
1128
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

PAPER Special Section on Formal Approach

State Number Calculation Problem of Workflow Nets

Mohd Anuaruddin BIN AHMADON†, Nonmember and Shingo YAMAGUCHI†a), Senior Member

SUMMARY The number of states is a very important matter for model
checking approach in Petri net’s analysis. We first gave a formal definition
of state number calculation problem: For a Petri net with an initial state
(marking), how many states does it have? Next we showed the problem
cannot be solved in polynomial time for a popular subclass of Petri nets,
known as free choice workflow nets, if P�NP. Then we proposed a poly-
nomial time algorithm to solve the problem by utilizing a representational
bias called as process tree. We also showed effectiveness of the algorithm
through an application example.
key words: Petri net, state number calculation problem, process tree, solv-
ability, computational complexity, model checking

1. Introduction

Petri nets [1] are a mathematical and graphical modeling
tool applicable to many systems. Once we model a system
as a Petri net, we can simulate the behaviour of the system
by using tokens on the Petri net. We can also analyse the be-
haviour of the system exhaustively by enumerating all pos-
sible token distributions (states). Unfortunately, the number
of all the possible states is of exponential order in the size
of the Petri net. This is called the state space explosion. For
example, Fig. 1 shows a Marked Graph (MG for short) with
i parallel paths. The state number is 2i + 2 which increases
exponentially with the number of parallel paths. The prob-
lem seems to be unsolvable in polynomial time if we try to
enumerate all the possible states.

Petri net’s state number is useful for analysis method
that involves behavioural analysis such as in model check-
ing approach. Model checking has been attracting attention
as a promising approach to analysis of Petri nets. SPIN [2],
a popular model checking tool, is available only to Petri nets
with less than 1 million states, because SPIN basically enu-
merates all possible states in the Petri net. We need a poly-
nomial time solution to accurately calculate the state number
of the given Petri net before using SPIN.

In 2011, Chao et al. [3] proposed a method to calculate
the number of all the possible states. They first transformed
a given Petri net to an algebraic expression, and then calcu-
lated the number of all the possible states by utilizing the
algebraic expression. This method is, however, available
only to a simple subclass i.e. MG and State Machine (SM

Manuscript received August 27, 2014.
Manuscript revised December 19, 2014.
Manuscript publicized February 13, 2015.
†The authors are with the Graduate School of Science and En-

gineering, Yamaguchi University, Ube-shi, 755–8611 Japan.
a) E-mail: shingo@yamaguchi-u.ac.jp

DOI: 10.1587/transinf.2014FOP0009

Fig. 1 Illustration of a MGi with (i+1) parallel paths. The state number
is 2i+2.

for short). In addition, the computational complexity has
not been discussed.

In this paper, we first give a formal definition of
state number calculation problem and show the computa-
tion complexity of the problem for a popular subclass of
Petri nets, i.e. free choice workflow nets (FC WF-net for
short). Then we propose a polynomial time algorithm to
solve the problem for a Petri net which can be represented
as a process tree. This paper is organized as follows: After
the introduction in Sect. 1, Sect. 2 gives the definition and
properties of Petri net, workflow net [4] and process tree [5].
In Sect. 3, we formalize the state number calculation prob-
lem and reveal the solvability and computational complexity
of the problem. In Sect. 4, we formalize the convertibility
problem of WF-net to process tree. In Sect. 5, we define
a subclass of WF-net which can be represented as process
tree, then we propose a polynomial time algorithm for the
state number calculation. In Sect. 6, we show evaluation for
our solution and an application example of our method in
model checking approach. Finally, we give the conclusion
and the future work.

2. Preliminary

(1) Petri Nets and Workflow Nets

A Petri net is a three tuple N=(P,T, A), where P, T , and A
(⊆(P×T)∪(T×P)) are finite sets of places, transitions, and
arcs, respectively. Let x be a node of N.

N•x and x
N• re-

spectively denote {y|(y, x)∈A} and {y|(x, y)∈A}. A marking
(or a state) is a mapping M: P→N. We represent M as a
bag over P: M=[pM(p)|p∈P,M(p)>0]. A transition t is said
to be firable in M if M≥N•t. Firing t in M results in a new
marking M′ (=M∪t

N• − N•t). This is denoted by M[N, t〉M′.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

BIN AHMADON and YAMAGUCHI: STATE NUMBER CALCULATION PROBLEM OF WORKFLOW NETS
1129

A marking Mn is said to be reachable from a marking
M0 if there exists a transition sequence t1t2 · · · tn such that
M0[N, t1〉M1[N, t2〉M2 · · · [N, tn〉Mn. The set of all markings
reachable from M0 in (N,M0) is denoted by R(N,M0). The
tree representation of the markings in R(N,M0) is called the
reachability tree.

