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SUMMARY  Simulating the mobility of mobile devices has always
been an important issue as far as wireless networks are concerned because
mobility needs to be taken into account in various situations in wireless
networks. Researchers have been trying, for many years, to improve the
accuracy and flexibility of mobility models. Although recent progress of
designing mobility models based on social graph have enhanced the per-
formance of mobility models and made them more convenient to use, we
believe the accuracy and flexibility of mobility models could be further im-
proved by taking a more integrated structure as the input. In this paper,
we propose a new way of designing mobility models on the basis of rela-
tional graph [1] which is a graph depicting the relation among objects, e.g.
relation between people and people, and also people and places. Moreover,
some novel mobility features were introduced in the proposed model to
provide social, spatial and temporal properties in order to produce results
similar to real mobility data. It was demonstrated by simulation that these
measures could generate results similar to real mobility data.

key words: mobility model, relational graph, social graph, contact dura-
tion, inter-contact time

1. Introduction

In recent years, ad-hoc communications such as Mobile
Ad-hoc Networks (MANET), Vehicular Ad-hoc Networks
(VANET) [2] and Opportunistic Networks [3] have drawn
the attention of many researchers, and a variety of routing
protocols and applications were put forward for these net-
works in the literature. However, in view of the intrinsic
characteristic of mobility within these networks, the feasi-
bility of such protocols and applications must be proved in
the context of realistic movement of wireless devices.

Although the transmission of data is conducted by
wireless devices, in the research of mobility of wireless de-
vices, attention is focused on people because mobile devices
are carried by people most of the time, so the mobility prob-
lem of wireless devices is actually the mobility problem of
people.

Although a number of experiments have been carried
out to collect real movement traces in the past, real mobility
datasets have rarely been used for the evaluation and testing
of protocols and applications for wireless networks [4] due
to the difficulty in implementation and lack of generality. In
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contrast, synthetic mobility models are generally preferred
due to their theoretical attributes, which make them rela-
tively easier to use.

The earliest and most widely used mobility model is
the random waypoint model [5] in which a person’s speed,
direction, and destination are assumed to be random. It is
widely used in simulation and evaluation because of its sim-
plicity. However, it fails to consider any practical influence
on a person’s movement, and the results of this model were
proved to be largely at variance with real mobility data [6].

Researchers have since identified temporal and spatial
properties such as location preferences and difference be-
tween weekday and weekend that affect a person’s move-
ments. Their incorporation has made mobility models more
accurate and reality-oriented [7].

Recently, researchers have found that a person’s so-
cial relation has great influence on his or her movements,
prompting the emergence of social mobility models which
concentrate primarily on people’s social networks. In pre-
vious studies of social mobility models, social relationships
were assumed to be the driving force of a person’s move-
ments. However, social relationships cannot account for all
aspects of human movement. For example, the notion of fa-
miliar strangers [8] states that some people frequently cross
paths although they do not actually know each other. It is
estimated that social relationships can explain only about
10% of a person’s movements as derived from cell phone
data and up to 30% as derived from location-based social
networks [9]. Therefore, social, spatial as well as temporal
properties all play important roles in the building of mobility
models. However, most mobility models consider only one
or two properties, and for those which do consider all prop-
erties, they don’t have an integrated structure to deal with
different properties. Such an integrated structure is benefi-
cial to consider time variances of spatial and social factors,
which have some correlation; for example, the social and
spatial factors of a person on weekdays would be affected
by her or his work style, while those factors on weekend
would be affected by her or his private life.

In this paper, we propose a novel way of modeling hu-
man movement on the basis of relational graph. Relational
graph is a graph depicting the relation among objects (e.g.
relation between people and people, and also people and
places). We believe that relational graph could facilitate the
usage of mobility models compared with social graph by
incorporating social properties and other properties includ-
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ing spatial and temporal properties altogether. Since as we
mentioned above, any prior work did not present such an in-
tegrated structure of mobility, to the best of our knowledge,
this is the world-first one.

Furthermore, we propose some new spatial and tem-
poral properties based on real life expefrience and some
new metrics for evaluating mobility models which we think
could have significant value in the simulation and evalua-
tion of routing protocols in MANET or VANET. Simula-
tion demonstrated that these measures have produced results
similar to real mobility data.

