_{i}$ (resp. $\left.l \leq e_{i-1} \leq h\right)$ is equivalent to $\operatorname{Fun}\left(N_{t}\right)\left(\right.$ resp. $\left.\operatorname{Fun}\left(N_{f}\right)\right)$ from the consistency of D_{1} (resp. D_{2}). From the construction of N and Lemma 2, we obtain $\operatorname{Fun}(N)$ is equivalent to $l \leq a_{i} \ell_{i}+$ $e_{i-1} \leq h$. Combining this with $l \in L$ and $h \in H$, we obtain (ii). Moreover, if $N_{t}=N_{f}$ then $\operatorname{Fun}\left(N_{t}\right), \operatorname{Fun}\left(N_{f}\right)$, and $l \leq$ $a_{i} \ell_{i}+e_{i, n} \leq h$ are equivalent.

Lemma 10: The algorithm computes an ROBDD, whose root represents the given PB -constraint $k_{l} \leq e_{n} \leq k_{h}$.

Proof Let $\left\langle L, H, N, D^{\prime}\right\rangle:=\operatorname{CreateBDD}\left(n, k_{l}, k_{h}, D_{0}\right)$. Since
D_{0} is consistent from Lemma 8, we obtain $k_{l} \in L$ and $k_{h} \in H$ where $\langle n, L, H, N\rangle$ is in the consistent D^{\prime}. Therefore, $\operatorname{Fun}(N)$ is equivalent to $k_{l} \leq e_{n} \leq k_{h}$.

All nodes in a resulted ordered BDD appears as different elements in the consistent database D^{\prime} from the following reasons. Nodes N and N^{\prime} with the same selector variable x_{i} represent different functions from Proposition 4. Moreover, if $N_{t}=N_{f}$ the algorithm do not create a new node. Thus it is reduced.

This algorithm runs in $O(n m \log (m))$ where m is the size of the ROBDD, which is shown in the same way as [4]; the cost of search and insertion on D is $O(\log m)$, and the number of calls of CreateBDD is bounded by $O(\mathrm{~nm})$. Note that n is necessary because Step b) does not always create a BDD node.

4. Monotonic CNF-Coding of BDD

In this section, we present a simple way to detect nodes that represent monotonic functions in an ROBDD produced from PB-constraint in band form.

Definition 11: Given a BDD rooted by R, we define a $C N F$-coding, denoted by $\operatorname{Cnf}(R)$, as the conjunction of the following formulae, provided a fresh variable p_{N} for each node N.
(1) " 1 " for a terminal node N_{1},
(2) " $\overline{p_{N_{0}}}$ " for a terminal node N_{0}, and
(3) " $p_{N} \Longrightarrow$ if x then $p_{N_{t}}$ else $p_{N_{f}}$ " for a decision node N labelled with x, where $N_{t}\left(\right.$ resp. $\left.N_{f}\right)$ is the truechild N_{t} (resp. false-child N_{f}) of N.
Note that if-then-else has the meaning as expected. We refer the set of newly introduced variables for the coding of a BDD rooted by R by $\operatorname{PVar}(R)$.

For coding (3) as clauses, three-clause coding is used in MiniSAT+ [2], which produces
(Three) $\quad x \vee p_{N_{f}} \vee \overline{p_{N}}, \quad \bar{x} \vee p_{N_{t}} \vee \overline{p_{N}}, \quad p_{N_{f}} \vee p_{N_{t}} \vee \overline{p_{N}}$.
In the Ref. [4], it is proposed two-clause coding, which is more efficient than three-clause one but only applicable to BDDs that represent monotonic functions. Note that PBconstraints in standard form are monotonically decreasing, but not for those in band form. We show that two-clause coding is possible for some nodes of ROBDDs created from PB-constraints in band form.

A node N is monotonically increasing (resp. decreasing) if $\operatorname{Fun}(N)$ is monotonically increasing (resp. decreasing) with respect to its selector variable. Such nodes in an ROBDD constructed in Sect. 3 are easily found from the following proposition.