N is said to be a WF-net if (i) N has a single source
place pI and a single sink place pO; and (ii) every node is on
a path from pI to pO. Each transition represents an action.
There is a particular subclass of WF-nets: well-structured
(WS for short). To give the formal definition of WS, we
introduce some notations. We make N strongly connected
by connecting pO to pI via an additional transition t∗. The
resulting Petri net is called the short-circuited net of N, and
is denoted by N (=(P, T∪{t∗}, A∪{(pO, t∗), (t∗, pI)})). Let c
be a circuit in N. A path h=x1x2· · ·xn (n≥2) is called a
handle [6] of c if h shares exactly two nodes, x1 and xn, with
c. A path b is called a bridge between c and h if each of c
and h shares exactly one node, x1 or xn, with b. A handle
(a bridge) from a node x to another node y is called a XY-
handle (a XY-bridge), where if x∈P then X is P, otherwise X
is T; if y∈P then Y is P, otherwise Y is T. A WF-net N is said
to be WS if there are neither TP-handles nor PT-handles of
any circuit in N.

(2) Soundness

Soundness is a criterion of correctness for WF-nets.
A WF-net N (=(P,T, A)) is said to be sound iff (i)
∀M∈R(N, [pI]):∃M′∈R(N,M): M′≥[pO]; (ii) ∀M∈R(N, [pI]):
M≥[pO]⇒M=[pO]; and (iii) There is no dead transition in
(N, [pI]). The soundness problem for EFC WF-nets or WS
WF-nets can be solved in polynomial time (Corollaries 1
and 2 of Ref. [4]).

(3) Process Tree

A process tree [5] is a tree representation of a process in WF-
nets. Each leaf node represents an action (transition) and
each internal node represents a routing operator in the pro-
cess respectively. Process tree was originally proposed for
process mining. The major purpose is to ensure soundness
of the WF-net discovered from the mining. Reference [5]
proposed a genetic algorithm to discover a WF-net from an
event log.

This paper uses three routing operators [7]: sequence
SEQ (→), exclusive choice XOR (×) and parallel AND (∧).
Each operator can be translated to a part of a WF-net as
shown in Fig. 2. Any process tree can also be represented as
a formula. For example, the process tree shown in Fig. 2 (a)
is represented as →(α, β). The order of the child nodes in
the formula must follow the sequence from left to right as
represented in the tree.

Definition 1: The set Π of process trees π is as follows:

(i) If ι is an action label, then ι ∈ Π.
(ii) If ⊕ is an operator and ι1, ι2, · · ·, ιn are action labels,

then ⊕(ι1, ι2, · · · , ιn) ∈ Π.
(iii) If ⊕ is an operator and π1, π2, · · ·, πn ∈ Π, then

Fig. 2 Translation of process tree operators to Petri net constructs.

⊕(π1, π2, · · · , πn) ∈ Π. �

3. State Number Calculation Problem and Its Proper-
ties

In this section, we formalize a problem, named state num-
ber calculation problem [8], that calculates the number of all
possible states in a given Petri net. Then we reveal the solv-
ability and the computational complexity of the problem.
The formal definition of the problem is given as follows:

Definition 2 (State number calculation problem):
Instance: Petri net (N,M0)
Question: How many states are there in R(N,M0)? �

As an example, in the case of WF-net of MGi shown
in Fig. 1, the problem is how many states there are in
R(MGi, [pI]).

Let us consider the solvability of the state number cal-
culation problem.

Property 1: The state number calculation problem is solv-
able. �

Proof: Let (N,M0) be any Petri net. The state number calcu-
lation problem can be divided into two cases by the bound-
edness of (N,M0). The boundedness problem is known to
be decidable [10]. If (N,M0) is bounded, we have only to
count the nodes in the reachability tree of (N,M0). Other-
wise, (if (N,M0) is unbounded), we can regard |R(N,M0)| as
∞, where ∀n∈N :∞>n,∞±n = ∞ and∞≥∞. Q.E.D.

Let us consider the state number calculation problem of
(MGi, [pI]) shown in Fig. 1. Since (MGi, [pI]) is bounded,
we can solve the problem by using its reachability tree [1].
Unfortunately, (MGi, [pI]) has 2i+2 markings. For example,
to calculate the state number for the MG with i=20, we have
to count 1,048,578 markings. In general, we cannot solve
the problem by enumerating all the states in practical time.

Then, let us consider the computation complexity of

1130
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

the state number calculation problem. In this paper, we as-
sume that P and NP are not equivalent, i.e. P�NP. An NP-
hard problem cannot be solved in polynomial time. We call
the problem as intractable. We show that the state num-
ber calculation problem is intractable for FC WF-nets with
initial marking [pI]. To prove the intractability, we tackle
the following decision version of the state number calcula-
tion problem: Given a Petri net (N,M0), to decide whether
|R(N,M0)|≥∞. This decision problem is the boundedness
problem. We have only to show that the boundedness prob-
lem is intractable for FC WF-nets with initial marking [pI].

To do so, we show that an NP-complete problem,
called 3-conjunctive normal form boolean satisfiability
problem [11] (3-CNF-SAT for short), can be transformed to
the complement of the boundedness problem, i.e. the un-
boundedness problem of FC WF-nets with initial marking
[pI].

Definition 3 (3-CNF-SAT [11]):
Instance: Expression E of 3-conjunctive normal form that
has n boolean variables and m clauses.
Question: Is there an assignment of variables satisfying
E=true? �

Lemma 1: The boundedness problem is co-NP-hard for
FC WF-nets with initial marking [pI]. �

Proof: We prove the co-NP-hardness by a reduction from
3-CNF-SAT in a way similar to Ref. [13]. Let E be an
expression of 3-CNF-SAT which has n boolean variables
x1, x2, · · · , xn and m clauses c1, c2, · · · , cm. A literal �i is
either a variable xi or its negation xi. Without loss of gen-
erality, it can be assumed that E has all of xi’s and xi’s
(i=1, 2, · · · , n), and m≥3 [12]. We first construct the follow-
ing Petri net NE=(PE,TE, AE).

