
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015
1121

PAPER Special Section on Formal Approach

Construction of an ROBDD for a PB-Constraint in Band Form and
Related Techniques for PB-Solvers

Masahiko SAKAI†a), Fellow and Hidetomo NABESHIMA††, Member

SUMMARY Pseudo-Boolean (PB) problems are Integer Linear Prob-
lem restricted to 0-1 variables. This paper discusses on acceleration tech-
niques of PB-solvers that employ SAT-solving of combined CNFs each of
which is produced from each PB-constraint via a binary decision diagram
(BDD). Specifically, we show (i) an efficient construction of a reduced or-
dered BDD (ROBDD) from a constraint in band form l ≤ 〈Linear term〉 ≤
h, (ii) a CNF coding that produces two clauses for some nodes in an
ROBDD obtained by (i), and (iii) an incremental SAT-solving of the bi-
nary/alternative search for minimizing values of a given goal function. We
implemented the proposed constructions and report on experimental re-
sults.
key words: reduced ordered BDD, Pesudo-Boolean constraint, optimiza-
tion problem

1. Introduction

A Pseudo-Boolean (PB) problem is the problem which an-
swers the satisfiability of a given instance, which is a con-
junction of linear inequality constraints over Boolean vari-
ables. Typical approaches to solve PB-constraints employ
Integer Linear Programming (restricted to 0-1 variables),
DPLL procedures (regarding PB-constraints as generalized
clauses [1]), as well as transformations of PB constraints to
a CNF (via adders, sorting networks, and BDDs [2], [3]).
Abı́o et al. have shown that a conversion to a reduced or-
dered BDD (ROBDD) from a given PB-constraint in forms
of 〈Linear term〉 ≤ k, and that two-clause coding of a BDD
by using monotonic property [4].

This paper extends the ROBDD result [4] for a PB-
constraint in band form, i.e., l ≤ 〈Linear term〉 ≤ h. An
expected benefit to construct a single ROBDD is the reduc-
tion of total nodes. The band form is practical, since an
equality constraint 〈Linear term〉 = k is equivalent to k ≤
〈Linear term〉 ≤ k. We show experimental results of a Min-
iSat+ based solver, in which we incorporated the proposed
ROBDD construction, including the binary search and the
alternative search for the optimization problem, which min-
imize the value of a given function.

Manuscript received August 27, 2014.
Manuscript revised December 19, 2014.
Manuscript publicized February 13, 2015.
†The author is with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8603 Japan.
††The author is with the Interdisciplinary Graduate School of

Medicine and Engineering, University of Yamanashi, Kofu-shi,
400–0016 Japan.

a) E-mail: sakai@is.nagoya-u.ac.jp
DOI: 10.1587/transinf.2014FOP0007

2. Preliminaries

An interval is a set of consecutive integers. An interval [β, γ]
(β, γ ∈ Z ∪ {−∞,∞}) represents the set {i ∈ Z | β ≤ i ≤ γ},
where any integer i satisfies −∞ ≤ i and i ≤ ∞. We use usual
notations like (−∞, i]. The summation I + j of an interval I
and an integer j is defined as {i + j | i ∈ I}.

A valuation σ is a function that assigns 0 or 1 to vari-
ables. An application of σ to a propositional formula f , and
so on, is naturally extended. A valuation σ satisfies a for-
mula f if σ(f) = 1. A formula f is satisfiable if there exists
a valuation that satisfies f ; otherwise it is unsatisfiable. Two
propositional formulae f and g, which may have different
variables, are equivalent if σ(f) = σ(g) for any valuation σ.
They are equisatisfiable if f is satisfiable whenever g is, and
vice versa.

For a set V of variables, we say σ′ is a V-extension
of σ if σ′(x) = σ(x) for any x � V . We write σ[x 	→b]

for a {x}-extension of σ such that σ[x 	→b](x) = b. We
say a propositional formula f is monotonically increasing
(resp. monotonically decreasing) with respect to a variable
x if σ[x 	→0](f) implies σ[x 	→1](f) (resp. σ[x 	→1](f) implies
σ[x 	→0](f)) for any valuation σ. f is monotonically increas-
ing if it is so with respect to all variables. A propositional
formula with variables x1, . . . , xn is regarded as a Boolean
function f (x1, . . . , xn).