Proposition 12: Let N be a node with selector variable x_{i} such that $\operatorname{Fun}(N)$ is equivalent to $L \leq a_{i} \ell_{i}+\cdots+a_{1} \ell_{1} \leq H$ and

- $a_{i}+\cdots+a_{1} \in H$ and $\ell_{i}=x_{i}\left(\right.$ resp. $\left.\ell_{i}=\overline{x_{i}}\right)$, or
- $-1 \in L$ and $\ell_{i}=\overline{x_{i}}$ (resp. and $\ell_{i}=x_{i}$),
then N is monotonically increasing (resp. decreasing).
Proof We consider only the case that $a_{i}+\cdots+a_{1} \in H$ and $\ell_{i}=x_{i}$. The formula is equivalent to $l \leq e_{i}$ for any $l \in L$, where e_{i} denotes $a_{i} \ell_{i}+\cdots+a_{1} \ell_{1}$. Suppose $\sigma_{\left[x_{i} \mapsto 0\right]}$ satisfies $l \leq e_{i}$ for the selector variable x_{i}. Since $a_{i}>0, \sigma_{\left[x_{i} \mapsto 1\right]}$ satisfies $l \leq e_{i}$. The other cases are shown similarly.

We encode the formula in (3) as follows.
(Dec) For monotonically decreasing nodes N,

$$
\bar{x} \vee p_{N_{t}} \vee \overline{p_{N}}, \quad p_{N_{f}} \vee \overline{p_{N}}
$$

(Inc) For monotonically increasing nodes N,

$$
x \vee p_{N_{f}} \vee \overline{p_{N}}, p_{N_{t}} \vee \overline{p_{N}} .
$$

(Three) For the other nodes N, three-clause coding (Three).

In the rest of the section, we show the correctness of this partial two-clause coding.

Lemma 13: $\operatorname{Fun}(N)$ is satisfied by a valuation σ that satisfies $p_{N} \wedge \operatorname{Cnf}(N)$

Proof By induction on the structure of the BDD.
If N is a terminal node N_{1}, it is trivial because $\operatorname{Fun}\left(N_{1}\right)=1$. If N is a terminal node N_{0}, we have no valuation σ that satisfies $p_{N_{0}} \wedge \overline{p_{N_{0}}}$. Otherwise, N is a decision node with a selector variable x, true-child N_{t}, and false-child N_{f}. From the assumption, σ satisfies p_{N}.

- Consider the case that N is encoded by (Three). If $\sigma(x)=1, \sigma\left(p_{N_{t}}\right)$ must be 1 from the second clause. Considering the sub-BDD rooted $N_{t}, \operatorname{Cnf}\left(N_{t}\right)$ is included in $\operatorname{Cnf}(N)$. Combining these, σ satisfies Fun $\left(N_{t}\right)$ by induction hypothesis. From the definition of Fun, σ satisfies Fun (N).
If $\sigma(x)=0, \sigma\left(p_{N_{f}}\right)$ must be 1 from the first clause. Considering the sub-BDD rooted $N_{f}, \operatorname{Cnf}\left(N_{f}\right)$ is included in $\operatorname{Cnf}(N)$. Combining these, σ satisfies Fun $\left(N_{f}\right)$ by induction hypothesis. From the definition of Fun, σ satisfies Fun (N).
- Consider the case that N is encoded by (Dec). If $\sigma(x)=1, \sigma\left(p_{N_{t}}\right)$ must be 1 from the first clause. Considering the sub-BDD rooted $N_{t}, \operatorname{Cnf}\left(N_{t}\right)$ is included in $\operatorname{Cnf}(N)$. Combining these, σ satisfies Fun $\left(N_{t}\right)$ by induction hypothesis. From the definition of Fun, σ satisfies $\operatorname{Fun}(N)$.
If $\sigma(x)=0, \sigma\left(p_{N_{f}}\right)$ must be 1 from the second clause. Considering the sub-BDD rooted $N_{f}, \operatorname{Cnf}\left(N_{f}\right)$ is included in $\operatorname{Cnf}(N)$. Combining these, σ satisfies Fun $\left(N_{f}\right)$ by induction hypothesis. From the definition of Fun, σ satisfies $\operatorname{Fun}(N)$.
- The case encoded by (Inc) is similar to (Dec).