PE = {pI , p1, pO} ∪⋃n
i=1{qi} ∪⋃m

j=1{c j}
TE = {t1, t2, t3} ∪⋃n

i=1{xi, xi}
AE = {(pI , t1), (t2, p1), (p1, t3), (t3, p1), (t3, pO)}
∪⋃n

i=1{(t1, qi), (qi, xi), (qi, xi)}
∪⋃3

k=1

⋃m
j=1{(�k, c j)|�k is the k-th literal of clause c j}

∪⋃m
j=1{(c j, t2)}

NE is an FC WF-net because its short-circuited net NE
is strongly connected; Places c1, c2, · · · , cm share only one
output transition t2, and the other places share no output
transition. NE can be constructed in polynomial time, be-
cause it consists of (n+m+3) places, (2n+3) transitions, and
(3n+4m+5) arcs.

Let us prove that (NE, [pI]) is unbounded iff there is an
assignment of variables satisfying E=true.

The proof of “if” part: Let α denote an assignment of
variables satisfying E=true, and let �1, �2, · · · , �n be the lit-
erals mapped to true by α. By the construction of NE, we
have

[pI] [NE, t1〉 [q1, q2, · · · , qn]

[NE, �1�2 · · · �n〉M (≥ [c1, c2, · · · , cm]).

Fig. 3 The FC WF-net (NE1 , [pI]) corresponding to a 3-CNF-SAT ex-
pression E1 = (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧
(x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3). (NE1 , [pI]) is unbounded.

We are to show that M≥[c1, c2, · · · , cm]. Since NE is FC, we
can freely choose, at every place qi, between letting tran-
sition xi or xi fire. Since α satisfies E, for each clause c j

(1≤ j≤m), there exists a literal �i (1≤i≤n) in c j. Therefore
place c j is marked by firing �i. As a result, we have

M [NE, t2〉M′ (= M\[c1, c2, · · · , cm]∪[p1])

[NE, t3〉M′∪[pO].

Since M′∪[pO] covers M′, (NE, [pI]) is unbounded.
The proof of “only if” part: Let α denote any assign-

ment of variables satisfying E=false. Since α does not sat-
isfy E, there exists a clause c j (∈{c1, c2, · · · , cm}) mapped to
false by α. Let � j

1, �
j
2, �

j
3 denote the literals in c j. Since the

corresponding transitions � j
1, �

j
2, �

j
3 do not fire, their common

output place, i.e. place c j, is never marked. c j is an input
place of transition t2, so t2 is dead. This enables us to ignore
the part following t2 in NE. The remaining part is acyclic.
Since any acyclic Petri net is bounded, (NE, [pI]) is bounded.

Q.E.D.
For example, let us consider the following boolean ex-

pression:

E1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
∧ (x1 ∨ x2 ∨ x3)

E1 is satisfiable by choosing x1=true, x2=true,
x3=true. Figure 3 shows the Petri net NE1 constructed from
E1. (NE1 , [pI]) is unbounded, because

[pI] [NE1 , t1〉 [q1, q2, q3]

[NE1 , x1x2x3〉 [c1
3, c2

2, c3
2, c4, c5

2, c6, c7]

[NE1 , t2〉 [c1
2, c2, c3, c5, p1]

[NE1 , t3〉 [c1
2, c2, c3, c5, p1, pO].

From Lemma 1, we can obtain the following theorem.

Theorem 1: The state number calculation problem cannot

BIN AHMADON and YAMAGUCHI: STATE NUMBER CALCULATION PROBLEM OF WORKFLOW NETS
1131

be solved in polynomial time for FC WF-nets with initial
marking [pI] if P�NP. �

Proof: The decision problem related to this problem, i.e. the
boundedness problem, is co-NP-hard. This means that the
original problem is intractable. Q.E.D.

4. Convertibility of Workflow Net to Process Tree

We showed that the state number calculation problem is in-
tractable but we cannot give up solving the problem because
the problem is important for analysing workflows. We try
to utilize process trees to solve the state number calculation
problem. The structure of process tree allows us to calculate
state number without enumerating all states. Unfortunately,
not all WF-nets are always convertible to process trees. For
example, non-sound WF-nets are not convertible because
the process tree itself is the representational bias of sound
WF-net as described in [5]. Soundness is a necessary condi-
tion but is not sufficient. It is necessary to decide whether a
given WF-net is convertible to a process tree or not. We call
this problem as convertibility problem. In this section, we
first give a formal definition of convertibility problem. Then
we give a necessary and sufficient condition on the problem.