A Binary Decision Diagram (BDD) is a rooted, di-
rected and acyclic graph, which consists of decision nodes
and terminal nodes N0 and N1. Each node N represents a
Boolean function, denoted by Fun(N). For terminal nodes,
Fun(N0) = 0 and Fun(N1) = 1. A decision node has
two children, and is labelled with a selector variable x,
which is simply called a selector. We call the child con-
nected with a solid (resp. dotted) edge true-child (resp. false-
child). A decision node N represents the Boolean function
(x∧Fun(Nt))∨ (x∧Fun(Nf)) determined by its true-child Nt

and false-child Nf . A variable order is a total order on vari-
ables. This paper assumes that BDDs are ordered (OBDDs),
i.e., there exists a variable order < such that for any path
the sequence x1, . . . , xn of selectors along the path satisfies
x1 < · · · < xn. An ordered BDD is reduced (ROBDD) [5]
if Boolean functions represented by the nodes are all differ-
ent. ROBDDs are a canonical representation for Boolean
functions under a given variable order.

A Pseudo-Boolean constraint (PB-constraint) is a lin-
ear inequality with integer coefficients, where variables have

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

1122
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

Fig. 1 ROBDD of 6x + 5y + 3z ≤ 7.

Boolean domain {0, 1}. A PB-constraint has a standard form
an�n + · · · + a1�1 ≤ k, where the ai’s and k are integers such
that ai > 0 and each �i is a positive literal xi or a negative
literal xi. Note that a negative literal xi is equal to 1 − xi. A
PB-constraint an�n + · · ·+a1�1 ≤ k can be seen as a Boolean
function f (x1, . . . , xn), and has a BDD representation. Note
that a standardized PB-constraint is unsatisfiable if k < 0,
and is valid if a1 + · · · + an ≤ k.

Example 1: An ROBDD for 6x+5y+3z ≤ 7 with a variable
order x < y < z is shown in Fig. 1.

3. ROBDD Construction for Band Form

This section explores a construction of a single ROBDD
from a PB-constraint of the form kl ≤ an�n + · · ·+ a1�1 ≤ kh,
which we call a band form, which is an extension of an ef-
ficient construction of ROBDDs for PB-constraints in stan-
dard form developed in the Ref. [4]. The following lemma
suggests a construction of BDD nodes for a PB-constraint.

Lemma 2: Let C be a PB-constraint kl ≤ a�+e ≤ kh, where
e stands for a linear expression. Let Nt (resp. Nf) be a node
of a BDD such that Fun(Nt) (resp. Fun(Nf)) is equivalent to
kl − a ≤ e ≤ kh − a (resp. kl ≤ e ≤ kh). Then Fun(N) is
equivalent to C, where N has a selector x,

1. Nt as true-child and Nf as false-child if � = x, and
2. Nf as true-child and Nt as false-child if � = x.

Proof If � = x, from the definition of BDDs, Fun(N) is
(x ∧ (kl − a ≤ e ≤ kh − a)) ∨ (x ∧ (kl ≤ e ≤ kh)), which is
equivalent to kl ≤ ax+ e ≤ kh. The other case is similar. �

The notion of intervals [4] for an efficient ROBDD con-
struction is extended for PB-constraints in band form.

Definition 3: Let kl ≤ e ≤ kh be a PB-constraint. We say
that a pair 〈L,H〉 of intervals is consistent to e if L and H are
maximal intervals (with respect to set inclusion) that satisfy
the following condition (*):

PB-constraints l ≤ e ≤ h such that l ∈ L and h ∈ H
are all equivalent (seen as Boolean functions).

We use L ≤ e ≤ H to denote the expected Boolean function.
Moreover, for kl ∈ L and kh ∈ H, we say that a pair 〈L,H〉
of intervals is consistent to kl ≤ e ≤ kh.

For example, 〈[1, 1], [1, 2]〉 is the unique pair of inter-
vals that is consistent to 1 ≤ x + 3y ≤ 2.

Proposition 4: Let kl ≤ e ≤ kh be a satisfiable PB-
constraint. Then its consistent pair 〈L,H〉 of intervals is
unique.

Proof Let 〈L,H〉 be a pair of intervals that is consistent to
kl ≤ e ≤ kh. From the definition, kl ∈ L and kh ∈ H follow.
Let

Il = {σ(e) | σ(e) < kl} ∪ {−∞},
I = {σ(e) | kl ≤ σ(e) ≤ kh},
Ih = {σ(e) | kh < σ(e)} ∪ {∞}.

Since kl ≤ e ≤ kh is satisfiable, I is not an empty set. From
the definition of consistency, the interval 〈L,H〉 is uniquely
determined as 〈[max(Il) + 1,min(I)], [max(I),min(Ih) − 1]〉.

�

Remark that an unsatisfiable PB-constraint may have
two consistent pairs of intervals. For example, 5 ≤ x +
y ≤ −5 has two consistent pairs 〈(−∞,∞), (−∞,−1]〉 and
〈[3,∞), (−∞,∞)〉. Also consistent pairs of 5 ≤ 0 ≤ −5 are
〈(−∞,∞), (−∞,−1]〉 and 〈[1,∞), (−∞,∞)〉.