For proving the reverse, we introduce a notion of active nodes to construct an extended valuation.

Definition 14: For a given valuation σ and a BDD rooted by R, the set A_{σ} of active nodes is defined as a minimal set satisfying the following conditions:

- $R \in A_{\sigma}$.
- $N_{t} \in A_{\sigma}$ for the true-child N_{t} of an $N \in A_{\sigma}$, if $\sigma(x)=1$ or N is monotonically increasing where x is the selector variable of N.
- $N_{f} \in A_{\sigma}$ for the false-child N_{f} of an $N \in A_{\sigma}$, if $\sigma(x)=0$ or N is monotonically decreasing where x is the selector variable of N.

If σ satisfies Fun (R) for a BDD rooted by R, terminal node N_{0} are not active from the following lemma.

Lemma 15: For a BDD rooted by R, σ satisfies $\operatorname{Fun}(N)$ for any active nodes N if σ satisfies $\operatorname{Fun}(R)$.

Proof By induction on the definition of the active nodes. In the case that $N=R \in A_{\sigma}$, it is trivial.

Consider the case that $N_{t} \in A_{\sigma}, \sigma(x)=1$, and the selector variable of N is x. From the definition of $\operatorname{Fun}(N), \sigma$ satisfies Fun $\left(N_{t}\right)$.

Consider the case that $N_{t} \in A_{\sigma}$, which is the true-child of a monotonically increasing node $N \in A_{\sigma}$ with selector variable x. We can assume $\sigma(x)=0$, otherwise it is subsumed by the previous case. From the definition of $\operatorname{Fun}(N)$, σ satisfies Fun $\left(N_{f}\right)$. Since N is monotonically increasing, $\sigma_{[x \mapsto 1]}$ also satisfies Fun (N). Thus $\sigma_{[x \mapsto 1]}$ satisfies Fun $\left(N_{t}\right)$. Since Fun $\left(N_{t}\right)$ does not contain x, σ satisfies Fun $\left(N_{t}\right)$.

We can prove for the last case similarly.
Lemma 16: For a BDD rooted by R, let σ be a valuation that satisfies $\operatorname{Fun}(R)$. Let σ^{\prime} be a $\operatorname{PVar}(R)$-extension of σ such that $\sigma^{\prime}\left(p_{N}\right)=1$ for active nodes N, and $\sigma^{\prime}\left(p_{N}\right)=0$ for the other nodes N. Then σ^{\prime} satisfies $p_{R} \wedge \operatorname{Cnf}(R)$.

Proof Since R is active, $\sigma^{\prime}\left(p_{R}\right)=1$.
If N is a terminal node N_{1}, then the clause is 1 . If N is a terminal node N_{0}, then the clause is $\overline{p_{N_{0}}}$. Since N_{0} is not active by Lemma 15, $\sigma^{\prime}\left(p_{N_{0}}\right)=0$.

If N is a decision node with a selector variable x, a true-child N_{t}, and a false-child N_{f}.

- Consider the case that N is active and encoded by (Three). In the case that $\sigma(x)=1, N_{t}$ is also active. Thus, $\sigma^{\prime}\left(p_{N_{t}}\right)=1$. In the case that $\sigma(x)=0, N_{f}$ is also active. Thus $\sigma^{\prime}\left(p_{N_{f}}\right)=1$.
- Consider the case that N is active and encoded by (Dec). Since N_{f} is active, $\sigma^{\prime}\left(p_{N_{f}}\right)=1$. If $\sigma(x)=1, N_{t}$ is also active and hence $\sigma^{\prime}\left(p_{N_{t}}\right)=1$. In either of the cases, σ^{\prime} satisfies the clauses (Dec).
- The case that N is active and encoded by (Inc) is similar to (Dec).
- If N is not active, then $\sigma^{\prime}\left(p_{N}\right)=0$. Thus, σ^{\prime} satisfies all the clauses (Three), (Dec) and (Inc).