4.1 Convertibility Problem

We formalize convertibility problem as follows:

Definition 4 (Convertibility problem):
Instance : WF-net N
Question : Is N convertible to a process tree? �

Let us consider five instances of convertibility problem
for example. The first instance is a WF-net N1 shown in
Fig. 4 (a). This WF-net can be represented as a process tree
as shown in Fig. 5. By looking at Fig. 4 (a) we found that
N1 is an acyclic WS WF-net and has no bridge. The second
instance is a WF-net N2 shown in Fig. 4 (b). N2 has a circuit
p2t2 p3t3 p2. In this paper, we use no operator representing
circuits. Therefore, we assume that N2 is not convertible to
a process tree. The third instance is a WF-net N3 shown
in Fig. 4 (c). N3 has a bridge p3t7 p4. Originally without
the bridge (path p3t7 p4), paths p2t2 p3t3 p5 and p2t4 p4t5 p5

construct an exclusive choice but since bridge p3t7 p4 ex-
ists, t2 p3t7 p4t5 forms a new sequence relation connecting
the path. So actions t2 and t5 have two relations, an exclu-
sive choice and a sequence. It is not convertible because
one process tree operator can only represent one routing re-
lation between actions. The forth instance is a WF-net N4

shown in Fig. 4 (d). N4 has a path t1 p2t2 p6t3 p8t5 with a han-
dle t1 p3t4 p7t5. There exists a path t1 p4t8 p5t3 between the
path and its handle. Path t1 p4t8 p5t3 is similar to a bridge but
is not exactly a bridge. We call it “pseudo-bridge”. It is not
convertible because without the pseudo-bridge, t1 has a par-
allel relation with t3, but since the pseudo-bridge t1 p4t8 p5t3
exists, a new relation exists between t1 and t5. Since the ac-
tion t1 has more than one relation it cannot be represented

Fig. 4 Example of WF-net instances.

Fig. 5 Process tree of N1.

with process tree operator. In this paper, we call a WF-net
N as “bridge-less” if the short-circuited net of N includes
neither bridges nor pseudo-bridges. The fifth instance is a
WF-net N5 shown in Fig. 4 (e). N5 has a TP-handle t1 p2t2 p4

and a PT-handle p5t5 p6t7. Since N5 is not WS and there are
no operator to represent TP-handle and PT-handle, it is not
convertible. By generalizing the analysis result, we deduced
that acyclic, bridge-less and WS structure plays a core role
in the convertibility problem.

1132
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

Fig. 6 Illustration of PTB WF-net and its equivalent process tree.

4.2 Necessary and Sufficient Condition

We propose a necessary and sufficient condition on the con-
vertibility problem. For this we (i) define a subclass of WF-
nets called as Process Tree Based (PTB for short) WF-net
which can be represented as a process tree and (ii) show the
PTB WF-net is acyclic, bridge-less and WS and (iii) show
that a WF-net is PTB, i.e. convertible to a process tree iff it
is acyclic, bridge-less and WS.

Definition 5 (PTB WF-net): For any process tree π, let N
be the WF-net itself and Ni (i=1, 2, · · · , n) be the subnet in
N. Each pI and pO is the source place and the sink place
of N, while each pI

(n) and pO
(n) is the source place and sink

place of Nn. See Fig. 6 (the broken lines illustrate the bound-
aries of internal structure of WF-net N).

(i) If π is an action label, a WF-net N which consists of
a transition representing the action label and its input
and output places is PTB (See Fig. 6 (a)).

(ii) If π is ⊕(ι1, ι2, · · · , ιn) then let N1,N2, · · · ,Nn be re-
spectively PTB WF-nets representing action labels
ι1, ι2, · · ·, ιn.

a. If ⊕ is sequence (→) then a WF-net constructed by
concatenating N1,N2, · · · ,Nn which link the sink
place of Ni with the source place of Ni+1(1≤i<n)
is PTB (See Fig. 6 (b)).

b. If ⊕ is exclusive choice (×) then a WF-net
constructed by bundling N1,N2, · · · ,Nn which
forms a selection of concurrent paths between
their source places and sink places is PTB (See
Fig. 6 (c)).

c. If ⊕ is parallel (∧) then a WF-net which is con-
structed by joining respectively all source places
with a transition tI , and sink places with a tran-
sition tO of PTB WF-net N1,N2, · · · ,Nn is PTB
(See Fig. 6 (d)).

(iii) If π is ⊕(π1, π2, · · · , πn) then let N1,N2, · · · ,Nn be re-
spectively PTB WF-nets representing sub-process trees
π1, π2, · · ·, πn.

a. If ⊕ is sequence then a WF-net constructed by
concatenating N1,N2, · · · , Nn which link the sink
place of Ni with the source place of Ni+1(1≤i<n)
is PTB.

b. If ⊕ is exclusive choice then a WF-net constructed
by bundling PTB WF-nets N1,N2, · · · ,Nn which
forms a selection of concurrent paths between
their source places and sink places is PTB.

c. If ⊕ is parallel then a WF-net constructed by join-
ing respectively all source places with a transition
tI , and sink places with a transition tO of PTB WF-
net N1,N2, · · · ,Nn is PTB. �

N1 shown in Fig. 4 (a) is PTB. Let us construct N1 from
the process tree shown in Fig. 5. For→(t2, t5) we construct a
WF-net composed of a path p2t2 p4t5 p7 based on Item (ii)-a)
of Def. 5. For ×(→(t3, t6),→(t4, t7)) we constructed a WF-
net by bundling paths p3t3 p5t6 p8 and p3t4 p6t7 p8 based on
Item (iii)-b). We can obtain N1 by bundling those WF-nets.

