
262
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

PAPER Special Section on Reconfigurable Systems

A Memory-Based IPv6 Lookup Architecture Using Parallel Index
Generation Units

Hiroki NAKAHARA†a), Tsutomu SASAO††b), Munehiro MATSUURA†††c), Hisashi IWAMOTO††††d), Members,
and Yasuhiro TERAO††††e), Nonmember

SUMMARY In the era of IPv6, since the number of IPv6 addresses
rapidly increases and the required speed is more than Giga lookups per sec-
ond (GLPS), an area-efficient and high-speed IP lookup architecture is de-
sired. This paper shows a parallel index generation unit (IGU) for memory-
based IPv6 lookup architecture. To reduce the size of memory in the IGU,
we use a linear transformation and a row-shift decomposition. A single-
memory realization requires O(2l log k) memory size, where l denotes the
length of prefix, while the realization using IGU requires O(kl) memory
size, where k denotes the number of prefixes. In IPv6 prefix lookup, since l
is at most 64 and k is about 340 K, the IGU drastically reduces the memory
size. Also, to reduce the cost, we realize the parallel IGU by using both on-
chip and off-chip memories. We show a design algorithm for the parallel
IGU to store given off-chip and on-chip memories. The parallel IGU has a
simple architecture and performs lookup by using complete pipelines those
insert the pipeline registers in all the paths. We loaded more than 340 K
IPv6 pseudo prefixes on the Xilinx Virtex 6 FPGA with off-chip DDRII+
Static RAMs (SRAMs). Its lookup speed is 1.100 giga lookups per sec-
ond (GLPS) which is sufficient for the required speed for a next generation
400 Gbps link throughput. As for the normalized area and lookup speed,
our implementation outperforms existing FPGA implementations.
key words: CAM, IP lookup, index generation unit, FPGA

1. Introduction

1.1 Demands for Lookup Architecture in IPv6 Era

The core routers forward packets by IP-lookup using
longest prefix matching (LPM). On Feb. 3, 2011, IPv4 ad-
dresses maintained by Internet Assigned Numbers Author-
ity (IANA) are depleted. Since transition from IPv4 ad-
dresses to IPv6 addresses are encouraged, IPv6 addresses
are widely used in core routers. Specifications for IPv6 ad-
dress are changed frequently due to the transition period.

Manuscript received May 5, 2014.
Manuscript revised September 8, 2014.
Manuscript publicized November 19, 2014.
†The author is with the Department of Electrical and Elec-

tronic Engineering and Computer Science, Ehime University,
Matsuyama-shi, 790–8577 Japan.
††The author is with the Department of Computer Science,

Meiji University, Kawasaki-shi, 214–8571 Japan.
†††The author is with the Department of Computer Science and

Electronics, Kyushu Institute of Technology, Iizuka-shi, 820–8502
Japan.
††††The authors are with REVSONIC Corp., Yokohama-shi, 220–

0012 Japan.
a) E-mail: nakahara@cs.ehime-u.ac.jp
b) E-mail: sasao@cs.meiji.ac.jp
c) E-mail: matsuura@cse.kyutech.ac.jp
d) E-mail: hisashi-iwamoto@revsonic.com
e) E-mail: yasuhiro-terao@revsonic.com

DOI: 10.1587/transinf.2014RCP0006

For example, IPv4-compatible IPv6 addresses are abolished,
and site-local addresses would be abolished. Thus, reconfig-
urable architecture is necessary to accommodate the change
of specifications. Since the core routers dissipate the major
part of the total network power dissipation [25], we cannot
use ternary content addressable memories (TCAMs) based
architecture [14] which dissipate much power. Thus, the
low-power lookup architecture is necessary.