From Lemmas 13 and 16, the following theorem is shown.

Theorem 17: For a BDD rooted by $R, p_{R} \wedge \operatorname{Cnf}(R)$ and $\operatorname{Fun}(R)$ is equisatisfiable.

5. Binary/Alternative Searches for Optimization

The PB-optimization answers the minimal value of a given goal expression among valuations that satisfy the PBconstraints, where goal expressions are in forms of $b_{1} \ell_{1}+$ $\cdots+b_{n} \ell_{n}$ for integers b_{1}, \ldots, b_{n}.

Most of PB-solvers such as sat 4 j and MiniSat+ employ the sequential search, in which the satisfiability is firstly checked without considering the goal expression g. Once a satisfiable valuation is obtained, the best known goal value k is calculated. By augmenting clauses that represents $g<k$, invoke SAT-solver. Repeating this until resulting unsatifiable, the best goal value is fixed as the last k. This can be implemented without restarting SAT-solvers, because recent solvers allow incremental solving; adding clauses incrementally, and continuing solving.

This sequential search is not so bad, because in most cases an improvement of the known goal value is more than one. However, a lot of SAT-solver executions are sometimes necessary. Thus it is natural to consider binary search strategies.

This section describes on binary search strategies for a goal minimization. Avoiding a SAT-solver restart, we use a SAT-solver function that solves under tentatively assuming the given literal instead of adding it. Let k be the best known goal value, and l be the greatest known lower bound, which is initially the sum of negative coefficients b_{i} 's. By introducing a fresh variable p, we add a constraint for $p \Longrightarrow g<\lfloor(k-l) / 2\rfloor$, and solve them under assumption that $p=1$. If it is satisfiable, the known best value is renewed from the obtained valuation and proceeds. Otherwise the greatest known lower bound is renewed to $\lfloor(k-l) / 2\rfloor$ and proceeds.

Binary search strategies sometimes take unnecessary executions. For example, we suppose a goal $g=1000 x+$ $4000 y$ and its best goal value is 1000 . By the sequential search, after we got 1000 it is enough one more SAT-solver execution with $g<1000$. By the above binary search strategy, however, considerable times of SAT-solving are necessary with $g<500, g<750$, and so on. For this, a preprocess of goal expressions is effective; dividing coefficients by their greatest common divisor (GCD). The example is transformed to $x+4 y$.

The simplification by GCD takes no effect for the goal $g^{\prime}=x+1000 y$ if the best goal value is 1000 . For this, we propose an alternating strategy that adopts the sequential (resp. binary) search after UNSAT (resp. SAT) answer obtained. Suppose the best known goal value is 1000 for the goal, two-time executions with $g^{\prime}<500$ (due to binary one) and $g^{\prime}<1000$ (due to sequential one) are enough.

6. Evaluation

We implemented our findings into our tool, named GPW,

Table 1 PB-competition instances.

coding/form/search	DEC-SML		OPT-BIG		OPT-SML		total	constraints		BDD nodes		$\frac{\text { Sat }}{\text { calls }}$	UnSat calls
	Sat	UnSat	Opt	UnSat	Opt	UnSat		std	band	2 cl	3 cl		
2cl/band/seq	170	213	48	58	348	33	870	379K	5.0K	193M	5M	8.2 K	0.5K
2cl/band/bin			70	58	346	33	890	394K	5.0K	282M	3M	2.0 K	3.0K
2cl/band/alt			72	58	348	33	894	395K	5.0K	395M	3M	2.7 K	1.9 K
2cl/std/seq	170	213	48	58	346	33	868	389K	0	203M	0	8.0K	0.5K
2cl/std/bin			75	59	346	33	896	422K	0	348M	0	2.0 K	3.0K
2cl/std/alt			76	58	346	33	896	416K	0	387M	0	2.7 K	1.9 K
3cl/band/seq	172	211	57	58	345	33	876	386K	5.0K	0	210M	10.8 K	0.5K
3cl/band/bin			58	58	333	33	865	378K	5.0K	0	149M	1.7 K	2.7 K
3cl/band/alt			59	58	336	33	869	376K	5.0 K	0	154M	2.4 K	1.7 K
$3 \mathrm{cl} / \mathrm{std} / \mathrm{seq}$	171	210	56	58	341	32	868	380K	0	0	209M	10.6K	0.5K
$3 \mathrm{cl} / \mathrm{std} / \mathrm{bin}$			59	58	332	32	862	373K	0	0	154M	1.7 K	2.7 K
3cl/std/alt			59	58	335	32	865	367K	0	0	159M	2.4 K	1.8 K
MiniSat+ mode	172	210	53	59	335	33	862	372K	5.5 K	0	219M	10.4 K	0.5K