In the rest of this section, we assume that a given PB-
constraint is C : kl ≤ an�n + · · · + a1�1 ≤ kh, and construct
an ROBDD, which is equivalent to C, under a fixed variable
order xn < xn−1 < · · · < x1. We use ei to denote the sub-
expression ai�i + · · · + a1�1.

An important observation in the ROBDD construction
is that the pair of intervals for a node is directly calculated
from those of its children as shown in the following lemma.

Lemma 5: Let pairs 〈Lt,Ht〉 and 〈Lf ,Hf 〉 intervals be con-
sistent to ei. If both of intervals L = (Lt + ai+1) ∩ Lf and
H = (Ht + ai+1) ∩ Hf are non-empty, 〈L,H〉 is consistent to
ei+1.

Proof Assume that (*) in Definition 3 does not hold for
ei+1 and 〈L,H〉. Then, there exists l, l′ ∈ L, h, h′ ∈ H,
and a valuation σ that satisfies l ≤ ei+1 ≤ h but does not
satisfy l′ ≤ ei+1 ≤ h′. In the case that σ(�i+1) = 0, we
have σ(ei+1) = σ(ai+1�i+1 + ei) = σ(ei). Thus, σ satisfies
l ≤ ei ≤ h, but does not satisfy l′ ≤ ei ≤ h′. Since l, l′ ∈ Lf

and h, h′ ∈ Hf from the construction of L and H, this is
a contradiction to the consistency of 〈Lf ,Hf 〉 to ei. In the
case that σ(�i+1) = 1, we have σ(ei+1) = ai+1 + σ(ei). Thus
σ satisfies l − ai+1 ≤ ei ≤ h − ai+1, but does not satisfy
l′ − ai+1 ≤ ei ≤ h′ − ai+1. Since l − ai+1, l′ − ai+1 ∈ Lt and
h − ai+1, h′ − ai+1 ∈ Ht, this is a contradiction to the con-
sistency of 〈Lt,Ht〉 to ei. Therefore 〈L,H〉 is consistent to
ei+1.

Next we show the maximality of 〈L,H〉. Since L and
H are non-empty, it is enough to show that any extension
causes inconsistency. Let L = [β, γ] and L′ = [β, γ + 1]
for γ � ∞. We show only that 〈L′,H〉 is not consistent to
ei+1 since the other cases are similar. Let Lt = [βt, γt] and
Lf = [β f , γ f]. Since L = (Lt + ai+1)∩ Lf , we have two cases

SAKAI and NABESHIMA: CONSTRUCTION OF AN ROBDD FOR A PB-CONSTRAINT IN BAND FORM AND RELATED TECHNIQUES FOR PB-SOLVERS
1123

Fig. 2 ROBDD of 3 ≤ 6x + 5y + 3z ≤ 7.

Fig. 3 Algorithm for the first stage.

that γ = γ f and γ = γt + ai+1.
Consider the former case. Since 〈Lf ,Hf 〉 is consistent

to ei, there exist l ∈ Lf , h, h′ ∈ Hf , and a valuation σ that
satisfies either l ≤ ei ≤ h or γ f + 1 ≤ ei ≤ h′, exclusively.
Let σ′ satisfies σ′(�i+1) = 0 and σ′(x) = σ(x) for any x
(� xi+1). Then σ satisfies l ≤ ei ≤ h if and only if σ′ satisfies
l ≤ ei+1 ≤ h, and also σ satisfies γ f + 1 ≤ ei ≤ h′ if and only
if σ′ satisfies γ f + 1 ≤ ei+1 ≤ h′. Since l, γ f + 1 ∈ L′ and
h, h′ ∈ H, the pair 〈L′,H〉 is not consistent to ei+1. The latter
case is similar. �

Thanks to Lemma 5, consistent intervals 〈L,H〉 for a
node of a BDD for a PB-constraint can be immediately cal-
culated from its children.

Example 6: An ROBDD for 3 ≤ 6x + 5y + 3z ≤ 7 with an
order x < y < z is shown in Fig. 2.

The algorithm for the ROBDD construction shown in
Fig. 3 works in depth first way with memorizing the interval

information, which is a natural extension of the algorithm
proposed in Sect. 5 of the Ref. [4] for constraints in standard
form. The essential difference from [4] is on memorizing a
pair of intervals instead of an interval for each BDD node.

We use a set D each of whose elements is a tuple of a
natural number i, intervals L and H, and a node N of BDD
in constructing, where i is used to identify the selector vari-
ables xi.