Lemma 2: A WF-net is PTB iff N is acyclic, bridge-less
and WS. �

Proof: The proof of “if” part: We make use of van Hee et
al. [15]’s ST-net†. We show the following: (i) An acyclic
bridge-less WS WF-net N is an ST-net. (ii) An acyclic,
bridge-less ST-net is PTB.

We first show that an acyclic bridge-less WS WF-net N
is an ST-net. Intuitively, ST-nets are constructed from SMs

†The set S of ST-net is the smallest set of nets N defined as
follows: (i) If N is a WF-net then N ∈ S; (ii) If N is an acyclic MG
WF-net then N ∈ S ; (iii) If N ∈ S, p is a place in N, and M ∈ S is a
tWF-net then N ⊗p M ∈ S; (iv) If N ∈ S, t is a transition in N, and
M ∈ S is a tWF-net then N ⊗t M ∈ S.

BIN AHMADON and YAMAGUCHI: STATE NUMBER CALCULATION PROBLEM OF WORKFLOW NETS
1133

and MGs by means of refinement†. The dual nets [6] of WF-
nets are called tWF-nets. From the definition of WS, there
are neither TP-handles nor PT-handles of any circuit in N.
This implies that N consists of a circuit c, PP-handles of c,
and TT-handles of c. Any PP-handle includes both termi-
nal nodes of a TT-handle, or includes none. We can look
for an SM WF-net M as a subnet of N, which consists of
PP-handles not including terminal nodes of any TT-handle.
This implies N = N⊗pM for some place p of a WF-net N .
Similarly, any TT-handle includes both terminal nodes of a
PP-handle, or includes none. We can look for an acyclic MG
tWF-netM as a subnet of N, which consists of TT-handles
not including terminal nodes of any PP-handle. This implies
N = N⊗tM for some transition t of a WF-netN . Repeating
these refinements, we can show that N is an ST-net.

Next we show that an acyclic bridge-less ST-net N is
PTB. Any acyclic bridge-less SM or MG WF-net is obvi-
ously PTB. LetN be a PTB WF-net, t a transition inN and
M a acyclic bridge-less MG tWF-net. Let M′ be a WF-
net obtained by extending a place to each source transition
and sink transition in M. Since N and M′ are PTB they
have process trees πN and πM′ . N⊗tM has a process tree
by replacing transition t in πN with πN . ThereforeN⊗tM is
PTB. In the similar way, N⊗pM is PTB.

The proof of “only if” part: If a WF-net is PTB,
then it is acyclic bridge-less WS. From Item (ii)-a) of
Def. 5 →(ι1, ι2, · · · , ιn) constructs an WF-net which is a
path. It is acyclic, bridge-less and WS. From Item (ii)-
b) of Def. 5 ×(ι1, ι2, · · · , ιn) constructs an acyclic bridge-
less SM WF-net. It is WS. From Item (ii)-c) of Def. 5
∧(ι1, ι2, · · · , ιn) constructs an acyclic bridge-less MG WF-
net. It is WS. From Item (iii) of Def. 5, for each operator ⊕,
⊕(π1, π2, · · · , πn) constructs a WF-net obtained by combin-
ing acyclic bridge-less WS WF-nets. Therefore the obtained
WF-net is also acyclic, bridge-less and WS. Q.E.D.

Theorem 2: A WF-net N is convertible to a process tree iff
N is acyclic, bridge-less and WS. �

This theorem means the necessary and sufficient condi-
tion on the convertibility problem. Any acyclic WS WF-net
is sound [16], so all the acyclic bridge-less WS WF-nets are
sound. This coincides with van der Aalst’s necessary con-
dition on convertibility. All acyclic WS WF-nets, however,
cannot always be converted to process trees because some
of them have bridges. This is the difference between van der
Aalst’s necessary condition and our necessary and sufficient
condition.

†LetN be a WF-net. Refinement of a place p inN with a WF-
netM yields a WF-net, denoted by N⊗pM, built as follows: p is

replaced in N byM; transitions in
N•p become input transitions of

the source place ofM, and transitions in p
N• become output transi-

tions of the sink place ofM. Refinement of a transition t inN with
a tWF-netM yields a WF-net, denoted byN⊗tM, built as follows:

t is replaced in N by M; places in
N•t become input places of the

source transition of M, and places in t
N• become output places of

the sink transition ofM.

By using the necessary and sufficient condition, let us
decide whether N1 shown in Fig. 4 (a) is PTB. N1 is acyclic
bridge-less WS. So N1 is PTB i.e. convertible to a process
tree.

Lemma 3: The following problem can be solved in poly-
nomial time: Given a WF-net N, to decide whether N is
PTB. �

Proof: We only have to show that each condition of The-
orem 2 can be checked in polynomial time. Acyclicity
is obviously decidable in polynomial time (See Ref. [17]).
Bridge-less property can also be decided in polynomial time
by searching for nodes connecting two parallel paths and
handles that does not split and join at the same nodes (See
Ref. [18]). We can also decide in polynomial time whether
a given WF-net is WS by applying a modified version of the
max-flow min-cut technique [4]. Q.E.D.

We have proposed a polynomial time algorithm to con-
vert a PTB WF-net to a process tree in Ref. [14].

5. Process Tree Based State Number Calculation

In this section, we propose a polynomial time algorithm to
calculate the state number by utilizing process tree.