To solve these problems, memory-based IP lookup ar-
chitectures on the FPGA have been proposed, which op-
posed to the TCAM. They dissipate lower power than the
TCAM [10]. Also, since the memory-based architectures
can reconfigure their contents, they accommodate changes
of specifications. Various memory-based IP lookup archi-
tectures have been proposed. They are roughly divided
into two: Tree-based [1], [8], [9], [16] and Hash-based [5],
[13], [17], [23]. Also, the hash-based compress tree [2] has
been proposed. To archive a high-speed lookup, a pipelined
binary-search tree (BST) has been proposed [10]. Also, the
given prefixes are partitioned into disjoint groups, and they
are realized by a pipelined BST (BST-IPv6) or by a binary
and ternary tree (2-3-tree-IPv6) [7]. To realize the CAM
function [22] with small size of memory, the index genera-
tion unit [20], [21] has been proposed. Also, its design meth-
ods have been proposed [18], [19].

Recent IP lookup architectures consist of both off-chip
and on-chip memories to reduce the on-chip memory on FP-
GAs. However, the following conditions should be satisfied
in the next generation network.

Large-capacity at low cost: As shown in Fig. 1, on
April. 24, 2014, the number of raw IPv6 address in the
border gateway protocol (BGP) was about 10 K. The num-

Fig. 1 Numbers of IPv6 prefixes in the routing table for border gateway
protocol (BGP) (26, April, 2014).

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

NAKAHARA et al.: A MEMORY-BASED IPV6 LOOKUP ARCHITECTURE USING PARALLEL INDEX GENERATION UNITS
263

ber of prefixes of IPv4 addresses increased by 25–50 K per
year [3]. With the rapid growth of IPv6 addresses, large-
capacity core routers become necessary for the future IPv6.
The advantage of FPGAs is that they can access multiple
embedded memories at a time, while the disadvantage is that
the sizes of embedded memories are smaller than that of
off-chip memories. Thus, the conventional memory-based
IP lookup architectures using on-chip memories on FPGAs
cannot realize a large IP lookup table. With many FPGAs,
we can realize a large IP lookup table. However, it increases
costs. The off-chip memories are less expensive than FP-
GAs. To realize a large IP lookup table with low cost, an
FPGA and off-chip memories should be combined together.

High-speed lookup: IEEE 802.3 working group is de-
veloping for the next standard for 400 Gbps link [6]. The
minimum Ethernet frame size is 64 Bytes, which consists
of IP Packets (46 Bytes), MAC address (12 Bytes), Port
type (2 Bytes), and FCS (Frame check sequence) (4 Bytes).
The minimum packet size for IPv6 is 46 Bytes (40 Bytes for
the header and 6 Bytes for the minimum payload). In this
case, the required speed is more than 1.087 giga lookup per
second (GLPS) for 400 Gbps link.

1.2 Proposed Architecture and Contributions of the Paper

This paper proposes a memory-based architecture satisfy-
ing above two conditions. When k prefixes with length l for
IPv6 are loaded in a single memory, the amount of mem-
ory necessary for lookup would be O(2l log2 k), which is too
large to implement. In this paper, we use a parallel index
generation unit (IGU) that reduces the total amount of mem-
ory to O(kl), where k denotes the number of prefixes [20].
Also, since the parallel IGU has a simpler architecture than
existing ones, it performs a fast lookup. This paper is an
extended version of [12]. The contributions in [12] were:

1. We loaded more than 340 K pseudo IPv6 prefixes on
the parallel IGU on a single FPGA. Its performance
was 1.002 GLPS (Giga lookups per second) which is
slightly lower than the next generation link speed.

2. We reduced the total amount of memory for IGUs by
using both a linear transformation and a row-shift de-
composition.

3. We compared the parallel IGU with existing implemen-
tations on FPGAs, and showed that the parallel IGU
outperforms others.

In this paper, the following new contributions are in-
cluded:

1 We realized the parallel IGU using both off-chip and
on-chip memories to reduce the total cost. Also, we
proposed a design method for the parallel IGU. Since
the proposed parallel IGU can be implemented by a
smaller FPGA, the total cost is reduced drastically.

2 To archive more than 1.087 GLPS lookups, we reduced
the delay time in the critical path of the parallel hard-
ware, and used complete pipelines. Its lookup speed

exceeds the next generation network link speed.