The structure of this paper is as follows: Section 2 gives
a brief overview of recent related work in the research of
mobility models. Section 3 gives the definition and details
of relational graph used in this research. Section 4 describes
the system model of our proposed mobility model. Section 5
compares the simulation results of our proposed model with
real mobility data and previous mobility model in both con-
ventional metrics and new metrics proposed in this paper.
Section 6 concludes with a summary of the key points and a
discussion of possible future research directions.

2. Related Work

In this section, we discuss recent progress in the research of
mobility models.

The first mobility model putting forward the idea that
mobility models should incorporate social relations is the
Community-based Mobility Model (CMM) [4]. CMM is
based on the assumption that the mobility patterns of de-
vices are driven by people’s movement and the main factor
controlling a person’s movements is his or her social rela-
tionships. This model generates social network using social
network theory and detects communities by community de-
tection algorithm. Then each community is associated to a
certain location, and the nodes representing people move to-
ward their goal which is calculated from the ratio of social
relationships.

Several improved models of CMM have thus been
put forward. The Home-cell Community-based Mobil-
ity Model [10] (HCMM) introduced the properties of loca-
tion attraction and preference for short distances into the
community-based mobility model. In HCMM, every user
is assumed to belong to one main social community and a
home cell is assigned to each social community. The home
cell has strong attraction toward those nodes which are as-
signed to it while other cells only have a relatively low at-
traction toward those nodes. HCMM is the first mobility
model which combines social attraction together with spa-
tial attraction.

The Enhanced Community-based Mobility Model [11]
(ECMM) further enhances both the accuracy and flexibility
of community-based mobility models. By introducing mo-
bility characteristics like pause time and group movement,
ECMM has achieved a result more similar to real mobil-
ity dataset than previous community-based mobility mod-
els. By separating the social network model from the con-
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ventional community-based mobility model, ECMM is able
to take arbitrary social networks as its input, thus enabling
it to generate mobility traces of arbitrary social networks.

Besides the community-based mobility models, there
are other mobility models which center on social relations.
Daniel Fischer et al. presented a General Social Mobility
Model (GeSoMo) [12] which is the first mobility model
leveraging the concept of separating simulation model from
the input data of social network, thus improving the flexi-
bility of GeSoMo. In GeSoMo, location attraction and so-
cial attraction were also introduced, moreover, a new feature
of repulsion between nodes was introduced to simulate the
phenomenon of avoiding meeting people with weak social
relation. Ana Gainaru et al. [13] designed a mobility model
using social networks for the simulation of VANETSs which
takes into account the social relationship between vehicles.
Their mobility model automatically generates entry and exit
points for all vehicles and then designs the routes for all
of these points. Vincent Borrel et al. proposed SIMPS [6]
which was based on human feature in sociology that each
individual will try to regulate her socialization to her own
sociability by the effect of her actions. SIMPS consists of
two parts, social motion influence and motion execution unit
which exerts social and spatial influence on the movement
of human beings.

Apart from social mobility models which regard social
relation as the main driving force of people’s movement,
some mobility models focus on spatial properties while oth-
ers focus on temporal properties.

The working day movement model [14] put forward
by Frans Ekman et al. captured several different mobility
features at a lower level by combining different movement
model referred as submodel. Wei-Jen Hsu et al. proposed
Time-Variant Community mobility model (TVC) [15] which
focuses on periodical re-appearance at same locations and
skewed location visiting preferences observed in mobility
dataset.

P. Venkateswaran et al. [16] proposed a mobility model
in MANET which focused mainly on spatial properties like
pause time and obstacles. Kyunghan Lee et al. presented
SLAW [17] which captures spatial mobility features like
power-law flights and fractal waypoints in mobility traces.
Power-law flights mean the power-law distribution of human
walks in pause time. Fractal waypoints mean people are
always more likely to be attracted to more popular places.
Alessandro Mei et al. proposed SWIM [18] which is a sim-
ple mobility model for ad hoc network. SWIM was designed
using simple and clear algorithms which lack in social and
temporal properties of human movement.