Definition 7: We say D is consistent, if D0 ⊆ D and for
every 〈i, L,H,N〉 ∈ D

(i) 〈L,H〉 is consistent to ei, and
(ii) Fun(N) is equivalent to L ≤ ei ≤ H.

Lemma 8: D0 is consistent.

Proof Consider the element 〈0, (−∞,∞), (−∞,−1],N0〉.
Since e0 = 0, l ≤ e0 ≤ h is not satisfied for any l ∈ (−∞,∞)
and h ∈ (−∞,−1], which is equivalent to Fun(N0) = 0.
The maximality is trivial. The other elements are similarly
shown. �

The function CreateBDD eventually goes into Step a) if
i = 0, because the intervals in D0 cover all pairs of integers.
Thus the termination of the algorithm is easily derived.

Lemma 9: Let 〈L,H,N,D′〉 := CreateBDD(i, l, h,D) for a
consistent D and 0 ≤ i ≤ n,

(1) l ∈ L, h ∈ H, 〈i, L,H,N〉 ∈ D′, and
(2) D′ is consistent,

Proof By induction on i. In the case that i = 0, Step a)
succeeds to find 〈0, L,H,N〉 in D0 ⊆ D. Thus (1) and (2)
follow directly from the consistency of D.

Consider the case that i > 0. If 〈i, L,H,N〉 such that l ∈
L and h ∈ H is found in D at the Step a), then D = D′. Thus
(1) is trivial and (2) follows directly from the consistency of
D. Otherwise 〈Lt,Ht,Nt,D1〉 := CreateBDD(i−1, l−ai, h−
ai,D) and 〈Lf ,Hf ,Nf ,D2〉 := CreateBDD(i− 1, l, h,D1) are
invoked in the algorithm. Here D1 and D2 are consistent by
induction hypothesis (2), and l − ai ∈ Lt, h − ai ∈ Ht, 〈i −
1, Lt,Ht,Nt〉 ∈ D1, l ∈ Lf , h ∈ Hf , and 〈i − 1, Lf ,Hf ,Nf 〉 ∈
D2 by induction hypothesis (1). Since L = (Lt +ai)∩ Lf , we
obtain l ∈ L and hence of L is not empty. Similarly h ∈ H
and H is non-empty.

We show (i) and (ii) in Definition 7 for 〈i, L,H,N〉. By
Lemma 5, (i) follows. Since l − ai ≤ ei−1 ≤ h − ai (resp.
l ≤ ei−1 ≤ h) is equivalent to Fun(Nt) (resp. Fun(Nf)) from
the consistency of D1 (resp. D2). From the construction of
N and Lemma 2, we obtain Fun(N) is equivalent to l ≤ ai�i+
ei−1 ≤ h. Combining this with l ∈ L and h ∈ H, we obtain
(ii). Moreover, if Nt = Nf then Fun(Nt), Fun(Nf), and l ≤
ai�i + ei,n ≤ h are equivalent. �

Lemma 10: The algorithm computes an ROBDD, whose
root represents the given PB-constraint kl ≤ en ≤ kh.

Proof Let 〈L,H,N,D′〉 := CreateBDD(n, kl, kh,D0). Since

1124
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

D0 is consistent from Lemma 8, we obtain kl ∈ L and kh ∈ H
where 〈n, L,H,N〉 is in the consistent D′. Therefore, Fun(N)
is equivalent to kl ≤ en ≤ kh.

All nodes in a resulted ordered BDD appears as differ-
ent elements in the consistent database D′ from the follow-
ing reasons. Nodes N and N′ with the same selector variable
xi represent different functions from Proposition 4. More-
over, if Nt = Nf the algorithm do not create a new node.
Thus it is reduced. �

This algorithm runs in O(nm log(m)) where m is the
size of the ROBDD, which is shown in the same way as [4];
the cost of search and insertion on D is O(log m), and the
number of calls of CreateBDD is bounded by O(nm). Note
that n is necessary because Step b) does not always create a
BDD node.

4. Monotonic CNF-Coding of BDD

In this section, we present a simple way to detect nodes that
represent monotonic functions in an ROBDD produced from
PB-constraint in band form.

Definition 11: Given a BDD rooted by R, we define a
CNF-coding, denoted by Cnf(R), as the conjunction of the
following formulae, provided a fresh variable pN for each
node N.

(1) “1” for a terminal node N1,
(2) “pN0 ” for a terminal node N0, and
(3) “pN =⇒ if x then pNt else pN f ” for a decision

node N labelled with x, where Nt (resp. Nf) is the true-
child Nt (resp. false-child Nf) of N.