The rest of the paper is organized as follows: Sect. 2
introduces an architecture for LPM; Sect. 3 shows the IGU
and its memory reduction method; Sect. 4 shows the design
method for the IGU; Sect. 5 shows the parallel IGU using
complete pipelines; Sect. 6 shows the experimental results;
and Sect. 7 concludes the paper.

2. Architecture for IPv6 Prefix Lookup

2.1 IPv6 Prefix

The IPv6 address (128 bits) is an extension of the IPv4 ad-
dress (32 bits). This extension accommodates much larger
number of addresses than IPv4. An IPv6 address consists
of 64 bits network prefix (prefix) and 64 bits interface ID.
Since only network prefixes are used to make forwarding
decisions, this paper considers an architecture for the net-
work prefix lookup. Figure 2 shows the distribution of raw
IPv6 prefixes (26, April, 2014) [15]. The present IPv6 uses
prefixes with length 15 or more. Note that variance of the
numbers of prefixes with different lengths are quite large.
In this paper, we use this property to reduce the amount of
memory.

2.2 Longest Prefix Matching (LPM) Function

Definition 2.1: The LPM table stores ternary vectors of
the form VEC1 ·VEC2, where VEC1 consists of 0′s and 1′s,
while VEC2 consists of only ∗′s (don’t cares). The length
of prefix is the number of bits in VEC1. To assure that the
longest prefix address is produced, entries are stored in de-
scending prefix length. Let n be the number of bits for the
input, m be the number of bits for the output, and B = {0, 1}.
The LPM function [22] is a mapping �f : Bn → Bm, where
�f (x) shows the minimum address whose VEC1 corresponds
to �x. Otherwise, �f (�x) = 0m, where m = �log2(k + 1)�.

In the TCAM, entries are represented by the ternary
vectors. Let Pi be a set of the prefixes with length i, and
P = {P1, P2, . . . Pl} be a set of subsets of prefixes. Each Pl

is represented by an index generation function [21], which
is a mathematical model of the binary CAM.

Definition 2.2: [21] A mapping F(�X) : Bl → {0, 1, . . . , k},

Fig. 2 Distribution of raw IPv6 prefixes (26, April, 2014) [15].

264
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Table 1 Example of an index generation function f .

x1 x2 x3 x4 x5 x6 f
0 0 0 0 1 0 1
0 1 0 0 1 0 2
0 0 1 0 1 0 3
0 0 1 1 1 0 4
0 0 0 0 0 1 5
1 1 1 0 1 1 6
0 1 0 1 1 1 7

Otherwise 0

Fig. 3 Architecture for an LPM function.

is an index generation function with weight k, where
F(�ai) = i (i = 1, 2, . . . , k) for k different registered vec-
tors, and F = 0 for other (2l − k) non-registered vectors,
and �ai ∈ Bl (i = 1, 2, . . . , k). In other words, an index gen-
eration function produces unique indices ranging from 1 to
k for k different registered vectors, and produces 0 for other
vectors.

In the TCAM, an entry IP address corresponds to a reg-
istered vector, while a non-entry one corresponds to a non-
registered vector.

Example 2.1: Table 1 shows an index generation function
with weight 7.

An LPM function can be decomposed into a set of in-
dex generation functions. Thus, this paper focuses on a com-
pact realization of an index generation function.

2.3 Architecture for an LPM Function

Figure 3 shows an architecture for an LPM function real-
ized by index generation units (IGUs) and the priority en-
coder. The IGU realizes the index generation function with
a small size of memory. It consists of the main memory, the
AUX memory, the comparator, and AND gates. When an
index generation function with weight k is realized by a sin-
gle memory, the memory size would be O(2l log k), which is
too large for large l. In this paper, we use an IGU with O(kl)
memory size.