3. Relational Graph
3.1 Definition of Relational Graph
In this subsection, we define the concept of relational graph.

Relational graph is a graph which describes the relation be-
tween not only people and people, but also between people
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Fig.1  An example of relational graph.

and other objects, for example people and places. In previ-
ous researches of mobility models, social graph was taken as
the input for mobility models. Relational graph can be con-
sidered as a further development from social graph which
only depicts the relation between people and people. And
we believe that relational graph could facilitate the usage of
mobility models compared with social graph by incorporat-
ing social properties and other properties including spatial
and temporal properties altogether.

Figure 1 shows an example of relational graph. In the
relational graph, nodes can represent people or places com-
pared with that of social graph where nodes only represent
people. In Fig. 1, solid lines describe the relation between
people and people, and dashed lines describe the relation
between people and places. In social graph, a number rang-
ing between 0 and 1 is given to each edge, and is referred
as weight. The weights associated with each edge of the
network are used to model the strength of the interactions
between individuals [19]. Same as the social graph, our re-
lational graph also uses a number ranging between 0 and
1 to model the strength of interactions. However, since
nodes can represent people or places in relational graph, the
strength of interactions not only includes interactions be-
tween people and people but also includes interactions be-
tween people and places.

While social graph can be represented by a matrix
when used as input of mobility models, relational graph re-
quires two or more matrices in order to represent both the
relation between people and people, and relation between
people and other objects.

Figure 2 shows an example of using matrices to rep-
resent the relational graph in Fig. 1. Matrix M, describes
the relation between people and people. Matrix M, de-
scribes the relation between people and places. In Matrix
M), both rows and columns represent people while in Matrix
M, columns represent people and rows represent places.

3.2 Generating Relational Graph Using Lifemap Dataset
In our mobility model, the input data of relational graph was

calculated from a mobility dataset called Lifemap [20]. The
reason why we chose Lifemap is that this mobility dataset
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Fig.2  Matrix representation of relational graph.

not only consists of location information like identities of
AP but it also contains specific geographical information
which is the longitude and latitude of each place, making
it easier in terms of simulation.

A record of the Lifemap dataset consists of user ID,
ID of the access point the user is associated with, and the
start and end time of the association. User IDs and access
point IDs become nodes of people and places in the rela-
tional graph, respectively. The method of getting the re-
lational graph is that first we took the first one quarter of
mobility data of every person in Lifemap based on temporal
sequence. Then we calculated and enumerated all contacts
between people and people as well as contacts between peo-
ple and places, and how long the duration of those contacts
are. Finally, we have the duration of each contact enumer-
ated in step two divided by a threshold A (e.g. 1800 seconds)
to get an averaged value and sum up the value of the items
representing contacts between same person and person or
same person and place, and let each averaged value divided
by the sum of all averaged value of a certain person that
value is involved to get a weight of an edge in the relational
graph.

The weight of the edge between nodes i and j, w;; is

defined as:
CD,,
1

- CD, CD,
2ikeM, [Tk] + 2keM, [Tk]

)]

Wi, j

where CD,; is a total time of contact durations between
nodes i and j. Lambda is a parameter. [X] means the
Gaussian symbol; it indicates the maximum integer that is
equal or smaller than X. If nodes i and j are people, w; ;
goes to M, while it goes to M, if node j is a place.

4. System Model
In order to make our model easier to use, our model inher-

ited the feature of separating the input data from the mobil-
ity model put forward by Fischer et al.[12]. After having
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the input information of relational graph, a number of nodes
representing people are generated and their related informa-
tion is initialized. At first, each node is placed randomly
then a goal is given to each node, and during each time slot,
each node moves toward its goal. After reaching its goal, a
node stays there for a period of time. It leaves for the next
goal in accordance with a goal deciding algorithm, which
will be discussed in detail in the following paragraphs.

In our model, people and places are represented by
nodes just as how they are represented in the relational
graph. However, only those nodes representing people are
able to move in the mobility model. The entire map is
made up of many grids which could be understood as a
block in the real map. The probability of a node i decid-
ing node k as the destination is referred as P(goal = node k),
and this probability could be influenced by the relation be-
tween these two nodes in the relational graph referred as
P,.(goal = node k) and the distance between these two nodes
in the mobility model referred as P,(goal = node k). The
detailed equation will be explained in the following subsec-
tions.

