272

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.2 FEBRUARY 2015

| LETTER Special Section on Reconfigurable Systems

Distributed Synchronization for Message-Passing Based Embedded

Multiprocessors

Hao XIAO'™, Member, Ning WU', Fen GE', Guanyu ZHU'", Nonmembers, and Lei ZHOU?, Student Member

SUMMARY This paper presents a synchronization mechanism to ef-
fectively implement the lock and barrier protocols in a decentralized man-
ner through explicit message passing. In the proposed solution, a sim-
ple and efficient synchronization control mechanism is proposed to sup-
port queued synchronization without contention. By using state-of-the-
art Application-Specific Instruction-set Processor (ASIP) technology, we
embed the synchronization functionality into a baseline processor, making
the proposed mechanism feature ultra-low overhead. Experimental results
show the proposed synchronization achieves ultra-low latency and almost
ideal scalability when the number of processors increases.

key words: embedded multiprocessors, synchronization, message-passing,
application-specific instruction-set processor

1. Introduction

In multiprocessors, the synchronization overhead, which in-
cludes the execution time, communication latency and traf-
fic contention, is known to have a significant impact on the
system’s performance and scalability. Conventional syn-
chronization implementations that utilize the atomic read-
modify-write instructions are known to suffer from seri-
ous traffic contention caused by remote polling [1]. There-
fore, most recent multiprocessors, like Tilera [2], use cache-
coherent approach on top of shared memory, which al-
lows polling to be performed at local cache. However,
such a solution does not resolve the power problem caused
by polling. Moreover, significant bus contention also oc-
curs when a processor releases the synchronization vari-
able, which leads to invalidations and subsequent misses
in all remote caches[3]. In order to address these prob-
lems, a hardware-supported solution is proposed in [4],
where a centralized hardware engine monitors all synchro-
nization requests globally and serves them in a first-in-first-
out (FIFO) order. In our previous work [5], [6], two cen-
tralized hardware engines are proposed to support the syn-
chronization for shared-memory and message-passing MP-
SoC architectures, respectively. Our recent work [7] further
optimizes the centralized controller in [6] by enabling it to
support fully queued lock synchronization. However, these
centralized solutions fundamentally introduce a bottleneck
when the system scales to more cores. Therefore, the pri-

Manuscript received April 30, 2014.
Manuscript revised July 29, 2014.

"The authors are with the College of Electronic and Informa-
tion Engineering, Nanjing University of Aeronautics and Astro-
nautics, Nanjing, 210016 China.

""The author is with the Shannon Lab, Huawei, China.
a) E-mail: xiaohao @nuaa.edu.cn
DOI: 10.1587/transinf.2014RCL0O001

mary objective of this work is to exploit distributed mod-
els performing synchronization in a decentralized manner,
rather than using any centralized engine. Moreover, experi-
mental comparisons to centralized hardware approaches are
analyzed in aspects of performance, scalability and area ef-
ficiency. In [3], a distributed synchronization model is pro-
posed, where each processor locally maintains a state of all
synchronization variables and participates in decentralized
protocol. However, this method is only applicable to shared-
bus architecture, which fundamentally limits its scalability
and constrains its feasibility in multiprocessor architectures.

In this paper, we present a distributed synchronization
model for message-passing based multiprocessors. Unlike
centralized methods that employ dedicated controllers to
manage all synchronization variables globally, the proposed
architecture distributes each variable to each single unique
processor. Local to each processor, a synchronization con-
troller maintains a precise state of the synchronization vari-
able assigned to it. To acquire and release a certain synchro-
nization variable, one processor explicitly sends a request to
the base processor, which either grants the access or rejects
it, and then queues the requester. We implement the pro-
posed synchronization mechanism using the ASIP method-
ology. Experimental results show the proposed synchroniza-
tion achieves ultra-low latency and almost ideal scalability
when the number of processors increases.

This paper is organized as follows. Section 2 illustrates
the proposed synchronization protocol, which is followed
by the hardware implementation and evaluation results in
Sect. 3. Finally, conclusions are drawn in Sect. 4.