which is constructed based on Minisat+ [2] version 1.0. The major extensions are summarized as follows:

- Minisat+ has a function to generate clauses via BDDs constructed from each PB-constraint in band form. Thus we implemented the construction of ROBDDs.
- Minisat+ employs the three-clause coding. Thus we implemented two-clause coding for nodes having monotonic property.
- Minisat+ has the incremental SAT-solving for the sequential search in the goal minimization. We implemented the incremental SAT-solving for the binary search and the alternative search.

We performed experiments on a machine equipped with dual Xeon W5590 (3.33GHz, 4core 8thread, L2cache $4 * 256 \mathrm{~KB}$, and L3cache 8 MB) processors and 48GB memory. MiniSat version 1.13 is used as an underlying SAT-solver, which is included in Minisat+, as an underlying solver. The benchmarks are 1683 instances in total; 452, 532, and 699 instances used in DEC-SMALLINT-LIN, OPT-BIGINT-LIN, and OPT-SMALLINT-LIN divisions of Pseudo-Boolean Competition 2010, respectively. The GPW detects at least one band form in 26, 417, and 100 instances for the respective divisions.

Table 1 shows the number of instances that different methods could solve within 1000 seconds timeout. The rows correspond to coding methods in GPW where $2 \mathrm{cl} / 3 \mathrm{cl}$ present two-clause/three-clause coding, std/band present BDD construction from standard-form/band-form, seq/bin/alt present sequential/binary/alternative strategies, and MiniSat+ mode adopts three clause, band form, sequential strategy, and (non-RO) BDD construction. The first seven columns correspond to the divisions and total numbers, where Sat/UnSat/Opt present solved instances with satisfiable/unsatisfiable/optimized results. The rest of columns correspond to the total numbers of constraints processed as standard/band form, BDD nodes (coded by 2clause, and by 3-clause), and Sat/UnSat solver calls for solved instances.

Figure 4 shows cactus plots of the results, which indicate the number of solved instances within the time. In the figures, lines located in lower and more right side show bet-

Fig. 4 Cactus plots for PB-competition instances.
ter results. Note that the "best" solver is a virtual one which runs all solvers by the different methods in parallel and takes the best result.

Generally, processing in standard form with the twoclause coding and with the binary or alternative search cores the best. Let's see more detailed analysis.

The binary search results better than the sequential search, and the alternative search seems the best. This is reasoned from the following facts:

- The sequential search requires more solver-calls than others,
- UNSAT-calls are generally much heavier than SATcalls, and
- once obtained the minimal goal value, the sequential (resp. binary, alternative) search requires one (resp. many, two) UNSAT-calls.

It is easily shown that the number of solver-calls with the alternative search is not more than double of those with the binary search.

The effect of the band form varies according to coding/search methods and divisions of the instances. Generally, the band form has advantages of smaller memory use and shorter BDD-construction time than the standard form. The band form has an advantage of the number of solved instances in the following cases:

- Instances are processed by the three-clause coding,
- Instances are solved by the sequential search strategy.
- Instances in OPT-SMALL-LIN division are processed.