Figure 3 shows the mobility features in our model and
their links with relational graph. In Fig. 3, “RG” means Re-
lational Graph. The details of these mobility features are
explained in the following subsections.

4.1 Social Properties

Since relational graph consists of social information, there-
fore our model is influenced by the social relation between
people and people. However, since our relational graph
combines together social information like relation between
people and people and spatial information like relation be-
tween people and places, the algorithm of deciding the des-
tination according to relational graph involves both relation
between people and people and relation between people and
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places. The influence of relational graph on the probability
of a node i deciding node k as the destination is as follows:

Wi /2ix

Djem, Wij + X jen, Wij

P,(goal = node k) = )

where w; ; means the weight between node i and node j in
relational graph, and M| represents the matrix describing
relation between people and people while M, represents the
matrix describing relation between people and places.

In Eq. (2), °/" means ‘or’. That is, if nodes i and j are
people, w; ; goes to M, while w; ; goes to M, if node j is a
place.

The probability of a node i deciding node k as the des-
tination in terms of relational influence is the proportion of
the weight between node i and node k either in M; or M,
because node k could be either people or place, to the sum
of weight between node i and all other nodes both in M, and
M,. If node £ is a person, then the destination of node i will
be the current destination of node k. If node k is a place,
then the destination of node i will be just the place that node
k is representing.

4.2 Spatial Properties
4.2.1 Spatial Influence in Relational Graph

As mentioned in the previous section, since relational graph
contains relation between people and places, the influence of
people’s spatial preference can be represented by relational
graph together with social relation. As shown in Eq. (1),
spatial influence is described by matrix M, which depicts
relation between people and places.

4.2.2 Distance Factor

In real life, people generally prefer to go to closer places
than to more distant places [18]. The factor of distance at-
traction is introduced to simulate this preference.

We found that the mechanism of distance attraction fol-
lows a power law distribution with a negative exponent. The
equation is calculated from statistical analysis of data of the
travel distance in NHTS [21]. Then the influence of distance
on the probability of a node i deciding node k as the desti-
nation is as follows:

—-b
axl., &

b
2 jeM, ax;; + 2 jem, AX

P4(goal = node k) = (3

ij
where x refers to the distance between nodes and constant
a and b are calculated from the fitted curve of NHTS data
produced by MATLAB as shown in Fig.4. In a practical
use of our method, we might need to conduct a survey like
NHTS in the region because NHTS might not be applicable
for other regions than the United States.

The probability of a node i deciding node k as the des-
tination in terms of distance influence is the proportion of
the probability of node i going to node k in the power law
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Fig.4 Power law distribution of distance influence.

equation of distance influence to the sum of the probability
of node i going to each node in the relational graph in the
power law equation of distance influence.

4.2.3 Pause Time

In real life, people usually stay for a period of time before
starting to move again when they arrive at a place. This
phenomenon is a highly important aspect in real mobility,
and it is represented by pause time in this model. After one
node reaches its current goal, the node will stay at that place
for a period of time instead of starting another movement
immediately.

In order to get a more accurate mathematical equation
of pause time, we made a statistical analysis of the pause
time of the Lifemap dataset. As will be discussed later, since
we also use this mobility dataset as the comparison of the
simulation results, the analysis of pause time was based only
on part of this dataset. By analyzing the dataset, we discov-
ered that basically there are two kinds of pause pattern. One
is that most of the time people tend to stay at most places for
only a short period of time, and the other one pattern is that
people tend to stay at one or two places (e.g. home or work
place) for very long time. We label nodes representing the
former places as non-key nodes and nodes representing the
latter places as key nodes. Then we found that the distribu-
tion of pause time for both key nodes and non-key nodes are
the superposition of several Gaussian distributions as shown
in Fig. 5. Therefore, the pause time in our model is predi-
cated on a mathematical equation which is the superposition
of several Gaussian distributions using mathematical soft-
ware like MATLAB. However, when we practically use our
model in a region, we would have to first observe actual mo-
bility in the region to obtain the distribution of pause time.