Lemma 4: Let N and π be respectively a PTB WF-net and
its process tree. For each node v of π, π(v) denotes the sub-
tree of π whose root is v, N(v) denotes the subnet of N rep-
resented as π(v), and s(v) denotes the number of possible
states in N(v).

• If v is a leaf node then

s(v) = 2 (1)

• If v is an internal node then, let v1, v2, · · ·, vn be the chil-
dren of v,

– If v is sequence (→) then

s(v) =
n∑

i=1

(s(vi) − 1) + 1 (2)

– If v is exclusive choice (×) then

s(v) =
n∑

i=1

(s(vi) − 2) + 2 (3)

– If v is parallel (∧) then

s(v) =
n∏

i=1

s(vi) + 2 (4)

�

Proof: If v is a leaf node, N(v) is a PTB WF-net which
consists of one transition and its input and output places.
N(v) is illustrated in Fig. 6 (a). (N(v), [pI]) has two states,
[pI] and [pO], before and after the firing of the transition.
Since |R(N(v), [pI])|=2, we have s(v) = 2 =Eq. (1).

1134
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

If v is sequence (→), N(v) is a PTB WF-net constructed
by concatenating PTB WF-nets N(v1),N(v2), · · · , and N(vn)
so as to unite the sink place of N(vi) and the source place of
N(vi+1) (1≤i<n). N(v) is illustrated in Fig. 6 (b). Let p(i)

I

and p(i)
O denote respectively the source place and the sink

place of N(vi). In N(v), [pI] (=[p(1)
I]) is reachable to [p(1)

O],
[p(2)

I] (=[p(1)
O]) is reachable to [p(2)

O], · · · , [p(n)
I] (=[p(n−1)

O]) is
reachable to [p(n)

O] (=[pO]), because N(v1), N(v2), · · · , N(vn)
is sound. Since N(vi) and N(vi+1) share only p(i)

O (= p(i+1)
I),

(N(vi), [p(i)
I]) and (N(vi+1), [p(i+1)

I]) have different states ex-
cept [p(i)

O] (= [p(i+1)
I]). Therefore we have

R(N(v), [pI])

= (R(N(v1), [p(1)
I])\{[p(1)

O]}) ∪ · · ·
∪(R(N(vn−1), [p(n−1)

I])\{[p(n−1)
O]}) ∪ R(N(vn), [p(n)

I])

|R(N(v), [pI])|
=(|R(N(v1), [p(1)

I])|−1) + · · ·
+(|R(N(vn−1), [p(n−1)

I])|−1) + |R(N(vn), [p(n)
I])|

s(v) =
n∑

i=1

(s(vi) − 1) + 1 = Eq. (2)

If v is exclusive choice (×), N(v) is a PTB WF-net con-
structed by bundling PTB WF-nets N(v1),N(v2), · · · , and
N(vn) so as to unite respectively their source places and
all their sink places. N(v) is illustrated in Fig. 6 (c). Note
that pI=p(1)

I =p(2)
I = · · ·=p(n)

I and pO=p(1)
O =p(2)

O = · · ·=p(n)
O .

Since N(v1), N(v2), · · ·, and N(vn) share only the source
places and the sink places, (N(v1), [p(1)

I]), (N(v2), [p(2)
I]),

· · · , and (N(vn), [p(n)
I]) have different states except [pI]

(=[p(1)
I]=[p(2)

I] = · · · = [p(n)
I]) and [pO] (=[p(1)

O]=[p(2)
O] =

· · · = [p(n)
O]). Therefore we have

R(N(v), [pI])

=(R(N(v1), [p(1)
I])\{[p(1)

I], [p(1)
O]}) ∪ · · ·

∪(R(N(vn), [p(n)
I])\{[p(n)

I], [p(n)
O]}) ∪ {[pI], [pO]}

|R(N(v), [pI])|
=(|R(N(v1), [p(1)

I])|−2) + · · ·
+(|R(N(vn), [p(n)

I])|−2) + 2

s(v)=
n∑

i=1

(s(vi) − 2) + 2 = Eq. (3)

If v is parallel (∧), N(v) is a PTB WF-net con-
structed by bundling PTB WF-nets N(v1),N(v2), · · ·, and
N(vn) so as to have another source place and another
sink place. N(v) is illustrated in Fig. 6 (d). pI is con-
nected to p(1)

I , p(2)
I , · · · , and p(n)

I via an additional transition
tI . This means that [pI][N(v), tI〉[p(1)

I , p
(2)
I , · · ·, p(n)

I]. Since
N(v1), N(v2), · · ·, and N(vn) share no node, (N(v1), [p(1)

I]),
(N(v2), [p(2)

I]), · · · , and (N(vn), [p(n)
I]) have different states.