2. Distributed Synchronization Protocol

This paper focuses on two most common synchronization
primitives: lock and barrier, which can be used as basic
blocks of most software synchronization routines. The lock
provides a mutual exclusion which allows only a single pro-
cessor to hold a lock at any one time, and the barrier is to
force a rendezvous of all processors.

2.1 Lock Synchronization Protocol

In the proposed synchronization model, each lock variable
is assigned a single unique processor. Local to each proces-
sor, two registers, QUEUE and AHEAD, are used to queue
the lock requests, whose management algorithms are illus-
trated in Figs. 1 and 2 respectively. The QUEUE is an N bit

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

LETTER

1) if (acquire-request-received)

2) QUEUE = QUEUE | PE_ID;

3) if (release-request-received)

4) QUEUE = QUEUE & ~PE_ID;
Note:
* QUEUE is an N bit vector, where N is the num. of total processors.
** PE_ID is the vector ID of the processor node that is sending the
request, e.g. node 3's vector ID is 0b100.

Fig.1 Lock QUEUE management in base processor.

lock_acquire(){
1) send acquire request;
2) if (grant) {hold lock and continue;}
3) if (reject) {
4) receive AHEAD from base;
5) suspend;} }

if(release_notification_received) {
1) AHEAD = AHEAD - [;
2) if (AHEAD ==0) {
3) send lock_retry request,
4) receive grant then continue;}
5) else {keep suspending;}}

Fig.2 AHEAD management in local processor.

PE1 @

EE— cquire
PEO ”cg?m (Base of Lock 1) &8 PE2

(Base of Lock 0) | 25 | ((ApgaD QUEUE @ (Base of Lock 2)

QUEUE 4—t 0—>2 ject” |(AHEAD)(QUEUE

gran
0 0b000 @ @ },‘ 0—1 0b000
_ ——/ °
— —

local ncqu;lz
- ®
— pr1)
) ?
PEO PE1 notj
(Base of Lock 1) PE2

(Base of Lock 0) | release AHEAD QUEUE (Base of Lock 2)

&
AHEADI(QUEVE) || 551 OBTTT retry |(AHEAD)(QUEUE
0 0b000)| grant Cobllﬂ) A 750 | owoe
—— A0 O] 00010 <) | —>

local notify grant

(b)

Fig.3 Lock synchronization protocol: (a) acquire lock, (b) release lock.

register, where N is the number of processor nodes. It repre-
sents the existing of processors currently holding and pend-
ing on a specific lock. Thus, an acquisition request sets the
requester’s vector bit to 1, and a release request, by contrast,
clears the lock holder’s vector bit. The AHEAD is a counter,
whose maximum value is N. It is local to each processor
for indicating the number of processors have requested the
same lock before it. Its initial value is zero, which allows
its local processor to attempt the acquisition. A positive re-
sponse enables the requester hold the lock with its AHEAD
unchanged. Whereas, a negative reply forces the requester
to suspend and update its AHEAD according to the follow-
ing value from the base processor. When a holder releases
its lock, the base informs all the processors pending on this
lock, making their local AHEAD decrease by one. Then, if
someone’s AHEAD becomes zero, it resumes immediately
to retry the lock. Otherwise, it keeps on suspending.

Figure 3 (a) illustrates a scenario whereby three proces-
sors use the proposed model to acquire /ock 1 sequentially.
Transition 1 represents PE0Q acquires first by sending a re-
quest to lock 1’s base processor PEI. Since the QUEUE
is initially empty, PE1 grants the acquisition (Transition 2),

273

1) if (QUEUE==constant vector) { /* reach barrier */
2) QUEUE = 0;

3) inform remote PEs;}

4) else {

5) QUEUE = QUEUE | PE_ID;
6) response reject, }

Note:

* QUEUE is an N bit vector, where N is the num. of total processors.
** PE_ID is the vector ID of sending processor node, e.g. node 3's
vector ID is 0b100.

Fig.4 Barrier QUEUE management in base processor.