Note that if-then-else has the meaning as expected. We
refer the set of newly introduced variables for the coding of
a BDD rooted by R by PVar(R).

For coding (3) as clauses, three-clause coding is used
in MiniSAT+ [2], which produces

(Three) x ∨ pN f ∨ pN , x ∨ pNt ∨ pN , pN f ∨ pNt ∨ pN .

In the Ref. [4], it is proposed two-clause coding, which is
more efficient than three-clause one but only applicable to
BDDs that represent monotonic functions. Note that PB-
constraints in standard form are monotonically decreasing,
but not for those in band form. We show that two-clause
coding is possible for some nodes of ROBDDs created from
PB-constraints in band form.

A node N is monotonically increasing (resp. decreas-
ing) if Fun(N) is monotonically increasing (resp. decreas-
ing) with respect to its selector variable. Such nodes in an
ROBDD constructed in Sect. 3 are easily found from the fol-
lowing proposition.

Proposition 12: Let N be a node with selector variable xi

such that Fun(N) is equivalent to L ≤ ai�i + · · · + a1�1 ≤ H
and

• ai + · · · + a1 ∈ H and �i = xi (resp. �i = xi), or
• −1 ∈ L and �i = xi (resp. and �i = xi),

then N is monotonically increasing (resp. decreasing).

Proof We consider only the case that ai + · · · + a1 ∈ H and
�i = xi. The formula is equivalent to l ≤ ei for any l ∈ L,
where ei denotes ai�i + · · · + a1�1. Suppose σ[xi 	→0] satisfies
l ≤ ei for the selector variable xi. Since ai > 0, σ[xi 	→1]

satisfies l ≤ ei. The other cases are shown similarly. �

We encode the formula in (3) as follows.

(Dec) For monotonically decreasing nodes N,

x ∨ pNt ∨ pN , pN f ∨ pN .

(Inc) For monotonically increasing nodes N,

x ∨ pN f ∨ pN , pNt ∨ pN .

(Three) For the other nodes N, three-clause coding
(Three).

In the rest of the section, we show the correctness of
this partial two-clause coding.

Lemma 13: Fun(N) is satisfied by a valuation σ that satis-
fies pN ∧ Cnf(N)

Proof By induction on the structure of the BDD.
If N is a terminal node N1, it is trivial because

Fun(N1) = 1. If N is a terminal node N0, we have no valu-
ation σ that satisfies pN0 ∧ pN0 . Otherwise, N is a decision
node with a selector variable x, true-child Nt, and false-child
Nf . From the assumption, σ satisfies pN .

• Consider the case that N is encoded by (Three). If
σ(x) = 1, σ(pNt) must be 1 from the second clause.
Considering the sub-BDD rooted Nt, Cnf(Nt) is in-
cluded in Cnf(N). Combining these, σ satisfies
Fun(Nt) by induction hypothesis. From the definition
of Fun, σ satisfies Fun(N).
If σ(x) = 0, σ(pN f) must be 1 from the first clause.
Considering the sub-BDD rooted Nf , Cnf(Nf) is in-
cluded in Cnf(N). Combining these, σ satisfies
Fun(Nf) by induction hypothesis. From the definition
of Fun, σ satisfies Fun(N).
• Consider the case that N is encoded by (Dec). If
σ(x) = 1, σ(pNt) must be 1 from the first clause. Con-
sidering the sub-BDD rooted Nt, Cnf(Nt) is included
in Cnf(N). Combining these, σ satisfies Fun(Nt) by
induction hypothesis. From the definition of Fun, σ
satisfies Fun(N).
If σ(x) = 0, σ(pN f) must be 1 from the second
clause. Considering the sub-BDD rooted Nf , Cnf(Nf)
is included in Cnf(N). Combining these, σ satisfies
Fun(Nf) by induction hypothesis. From the definition
of Fun, σ satisfies Fun(N).
• The case encoded by (Inc) is similar to (Dec). �

For proving the reverse, we introduce a notion of active
nodes to construct an extended valuation.

SAKAI and NABESHIMA: CONSTRUCTION OF AN ROBDD FOR A PB-CONSTRAINT IN BAND FORM AND RELATED TECHNIQUES FOR PB-SOLVERS
1125

Definition 14: For a given valuation σ and a BDD rooted
by R, the set Aσ of active nodes is defined as a minimal set
satisfying the following conditions:

• R ∈ Aσ.
• Nt ∈ Aσ for the true-child Nt of an N ∈ Aσ, if σ(x) = 1

or N is monotonically increasing where x is the selector
variable of N.
• Nf ∈ Aσ for the false-child Nf of an N ∈ Aσ, if
σ(x) = 0 or N is monotonically decreasing where x
is the selector variable of N.