Therefore (N(v), [p(1)
I , p

(2)
I , · · ·, p(n)

I]) has a combination of
those states. Since N(v1), N(v2), · · · , and N(vn) are sound,
[p(1)

I , p
(2)
I , · · ·, p(n)

I] is reachable to [p(1)
O , p

(2)
O , · · ·, p(n)

O]. p(1)
O ,

p(2)
O , · · ·, and p(n)

O are connected to pO via another addi-
tional transition tO. This means that [p(1)

O , p
(2)
O , · · ·, p(n)

O]
[N(v), tO〉[pO]. Therefore we have

R(N(v), [pI])

=R(N(v1), [p(1)
I])×· · ·×R(N(vn), [p(n)

I])∪{[pI], [pO]}
|R(N(v), [pI])|
=|R(N(v1), [p(1)

I])| × · · · × |R(N(vn), [p(n)
I])| + 2

s(v)=
n∏

i=1

s(vi) + 2 = Eq. (4)

Q.E.D.
Based on Lemma 4, we propose a polynomial time al-

gorithm to solve the problem for the PTB WF-nets. To cal-
culate the number of all possible states in a PTB WF-net,
the proposed algorithm utilizes its process tree. The pro-
posed algorithm is based on Depth-First Search (DFS) [17].
The tree traversal is in post-order. Let v be the most recently
finished node† in the DFS, s(v) is the number of state at v
which is calculated. We propose the algorithm as follows:

�State Number Calculation of PTB WF-net�
Input: Process tree π of PTB WF-net (N, [pI])
Output: State number |R(N, [pI])|

CalculateStateNumberPTBWF-Net((N, [pI]), π)
1 v← the root of π
2 CalculateStateNumber(v)
3 Output s(v) as |R(N, [pI])|, and stop

CalculateStateNumber(v)
1 if v is a leaf node
2 s(v)← 2
3 if v is ‘→’
4 for each child u of v
5 CalculateStateNumber(u)
6 s(v)← ∑child u of v(s(u) − 1) + 1
7 if v is ‘×’
8 for each child u of v
9 CalculateStateNumber(u)
10 s(v)← ∑child u of v(s(u) − 2) + 2
11 if v is ‘∧’
12 for each child u of v
13 CalculateStateNumber(u)
14 s(v)←∏child u of v s(u) + 2

Theorem 3: The state number calculation problem can be
solved in polynomial time for PTB WF-nets with initial
marking [pI]. �

Proof: Algorithm�State Number Calculation of PTB WF-
net� can run in polynomial time because it is based on DFS.

Q.E.D.
As an example, we calculate WF-net N1 shown in

†A node is said to be finished if all of its children nodes have
been explored.

BIN AHMADON and YAMAGUCHI: STATE NUMBER CALCULATION PROBLEM OF WORKFLOW NETS
1135

Fig. 7 The execution of the proposed algorithm for the process tree of
N1.

Fig. 4 (a). The process tree is Π1=∧(→(t2, t5),×(→(t3, t6),
→(t4, t7))) as shown in Fig. 7 (a). We apply the proposed al-
gorithm to (N1, [p1]). Figure 7 shows the execution. For
each node v, the rectangle of its right side represents s(v).
(a) The state in which v2 was finished in the DFS. From
equation s(v) =

∑n
i=1(s(vi) − 1) + 1 which v is sequence

(→), then we have s(v2) = (s(v3)−1) + (s(v4)−1) + 1 = 3.
(b) The state in which v5 was finished. From equation
s(v) =

∑n
i=1(s(vi) − 2) + 2 which v is exclusive choice

(×), then we have s(v5) = (s(v6)−2) + (s(v9)−2) + 2 = 4.
(c) The state in which v1 was finished. From equation
s(v) =

∏n
i=1 s(vi) + 2 which v is parallel (∧), then we have

s(v1) = s(v2)×s(v5)+ 2 = 14. Thus the algorithm outputs 14
as |R(N1, [p1])|.

6. Evaluation and Application

6.1 Evaluation

We evaluate our algorithm with a tool we had developed
named Process Tree Analysis Tool (ProTAT) version 2.0
(See Ref. [14]). We can convert a given WF-net to a pro-
cess tree, then calculate the state number. The experiment
was done on Ubuntu Linux with Intel Xeon 2.4 GHz pro-
cessor and 4 GB memory. Note that calculation time also
includes convertibility check time and conversion time.

We took PTB WF-nets PTBi (i=1, 2, · · · , 20) as exper-
iment data (See Table 1). Figure 8 shows PTB1. PTBi+1 was

Table 1 Size and computation time for PTB WF-net.

WF-net |P| |T | |P|+|T | State Number Time [s]
PTB1 8 7 15 10 0.021
PTB2 15 14 29 28 0.041
PTB8 57 56 113 2,296 0.526
PTB14 99 98 197 147,448 6.571
PTB20 141 140 281 9,437,176 32.319

Fig. 8 PTB WF-net PTB1.

Fig. 9 Application of state number calculation.

constructed by replacing a place of PTBi with PTB1 by re-
finement [15] to increase the number of parallel paths. For
example, place p7 in PTB1 can be replaced with PTB1 itself
to produce PTB2, then PTB2 can be refinemented with PTB1

again to produce PTB3. The evaluation result is shown in
Table 1. Based on ProTAT result, the calculation took about
32 seconds for PTB20 with over 9 million states.

6.2 Application

Model checking is a promising method in analysis of Petri
nets. A model checking tool, SPIN has been widely used
in [19] and [20]. Yamaguchi et al. [19] utilized SPIN for
the verification of WF-net’s soundness. Hichami et al. [20]
also proposed a verification method of task execution in a
process chain with SPIN.