4.2.4 Alteration of Speed

As mentioned by [22], and to the best of our knowledge
there is no mobility model which includes the alteration of
speed so far. In our model, the alteration of moving speed
was introduced, the mechanism of which is nodes have high
speed when they are distant from their destination and their
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speed will be reduced when they are within 1000 meters
from their destination. This is to simulate the phenomenon
in real life that people travel by cars or subways or other
high speed transportation methods at first and then lower
their speed (e.g. walking) before reaching the final goal.

4.3 Temporal Properties
4.3.1 Increase of Contact Probabilities

Another phenomenon we found by analyzing the Lifemap
dataset was that people tend to revisit some places fre-
quently, and these places are exactly the same as the places
referred as key nodes in the previous subsection. This phe-
nomenon could be explained as people’s regular shuttling of
home and work place in real life.

In order to simulate this phenomenon, we took part
of the Lifemap dataset and added up the number of inter-
contact time (time duration between consecutive contact) in
each length and calculated the probability. As shown in
Fig. 6, after time = 40000s which is roughly half a day,
the probability of inter-contact time declines as the time
length increases which indicates that the probability of peo-
ple going to home or work places increases as time went
on. Therefore, we introduced a power law equation which
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is the y-axis symmetry of the fitted curve shown in Fig. 6 to
raise the probability of contact between people and their key
nodes as time passing by.

4.3.2 Update of Relational Graph

As put forward by [23], the input of mobility model might
change over time. In order to get the results that are closer to
the Lifemap dataset in long term situation, it is of great im-
portance to update the input data since relation between peo-
ple and people or between people and places could vary with
time. The relational graph in our model is updated whenever
there is a contact between nodes whose duration are greater
than the threshold A mentioned in Sect. 3.

4.4  Goal Deciding

The calculation of the destination of a node is based on both
the influence of relational graph and the influence of dis-
tance. The probability of a node i deciding node k as the
destination is as follows:

P(goal = node k) = a * P,(goal = node k)+

“)
B * Py(goal = node k)

where « and S are constant that influence the weight of rela-
tional graph and distance. It should be pointed out that since
the sum of all probabilities must be less than or equal to 1
so the sum of @ and S must be 1. Since we suppose that
both relational graph and distance have the same influence,
therefore the value of @ and 3 is equal in our model.

We will prove this assumption is correct by the simu-
lation results in the following section. However, it should
be left as a future work how to optimize « and S because it
might depend on the region we are going to apply our model
to.

5. Simulation and Evaluation

The objective of this section is to prove that the pro-
posed model can reproduce characteristics of a real mobil-
ity dataset from simulation results. In the simulation of our
model, the mobility dataset Lifemap mentioned in the pre-
vious section was used for the assessment of the proposed
model. Therefore, we set our simulation parameters as rel-
evant as possible to the parameters of Lifemap. The sim-
ulation of our mobility model was carried out in a map of
88km x 110km, and the size of each grid was 220m x 220m.
The number of nodes representing people was 67 while the
number of nodes representing places was 4512, and the
range of transmission for a mobile device was considered
to be 220 meters. The speed of the nodes was randomly
distributed from 10m/s to 25m/s when the nodes were far
from the destination, and when the nodes were close to the
destination, the speed range changed to 1m/s to 5m/s. The
duration of simulation was 2 months.

Although the input data of relational graph and some
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of our analysis were based on Lifemap, it should be noted
that the relational graph and the analysis were made from
the first one quarter of Lifemap based on temporal sequence
which is part of the Lifemap dataset not the entire dataset.
The reason why the first one quarter of Lifemap is used is
that it contains enough mobility data to produce relational
graph while the least possible quantity of Lifemap dataset
is used since Lifemap dataset is also taken as comparison.
And we will compare the results of our mobility model with
the entire Lifemap dataset.

In order to measure the performance of our mobility
model, we used the metrics of inter-contact time and con-
tact duration. Inter-contact time is the time duration between
two consecutive contacts of the same people. Contact dura-
tion is the time duration of one contact. Both metrics are
of great importance in ad hoc networks, and particularly in
opportunistic mobile network [24]. Contact duration repre-
sents the length of a contact, therefore affecting the total
amount of information that could be transmitted during a
contact. Inter-contact time often indicates the frequency and
probability of being in contact, thus strongly influencing the
speed of relaying information.