PE1
(Base of barrier 1) | g—— PE2

barrier
PEO
(Base of barrier 0) @ (Base of barrier 2)

QUEUE reject ® jec QUEUE
0b000 ® 0b000

notify

Fig.5 Barrier synchronization protocol.

and meanwhile sets PEQ’s vector bit, 0b001, in QUEUE.
After PEO, PE2 acquires lock 1 sequentially (Transition 3).
Instead of grant, a reject is replied, because there has been
queued request already. In this case, the base processor
further sends a new AHEAD to PE2 (Transition 5), whose
value equals the sum of all bits in current QUEUE, and also
sets PE2’s vector bit in QUEUE. After being rejected, PE2
suspends and updates its local AHEAD according to the re-
ceived value. At last, the base processor, PE1, acquires lock
1 and deals with its local request internally (Transition 6).
Since lock 1 is still unavailable at this time, PE1 sets itself
in the QUEUE, updates its local AHEAD and then suspends.

Figure 3 (b) illustrates the scenario whereby PEO hands
over lock 1. In Transition 1/2, PEO sends a release re-
quest to PE1, which grants immediately enabling PEO to
proceed. Meanwhile, PE1 removes PEO from the QUEUE
and informs this release to all pending PEs (Transition 3).
It is noteworthy that PE1 signals itself internally rather than
sending messages. The release notifications make PE1 and
PE2, both of which are pending on lock 1, decrease their
local AHEAD by 1. Then, PE 2’s AHEAD becomes 0, and
thus retries lock 1 immediately (Transition 4/5). By contrast,
PEI keeps on suspending

2.2 Barrier Synchronization Protocol

In the proposed synchronization model, barrier is also well-
supported in a way similar to the lock. Figure 4 illustrates
the functionality required to maintain the barrier QUEUE
and Fig.5 shows a barrier synchronization scenario using
the proposed model. In Fig.5, Transition 1 to 4 represent
PEO and PE2 reach the barrier successively and send their
barrier requests to the base processor respectively. Since
the last PE has not arrived yet, the base processor rejects
the requests, and sets the vector bits of arrived PEs in the
QUEUE. When PEl finally arrives (Transition 5), all re-
quired PEs have reached the barrier, which is indicated by
the condition that current QUEUE equals a decided constant
vector. Then, the QUEUE is cleared to zero, and all the

274

pending processors, whose vector IDs are previously saved
in QUEUE, are signaled to resume (Transition 6). It is note-
worthy that, unlike the lock protocol, barrier protocol is not
sensitive to the arriving order, and thus the AHEAD register
is unused.

3. Implementation and Evaluation
3.1 Implementation

We implement the proposed synchronization model in our
hybrid shared-memory/message-passing MPSoC architec-
ture [6]. As shown in Fig. 6, this architecture consists of
two communication domains, shared-memory and message-
passing. The former connects all the processor nodes via
a conventional bus enabling them to have a shared address
space. The latter offers the MPSoC another on-chip net-
work to support fast inter-processor communication through
point-to-point message passing. Our proposed synchroniza-
tion model is built on top of the message-passing domain,
where all synchronization requests and responses are sent
through explicit messages. The synchronization protocol
proposed in Sect. 2 is implemented in each processor by us-
ing the state-of-the-art ASIP methodology, LISA [8].

The proposed synchronization model is programmed
according to our ASIP programming model [6]. A custom
instruction, msg_send, is used to implement the synchro-
nization request, which issues a single-word (32 bit) mes-
sage to a specified base processor. The synchronization
message consists of three portions, 16-bit lock/barrier 1D,
8-bit requester processor ID and 8-bit synchronization con-
trol token, e.g. lock acquisition or lock release.

3.2 Experimental Result

In this section, we present our experiments to evaluate
the performance of the proposed lock and barrier mecha-
nisms. For comparison, we also implement three other syn-
chronization models, one is the conventional polling model
and the other two are centralized contention-free models
for shared-memory (hereinafter, “SM”)[5] and message-
passing (hereinafter, “MP”) [6] architectures, respectively.
First, to evaluate the performance of the lock, we use
two micro-benchmarks introduced in [9]. In one bench-
mark, one processor acquires and holds the lock for a long

< Processor Inter-connection)

Comm.] Comm. Comm.) [nr
ge-p g
£ PE_0 g PE_1 g PE_n domain
8 - 8 - E -
3 73
3 3
< AHB Bus
T 7y 7y
v 3 2
HW Shared Private
Accelerater Memory Memory

Shared-memory domain

Fig.6 Hybrid shared-memory/message-passing MPSoC architecture.