If σ satisfies Fun(R) for a BDD rooted by R, terminal
node N0 are not active from the following lemma.

Lemma 15: For a BDD rooted by R, σ satisfies Fun(N)
for any active nodes N if σ satisfies Fun(R).

Proof By induction on the definition of the active nodes. In
the case that N = R ∈ Aσ, it is trivial.

Consider the case that Nt ∈ Aσ, σ(x) = 1, and the
selector variable of N is x. From the definition of Fun(N), σ
satisfies Fun(Nt).

Consider the case that Nt ∈ Aσ, which is the true-child
of a monotonically increasing node N ∈ Aσ with selector
variable x. We can assume σ(x) = 0, otherwise it is sub-
sumed by the previous case. From the definition of Fun(N),
σ satisfies Fun(Nf). Since N is monotonically increasing,
σ[x 	→1] also satisfies Fun(N). Thus σ[x 	→1] satisfies Fun(Nt).
Since Fun(Nt) does not contain x, σ satisfies Fun(Nt).

We can prove for the last case similarly. �

Lemma 16: For a BDD rooted by R, let σ be a valuation
that satisfies Fun(R). Let σ′ be a PVar(R)-extension of σ
such that σ′(pN) = 1 for active nodes N, and σ′(pN) = 0 for
the other nodes N. Then σ′ satisfies pR ∧ Cnf(R).

Proof Since R is active, σ′(pR) = 1.
If N is a terminal node N1, then the clause is 1. If N is

a terminal node N0, then the clause is pN0 . Since N0 is not
active by Lemma 15, σ′(pN0) = 0.

If N is a decision node with a selector variable x, a
true-child Nt, and a false-child Nf .

• Consider the case that N is active and encoded by
(Three). In the case that σ(x) = 1, Nt is also active.
Thus, σ′(pNt) = 1. In the case that σ(x) = 0, Nf is also
active. Thus σ′(pN f) = 1.
• Consider the case that N is active and encoded by

(Dec). Since Nf is active, σ′(pN f) = 1. If σ(x) = 1, Nt

is also active and hence σ′(pNt) = 1. In either of the
cases, σ′ satisfies the clauses (Dec).
• The case that N is active and encoded by (Inc) is similar

to (Dec).
• If N is not active, then σ′(pN) = 0. Thus, σ′ satisfies

all the clauses (Three), (Dec) and (Inc). �

From Lemmas 13 and 16, the following theorem is
shown.

Theorem 17: For a BDD rooted by R, pR ∧ Cnf(R) and
Fun(R) is equisatisfiable.

5. Binary/Alternative Searches for Optimization

The PB-optimization answers the minimal value of a given
goal expression among valuations that satisfy the PB-
constraints, where goal expressions are in forms of b1�1 +
· · · + bn�n for integers b1, . . . , bn.

Most of PB-solvers such as sat4j and MiniSat+ employ
the sequential search, in which the satisfiability is firstly
checked without considering the goal expression g. Once a
satisfiable valuation is obtained, the best known goal value k
is calculated. By augmenting clauses that represents g < k,
invoke SAT-solver. Repeating this until resulting unsatifi-
able, the best goal value is fixed as the last k. This can be
implemented without restarting SAT-solvers, because recent
solvers allow incremental solving; adding clauses incremen-
tally, and continuing solving.

This sequential search is not so bad, because in most
cases an improvement of the known goal value is more than
one. However, a lot of SAT-solver executions are sometimes
necessary. Thus it is natural to consider binary search strate-
gies.

This section describes on binary search strategies for
a goal minimization. Avoiding a SAT-solver restart, we
use a SAT-solver function that solves under tentatively as-
suming the given literal instead of adding it. Let k be the
best known goal value, and l be the greatest known lower
bound, which is initially the sum of negative coefficients
bi’s. By introducing a fresh variable p, we add a constraint
for p =⇒ g < �(k − l)/2�, and solve them under assump-
tion that p = 1. If it is satisfiable, the known best value is re-
newed from the obtained valuation and proceeds. Otherwise
the greatest known lower bound is renewed to �(k− l)/2� and
proceeds.

Binary search strategies sometimes take unnecessary
executions. For example, we suppose a goal g = 1000x +
4000y and its best goal value is 1000. By the sequential
search, after we got 1000 it is enough one more SAT-solver
execution with g < 1000. By the above binary search strat-
egy, however, considerable times of SAT-solving are nec-
essary with g < 500, g < 750, and so on. For this, a pre-
process of goal expressions is effective; dividing coefficients
by their greatest common divisor (GCD). The example is
transformed to x + 4y.