Apart from the results of our mobility model and the
Lifemap dataset, the result of the generally accepted mo-
bility model CMM was also introduced as a bench mark
to show other mobility models can not easily reproduce the
characteristics of the Lifemap dataset. Complementary Cu-
mulative Distribution Function (CCDF) was used to show
the distribution of probabilities of contact duration and inter-
contact time.

Figures 7 and 8 show the CCDF of contact duration
and inter-contact time between people and people of our
proposed model, CMM and different editions of Lifemap
in terms of time period. In these figures, “1/4 of Lifemap”
means results from the first one quarter of Lifemap based
on temporal sequence. “1/2 of Lifemap” means results from
the first half of Lifemap based on temporal sequence. “3/4
of Lifemap” means results from Lifemap except the last one
quarter based on temporal sequence. The reason why the
results of different editions of Lifemap are given will be ex-
plained later. From these figures, it is noticeable that the
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Fig.7  Contact duration between people and people.
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results of the proposed model are close to the results of
Lifemap dataset where the results of CMM are not the same
as the results of the other two. We think that CMM’s exces-
sive focus on social property might account for the differ-
ences.

However, it is noted that the curve representing one
quarter of Lifemap is little different from the other curves
representing Lifemap. In Fig. 8, there are less inter-contacts
from time = 400s to time = 2000s than other editions
of Lifemap while in Fig.7, although slightly, there are
more contacts after time = 100000s than other editions of
Lifemap. Therefore, we took a close look at the Lifemap
dataset and found that there was a problem caused by
AP handover when calculating contact duration and inter-
contact time between people and people for the Lifemap
dataset. When people go from regions to regions which are
sensored by different APs, although they are still in contact
in real life, it looks like two or more contacts in the dataset.
This problem reduces the probability of long time contact
duration and increases the probability of short time inter-
contact time, thus causing some errors when using contact
duration and inter-contact time between people and people
as metrics. Because the time span of one quarter of Lifemap
is shorter than other editions of Lifemap, it contains less
long contacts where people moving among different APs,
therefore it is less influenced by AP handover problem than
other editions of Lifemap. As one way to solve the AP
handover problem, we think that contact duration and inter-
contact time between people and places could act as a com-
plementary metrics because these two metrics are not in-
fluenced by the handover of APs. And these kind of met-
rics also make sense when it comes to routing protocols in
MANET or VANET using landmarks as a relay such as [25]
because they could provide information regarding contact
between mobile nodes and those landmarks.

Figures 9 and 10 show the CCDF of contact duration
and inter-contact time between people and places of our
proposed model, CMM and different editions of Lifemap
in terms of time period. In these figures, the results of all
editions of Lifemap dataset are close which explains there
is no influence from the AP handover problem. As shown
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in these figures, the results of the proposed model are close
to the results of compared real mobility. Because of CMM'’s
deficiency in spatial and temporal properties, from these fig-
ures, the result of CMM is clearly far from the ones of the
real mobility datasets.

6. Conclusion

In this paper, a mobility model based on relational graph
as well as some new evaluation metrics and new mobility
features were proposed. Relational graph is a graph which
depicts relation between different objects, including relation
between people and people, and between people and places.
The introduction of relational graph improves the flexibility
of mobility model while facilitating the usage of new evalu-
ation metrics of contact duration and inter-contact time be-
tween people and places. In order to prove the results of our
proposed mobility model, real mobility dataset of Lifemap.
It was shown that our proposed model produced results sim-
ilar to the Lifemap data.

If we would like to use our model in performance eval-
uation of network systems, first we would use a real mobil-
ity dataset to evaluate a network system, and then we could
use a simulated mobility data (re)produced by the proposed
model to further evaluate the network system. Even if the
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available datasets of real mobility is limited, we can pro-
duce a lot of datasets with the same characteristics as the
real mobility, which would be helpful to ensure the general-
ity of performance results.

Our future work is further comparative evaluations

with other mobility models like HCMM, GeSoMo, and
SWIM. Another future work is to consider the optimality
a and S in Eq. (4).
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