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.2 FEBRUARY 2015

time while all the other processors request the lock and find
it busy. Then the holder finally releases the lock and the
benchmark begins, continuing until all processors are able to
acquire and release the lock a single time. This benchmark
measures the latency of the lock by letting each processor
to merely acquire the lock and release it immediately. The
other is a less contrived high-contention micro-benchmark,
which accesses the critical section a total of 3,200 times;
these accesses are distributed evenly among the processors.
Once in the critical section, a processor waits 800 cycles
before releasing the lock (this stall simulates access to, and
computation of, protected data). After release, the releasing
processor waits for a random time selected from a uniform
distribution. The mean of the distribution is five times the
critical section delay (4,000 cycles).

Figure 7 (a) shows the result of the first benchmark with
the increasing core counts of multiprocessors. In this figure,
a flat horizontal curve corresponds to ideal scalability — a
lock with performance independent of core count. We can
see that the proposed one is superior to all others in every as-
pect: the scalability is the best and the absolute latency is the
lowest. In more detail, the three contention-free lock mod-
els, the proposed one and the two centralized ones, achieve
almost ideal scalability. Whereas, the polling lock scales
poorly, which is due to the traffic contention caused by the
remote polling. Considering the latency, the SM-lock is the
worst, because it has to use interrupt mechanism for hand-
ing over the lock token. The polling lock is originally quite
fast. However, due to the poor scalability, its latency grows
rapidly as the core count increases. Both the proposed lock
and the MP-lock use ASIP method on message-passing ar-
chitecture. Thanks to the decentralized mechanism, the pro-
posed one exhibits lower latency than the centralized coun-
terpart. Figure 7 (b) shows the execution time of the sec-
ond benchmark, where the polling lock scales poorly, caus-

Synthetic (Latency of Lock)

IS
=}
=]

—6— Proposed —8— MP —— SM —&— Poll

w
=3
S

=]

S
d
d
q

Time Per Lock (Nanoseconds)
5
3

o

7 g 16 32
Num. of Cores

(a)

i G, Lock Aquisiti

—©— Proposed —H8— MP —%— SM —&— Poll

0.01 2 7 8 76 32
Num. of Cores
(b)

Fig.7 Performance of lock benchmarks: (a) benchmark of /ock latency,
(b) benchmark of high-contention lock scenario.

LETTER

x 10°Synthetic (Latency of Barrier) Livermore Loops Kernel 2
2

—6— Proposed
O —&—MP 2!
5 1.5(| —o—sm
] —2—Poll o .1
2 22
= 1 @
s 8 04
- »
g —6— Proposed
805 20 —8—wmP
= —o—sM
205 —2&—Poll L
oe
2 4 8 16 32 1 2 4 8 16 32
Num. of Cores Num. of Cores
(a) (b)
o158 Livermore Loops Kernel 3 2 Livermore Loops Kernel 6
—6— Proposed
15| | B MP
" 27°H —o—sm
a 2 o —A—poll
3 3
] S
-3 -3
2 [
2 —o6— Proposed 05
—8—MP 2" L
—o—sm
20 —A— Poll »
2 4 8 16 32 2 4 8 16 32

Num. of Cores

Num. of Cores
(c) d

Fig.8 Performance of barrier benchmarks: (a) Synthetic, (b) Livermore
loops Kernel 2, (c) Livermore loops Kernel 3, (d) Livermore loops Kernel 6.

Table1 Area comparison of multiple synchronization models.
Architecture Proposed Centralized
Baseline ASIP SM [6] MP [7]
103637 106080
2
Area (um-) 543 59514 58142

ing its throughput to degrade rapidly. While using the three
contention-free locks, the execution time becomes constant
after the core count exceeds eight, which corresponds to de-
sirable lock throughput independent of core count. Among
these three models, the proposed lock further shows the best
performance, which is due to its lowest latency.