The simplification by GCD takes no effect for the goal
g′ = x + 1000y if the best goal value is 1000. For this,
we propose an alternating strategy that adopts the sequen-
tial (resp. binary) search after UNSAT (resp. SAT) answer
obtained. Suppose the best known goal value is 1000 for the
goal, two-time executions with g′ < 500 (due to binary one)
and g′ < 1000 (due to sequential one) are enough.

6. Evaluation

We implemented our findings into our tool, named GPW,

1126
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

Table 1 PB-competition instances.

coding/form/search DEC-SML OPT-BIG OPT-SML total constraints BDD nodes Sat UnSat
Sat UnSat Opt UnSat Opt UnSat std band 2cl 3cl calls calls

2cl/band/seq 48 58 348 33 870 379K 5.0K 193M 5M 8.2K 0.5K
2cl/band/bin 170 213 70 58 346 33 890 394K 5.0K 282M 3M 2.0K 3.0K
2cl/band/alt 72 58 348 33 894 395K 5.0K 395M 3M 2.7K 1.9K
2cl/std/seq 48 58 346 33 868 389K 0 203M 0 8.0K 0.5K
2cl/std/bin 170 213 75 59 346 33 896 422K 0 348M 0 2.0K 3.0K
2cl/std/alt 76 58 346 33 896 416K 0 387M 0 2.7K 1.9K

3cl/band/seq 57 58 345 33 876 386K 5.0K 0 210M 10.8K 0.5K
3cl/band/bin 172 211 58 58 333 33 865 378K 5.0K 0 149M 1.7K 2.7K
3cl/band/alt 59 58 336 33 869 376K 5.0K 0 154M 2.4K 1.7K
3cl/std/seq 56 58 341 32 868 380K 0 0 209M 10.6K 0.5K
3cl/std/bin 171 210 59 58 332 32 862 373K 0 0 154M 1.7K 2.7K
3cl/std/alt 59 58 335 32 865 367K 0 0 159M 2.4K 1.8K

MiniSat+ mode 172 210 53 59 335 33 862 372K 5.5K 0 219M 10.4K 0.5K

which is constructed based on Minisat+ [2] version 1.0. The
major extensions are summarized as follows:

• Minisat+ has a function to generate clauses via BDDs
constructed from each PB-constraint in band form.
Thus we implemented the construction of ROBDDs.
• Minisat+ employs the three-clause coding. Thus

we implemented two-clause coding for nodes having
monotonic property.
• Minisat+ has the incremental SAT-solving for the se-

quential search in the goal minimization. We im-
plemented the incremental SAT-solving for the binary
search and the alternative search.

We performed experiments on a machine equipped
with dual Xeon W5590 (3.33GHz, 4core 8thread,
L2cache4*256KB, and L3cache 8MB) processors and
48GB memory. MiniSat version 1.13 is used as an under-
lying SAT-solver, which is included in Minisat+, as an un-
derlying solver. The benchmarks are 1683 instances in total;
452, 532, and 699 instances used in DEC-SMALLINT-LIN,
OPT-BIGINT-LIN, and OPT-SMALLINT-LIN divisions of
Pseudo-Boolean Competition 2010, respectively. The GPW
detects at least one band form in 26, 417, and 100 instances
for the respective divisions.

Table 1 shows the number of instances that differ-
ent methods could solve within 1000 seconds timeout.
The rows correspond to coding methods in GPW where
2cl/3cl present two-clause/three-clause coding, std/band
present BDD construction from standard-form/band-form,
seq/bin/alt present sequential/binary/alternative strategies,
and MiniSat+ mode adopts three clause, band form, se-
quential strategy, and (non-RO) BDD construction. The
first seven columns correspond to the divisions and to-
tal numbers, where Sat/UnSat/Opt present solved instances
with satisfiable/unsatisfiable/optimized results. The rest of
columns correspond to the total numbers of constraints pro-
cessed as standard/band form, BDD nodes (coded by 2-
clause, and by 3-clause), and Sat/UnSat solver calls for
solved instances.

Figure 4 shows cactus plots of the results, which indi-
cate the number of solved instances within the time. In the
figures, lines located in lower and more right side show bet-

Fig. 4 Cactus plots for PB-competition instances.

ter results. Note that the “best” solver is a virtual one which
runs all solvers by the different methods in parallel and takes
the best result.

SAKAI and NABESHIMA: CONSTRUCTION OF AN ROBDD FOR A PB-CONSTRAINT IN BAND FORM AND RELATED TECHNIQUES FOR PB-SOLVERS
1127

Generally, processing in standard form with the two-
clause coding and with the binary or alternative search cores
the best. Let’s see more detailed analysis.