The band form has a disadvantage for instances in OPT-BIG-LIN division processed by the two-clause coding.

From the other views, ROBDD construction takes effect, because processing $3 \mathrm{cl} / \mathrm{band} /$ seq with ROBDD scores better than MiniSat+ mode ($3 \mathrm{cl} / \mathrm{band} / \mathrm{seq}$ with nonROBDD). Two-clause coding method takes effect together with standard form, but also with band form, if it is combined with the alternative or binary strategy.

7. Concluding Remarks

This paper proposed the following methods:

- an efficient ROBDD construction algorithm for PBconstraints in band form by modifying the algorithm in the Ref. [4] designed for standard form,
- a partial two-clause coding of BDD, which produces two clauses for a monotonic node and three clauses for a non-monotonic node, and
- a binary search and an alternative search for goal minimization, which allow inremental SAT-solving.
It appears that the best combination of methods is the alternative (or binary search) strategy and the ROBDD construction from the standard form with the two-clause coding. The construction from the band form is effective under the threeclause coding, or the sequential strategy.

We can choose the band or standard form in ROBDD construction for each constraint in an instance. Thus it is interesting to find good choice strategies.

Acknowledgments

We thank Harald Zankl for discussing on band form. Partially supported by the Austrian Science Fund (FWF) project I963 and the Japan Society for the Promotion of Science.

References

[1] C. Herde, "Extending DPLL for Pseudo-Boolean constraints," in Efficient Solving of Large Arithmetic Constraint Systems with Complex Boolean Structure, pp.37-58, Vieweg+Teubner, 2011.
[2] N. Eén and N. Sörensson, "Translating Pseudo-Boolean constraints into SAT," J. Satisfiability, Boolean Modeling and Computation (JSAT), vol.2, no.1-4, pp.1-26, 2006.
[3] O. Bailleux, Y. Boufkhad, and O. Roussel, "A translation of Pseudo Boolean constraints to SAT," J. satisfiability, Boolean modeling and computation (JSAT), vol.2, no.1-4, pp.191-200, 2006.
[4] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and V. Mayer-Eichberger, "A new look at BDDs for Pseudo-Boolean constraints," J. Artificial Intelligence Research (JAIR), vol.45, pp.443480, 2012.
[5] R.E. Bryant, "Graph-based algorithms for boolean function manipulation," IEEE Trans. Comput., vol.35, no.8, pp.677-691, Aug. 1986.

Masahiko Sakai completed graduate course of Nagoya University in 1989 and became Assistant Professor, where he obtained a D.E. degree in 1992. From April 1993 to March 1997, he was Associate Professor in JAIST. In 1996 he stayed at SUNY at Stony Brook for six months as Visiting Research Professor. From April 1997, he was Associate Professor in Nagoya University. Since December 2002, he has been Professor. He is interested in term rewriting system, verification of specification, software generation and constraint solvers. He received the Best Paper Awards from IEICE in 1992 and 2011. He is a member of JSSST and IPSJ.

Hidetomo Nabeshima recieved a D.E. degree from Kobe University in 2001. From 2001 to 2008, he was Assistant Professor in University of Yamanashi. Since 2009, he has been Associate Professor. He is interested in propositional satisfiability testing (SAT) and automated reasoning in first order logic. He received the Takahashi Award for the Best Presentation and Paper and the Best Software Paper Awards from JSSST in 2011 and 2014, respectively. His SAT solver won the first and second prizes for UNSAT track of application category at SAT competition 2011 and 2013, respectively. He is a member of JSSST and JSAI.

[^0]: Manuscript received August 27, 2014.
 Manuscript revised December 19, 2014.
 Manuscript publicized February 13, 2015.
 ${ }^{\dagger}$ The author is with the Graduate School of Information Science, Nagoya University, Nagoya-shi, 464-8603 Japan.
 ${ }^{\dagger}$ The author is with the Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi, 400-0016 Japan.
 a) E-mail: sakai@is.nagoya-u.ac.jp

 DOI: 10.1587/transinf.2014FOP0007