Figure 8 shows the performance of the four barrier
models with four benchmarks: a synthetic benchmark and
three kernels from Livermore loops (Kernel 2, 3, 6). For
more details of these benchmarks, please refer to our pre-
vious work [6]. As shown in Fig. 8 (a), the latency of the
polling barrier and the SM-barrier grows rapidly as the core
count increases. While the latency of the two ASIP-based
barriers vary only a little, which exhibits much better scal-
ability. Regarding the kernels shown in Fig. 8 (b)—(d), using
the proposed barriers lead to a constantly increased speedup
as the size of multiprocessor scales. Whereas, the kernels
using the polling barrier and SM-barrier only speed up at
the initial phase, and then start to degrade from a certain
point. This is because the performance degradation caused
by contention or interrupt overhead finally overwhelms the
speedup gained from parallel processing. Considering the
two ASIP-based barriers, the proposed one is better, which
is due to the lower latency and better scalability caused by
the proposed decentralized mechanism.

Finally, we evaluate the area efficiency of the proposed
synchronization. Table 1 lists the area of the proposed ASIP
and its baseline processor, as well as the other two central-
ized controllers [5], [6], under TSMC 90nm technology at

275

200MHz. As shown, the proposed synchronization mecha-
nism costs only 2443 pm? additional area per node, which
is much smaller than the other two centralized counterparts.
This area saving is due to that the proposed mechanism sim-
plifies the synchronization control logic and avoids the using
of FIFO memory.

4. Conclusion

This paper presents an efficient synchronization mechanism
for message-passing based multiprocessors. By implement-
ing the synchronization protocol in a completely distributed
manner, the proposed solution improves the synchroniza-
tion performance and scalability significantly. Furthermore,
the logic control of this solution is straightforward, which
eases the hardware implementation significantly. Finally,
our experiments confirm the effectiveness of the proposed
approach, which achieves ultra-low latency and almost ideal
scalability when the number of processors increases.

Acknowledgments

The authors would like to thank the partial support
from Natural Science Foundation of Jiangsu Province
BK20140834, Huawei Innovation Research Program and
National Natural Science Foundation of China 61376025
61106018.

References

[1] D.E. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach, Morgan Kaufmann, 1998.

[2] Tilera Corporation, Tile Processor Architecture Overview for the
TILEPro Series, 2011.

[3] C. Yu and P. Petrov, “Low-cost and energy-efficient distributed syn-
chronization for embedded multiprocessors,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol.18, no.8, pp.1257-1261, Aug. 2010.

[4] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient syn-
chronization for embedded on-chip multiprocessors,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol.14, no.10, pp.1049-1062,
Oct. 2006.

[5] H. Xiao, T. Isshiki, A.U. Khan, D. Li, H. Kunieda, Y. Nakase, and
S. Kimura, “A low-cost and energy-efficient multiprocessor system-
on-chip for UWB MAC layer,” IEICE Trans. Inf. & Syst., vol.E95-D,
no.8, pp.2027-2038, Aug. 2012.

[6] H. Xiao, T. Isshiki, D. Li, H. Kunieda, Y. Nakase, and S. Kimura,
“Optimized communication and synchronization for embedded multi-
processors using ASIP methodology,” IPSJ Trans. System LSI Design
Methodology, vol.5, pp.118-132, Aug. 2012.

[7]1 H. Xiao, T. Isshiki, D. Li, and H. Kunieda, “Efficient synchroniza-
tion for message-passing based embedded multiprocessors,” 2014 Int.
Conf. Information and Communication Technology for Embedded
Systems (IC-ICTES), Jan. 2014.

[8] LISA 2.0, Synopsys Inc., http://www.synopsys.com/

[9] F. Heinlein, “Optimized multiprocessor communication and synchro-
nization using a programmable protocol engine,” Technical Report,
CSL-TR-98-759, Stanford University, March 1998.