The binary search results better than the sequential
search, and the alternative search seems the best. This is
reasoned from the following facts:

• The sequential search requires more solver-calls than
others,
• UNSAT-calls are generally much heavier than SAT-

calls, and
• once obtained the minimal goal value, the sequential

(resp. binary, alternative) search requires one (resp.
many, two) UNSAT-calls.

It is easily shown that the number of solver-calls with the
alternative search is not more than double of those with the
binary search.

The effect of the band form varies according to cod-
ing/search methods and divisions of the instances. Gener-
ally, the band form has advantages of smaller memory use
and shorter BDD-construction time than the standard form.
The band form has an advantage of the number of solved
instances in the following cases:

• Instances are processed by the three-clause coding,
• Instances are solved by the sequential search strategy.
• Instances in OPT-SMALL-LIN division are processed.

The band form has a disadvantage for instances in OPT-
BIG-LIN division processed by the two-clause coding.

From the other views, ROBDD construction takes
effect, because processing 3cl/band/seq with ROBDD
scores better than MiniSat+ mode (3cl/band/seq with non-
ROBDD). Two-clause coding method takes effect together
with standard form, but also with band form, if it is com-
bined with the alternative or binary strategy.

7. Concluding Remarks

This paper proposed the following methods:

• an efficient ROBDD construction algorithm for PB-
constraints in band form by modifying the algorithm
in the Ref. [4] designed for standard form,
• a partial two-clause coding of BDD, which produces

two clauses for a monotonic node and three clauses for
a non-monotonic node, and
• a binary search and an alternative search for goal min-

imization, which allow inremental SAT-solving.

It appears that the best combination of methods is the alter-
native (or binary search) strategy and the ROBDD construc-
tion from the standard form with the two-clause coding. The
construction from the band form is effective under the three-
clause coding, or the sequential strategy.

We can choose the band or standard form in ROBDD
construction for each constraint in an instance. Thus it is
interesting to find good choice strategies.

Acknowledgments

We thank Harald Zankl for discussing on band form. Par-
tially supported by the Austrian Science Fund (FWF) project
I963 and the Japan Society for the Promotion of Science.

References

[1] C. Herde, “Extending DPLL for Pseudo-Boolean constraints,” in Effi-
cient Solving of Large Arithmetic Constraint Systems with Complex
Boolean Structure, pp.37–58, Vieweg+Teubner, 2011.

[2] N. Eén and N. Sörensson, “Translating Pseudo-Boolean constraints
into SAT,” J. Satisfiability, Boolean Modeling and Computation
(JSAT), vol.2, no.1-4, pp.1–26, 2006.

[3] O. Bailleux, Y. Boufkhad, and O. Roussel, “A translation of Pseudo
Boolean constraints to SAT,” J. satisfiability, Boolean modeling and
computation (JSAT), vol.2, no.1-4, pp.191–200, 2006.

[4] I. Abı́o, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
V. Mayer-Eichberger, “A new look at BDDs for Pseudo-Boolean con-
straints,” J. Artificial Intelligence Research (JAIR), vol.45, pp.443–
480, 2012.

[5] R.E. Bryant, “Graph-based algorithms for boolean function manipu-
lation,” IEEE Trans. Comput., vol.35, no.8, pp.677–691, Aug. 1986.

Masahiko Sakai completed graduate course
of Nagoya University in 1989 and became As-
sistant Professor, where he obtained a D.E. de-
gree in 1992. From April 1993 to March 1997,
he was Associate Professor in JAIST. In 1996 he
stayed at SUNY at Stony Brook for six months
as Visiting Research Professor. From April
1997, he was Associate Professor in Nagoya
University. Since December 2002, he has been
Professor. He is interested in term rewriting sys-
tem, verification of specification, software gen-

eration and constraint solvers. He received the Best Paper Awards from
IEICE in 1992 and 2011. He is a member of JSSST and IPSJ.

Hidetomo Nabeshima recieved a D.E. de-
gree from Kobe University in 2001. From 2001
to 2008, he was Assistant Professor in Univer-
sity of Yamanashi. Since 2009, he has been As-
sociate Professor. He is interested in proposi-
tional satisfiability testing (SAT) and automated
reasoning in first order logic. He received the
Takahashi Award for the Best Presentation and
Paper and the Best Software Paper Awards from
JSSST in 2011 and 2014, respectively. His SAT
solver won the first and second prizes for UN-

SAT track of application category at SAT competition 2011 and 2013, re-
spectively. He is a member of JSSST and JSAI.