SPIN is available to a system with less than 1 million
states. Thus we apply our proposed method so that we can
decide whether we should use SPIN for a given WF-net.
Figure 9 shows our proposed application in model checking.
Before using SPIN, we check the state number of the input

1136
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

WF-net. If the state number is less than 1 million states, we
can proceed to model checking with SPIN. Otherwise, we
have to use other tools or split the WF-net into parts with
less than 1 million states and proceed to model checking.

7. Conclusion

In this paper, we formalized the state number calculation
problem. We showed that the problem is solvable and can-
not be solved in polynomial time for FC WF-nets with initial
marking [pI] if P�NP. Then for a given WF-net represented
as a process tree, we proposed a polynomial time algorithm
to solve the problem for the WF-net by utilizing the process
tree.

In our future work, we will include loop operator for
cyclic WF-net’s state number calculation. We will also
present an algorithm which utilizes state number and pro-
cess tree to divide big WF-nets for parallel model checking.

Acknowledgements

The authors would like to thank Mr. Takeshi Susaki for his
contribution to this work. This work was partially supported
by Interface Corporation.

References

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol.77, no.4, pp.541–580, 1989.

[2] G.J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual, Addison-Wesley, 2004.

[3] D.Y. Chao and Y. Fang, “Number of reachable states for simple
classes of Petri nets,” Proc. IECON 2011, pp.3788–3791, 2011.

[4] W.M.P. van der Aalst and K.M. van Hee, Workflow Management:
Models, Methods, and Systems, The MIT Press, 2002.

[5] W.M.P. van der Aalst, J.C.A.M. Buijs, and B.F. van Dongen, “To-
wards improving the representational bias of process mining,” Lec-
ture Notes in Business Information Processing, vol.116, pp.39–54,
2012.

[6] J. Esparza and M. Silva, “Circuits, handles, bridges and nets,” Lec-
ture Notes in Computer Science, vol.483, pp.210–242, 1990.

[7] W.M.P. van der Aalst, “Verification of workflow nets,” Lecture Notes
in Computer Science, vol.1248, pp.407–426, 1997.

[8] T. Susaki and S. Yamaguchi, “On process tree based calculation of
the number of states in Petri nets,” Proc. ITC-CSCC 2013, pp.84–87,
2013.

[9] J. Desel and J. Esparza, Free Choice Petri Nets, Cambridge Univer-
sity Press, 1995.

[10] J. Esparza and M. Nielsen, “Decidability issues for Petri nets,” Bul-
letin of the EATCS 52, pp.244–262, 1994.

[11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, Second ed., pp.998–1003, The MIT Press, 2001.

[12] A. Ohta and K. Tsuji, “NP-hardness of liveness problem of bounded
asymmetric choice net,” IEICE Trans. Fundamentals, vol.E85-A,
no.5, pp.1071–1075, May 2002.

[13] R.R. Howell, L.E. Rosier, and H. Yen, “Normal and sinkless Petri
nets,” J. Computer and System Sciences, vol.46, pp.1–26, 1993.

[14] M.A. Bin Ahmadon and S. Yamaguchi, “Convertibility and con-
version algorithm of well-structured workflow net to process tree,”
Proc. CANDAR 2013, pp.122–127, 2013.

[15] K.M. van Hee, N. Sidorova, and M. Voorhoeve, “Soundness and
separability of workflow nets in the stepwise refinement approach,”

Proc. ICATPN 2003, vol.2679, pp.337–356, 2003.
[16] S. Yamaguchi, “Polynomial time verification of reachability in

sound extended free-choice workflow nets,” IEICE Trans. Funda-
mentals, vol.E97-A, no.2, pp.468–475, Feb. 2014.

[17] R.E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
J. Comput., vol.1, no.2, pp.146–160, 1972.

[18] S. Dohi and S. Yamaguchi, “On properties and a decision method of
bridge-less workflow nets,” IEICE Technical Report, MSS2013-94,
2014.

[19] S. Yamaguchi, M. Yamaguchi, and M. Tanaka, “A model check-
ing method of soundness for acyclic workflow nets using the SPIN
model checker,” Int. J. INFORMATION, vol.12, no.1, pp.163–172,
2009.1.

[20] O.E. Hichami, M.A. Achhab, I. Berrada, R. Oucheikh, and B.E.E.
Mohajir, “An approach of optimization and formal verification of
workflow Petri nets,” J. Theoretical and Applied Information Tech-
nology, vol.61, no.3, pp.486–495, 2014.

Mohd Anuaruddin Bin Ahmadon gradu-
ated from Kumamoto National College of Tech-
nology, Japan, in 2012. He received his B.E. de-
gree from Yamaguchi University, Japan in 2014.
He is currently a graduate student at Yamaguchi
University, Japan. His research interest includes
Petri net and its application to software engi-
neering. He is a member of IEEE.

Shingo Yamaguchi received the B.E., M.E.
and D.E. degrees from Yamaguchi University,
Japan, in 1992, 1994 and 2002, respectively.
He was a Visiting Scholar in the Department
of Computer Science at University of Illinois at
Chicago, United States, in 2007. He is currently
an Associate Professor in the Graduate School
of Science and Engineering, Yamaguchi Univer-
sity, Japan. His research interests are in the area
of net theory and its applications. He is a senior
member of IEEE.