3. Index Generation Unit (IGU) [20]

Table 2 is a decomposition chart for the index genera-
tion function f shown in Table 1. The columns labeled
by X1 = (x2, x3, x4, x5) denotes the bound variables, while
rows labeled by X2 = (x1, x6) denotes the free variables. In
the IGU, the input variables are partitioned into the bound
variables and the free variables. The entry denotes the func-
tion value. We can represent the non-zero elements of f by

Table 2 Decomposition chart for f (X1, X2).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x5
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4 X1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x2

00 0 0 0 0 0 0 0 0 1 2 3 0 0 0 4 0
01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 5 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0
11 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0

x6, x1

X2

Fig. 4 Index Generation Unit (IGU).

the main memory whose input is X1. The main memory re-
alizes a mapping f̂ from a set of 2p elements to a set of k+1
elements, where p = |X1|. For example, in Table 2, |X1| = 4.
The output for the main memory does not always represent
f , since f̂ ignores X2. Thus, we must check whether f̂ is
equal to f or not by using the auxiliary (AUX) memory.
To do this, we compare the input X2 with the output for the
AUX memory by a comparator. The AUX memory stores
the values of X2 when the value of f̂ (X1) is non-zero. Fig-
ure 4 shows the index generation unit (IGU). First, the main
memory finds the possible index corresponding to X1. Sec-
ond, the AUX memory produces the corresponding inputs
X′2 (l − p bits). Third, the comparator checks whether X′2
is equal to X2 or not. Finally, the AND gates produce the
correct value of f .

Example 3.2: Figure 5 shows an example of the IGU re-
alizing the index generation function shown in Table 1.
When the input vector is X = (x1, x2, x3, x4, x5, x6) =
(1, 1, 1, 0, 1, 1), the corresponding index is “6”. First, the
main memory produces the index. Second, the AUX mem-
ory produces the corresponding value of X′2. Third, the com-
parator checks whether X2 and X′2 are equal. Since the cor-
responding input X2 is equal to X′2, the AND gates produces
the index. In this case, l = 6, p = 4, and q = 3.

Example 3.3: To realize the index generation function f
shown in Table 1, a single-memory realization requires 26 ×
3 = 192 bits. On the other hand, in the IGU shown in Fig. 5,
the amount of main memory is 24 × 3 = 48 bits, and that of
the AUX memory is 23×2 = 16 bits. Thus, the IGU requires
64 bits in total. In this way, we can reduce the total amount
of memory.

NAKAHARA et al.: A MEMORY-BASED IPV6 LOOKUP ARCHITECTURE USING PARALLEL INDEX GENERATION UNITS
265

Fig. 5 IGU for Table 1.

Table 3 An index generation function f ′ causing a collision.

x1 x2 x3 x4 x5 x6 f ′
0 0 0 0 0 1 1
0 0 0 0 1 0 2
0 0 0 1 0 0 3
0 0 1 0 0 0 4
0 1 0 0 0 0 5
1 0 0 0 0 0 6

Table 4 Decomposition chart for f ′(X1, X2).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x3

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4 X1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x5
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x6

00 1 2 3 4
01 5
10 6
11

x1, x2

X2

3.1 Linear Transformation

Example 3.2 is an ideal case. In general, a column may have
two or more non-zero elements. In such a case, the column
has a collision. When a collision occurs, the main memory
cannot realize the function.

Example 3.4: Table 4 shows a decomposition chart for an
index function f ′ shown in Table 3. In Table 4, the first
column has a collision for elements “5” and “6”.

Let f̂ (Y1, X2) be the function whose variables X1 =

(x1, x2, . . . , xp) are replaced by Y1 = (y1, y2, . . . , yp), where
yi = xi ⊕ x j, xi ∈ {X1}, x j ∈ {X2}, and p ≥ �log2(k+ 1)�. This

Table 5 Decomposition chart for f̂ ′(Y1, X2).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 y1 = x3 ⊕ x1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 y2 = x4 ⊕ x1 Y1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 y3 = x5
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 y4 = x6

00 1 2 3 4
01 5
10 6
11

x1, x2

X2

Fig. 6 IGU using a linear transformation.

replacement is called a linear transformation [19], which
reduces the number of inputs to the main memory.

Example 3.5: Let f ′ be an index generation function
shown in Table 3. Table 5 shows the decomposition chart
for f̂ ′(Y1, X2), where Y1 = (x3 ⊕ x1, x4 ⊕ x1, x5, x6), and the
column labels denote Y1, and the row labels denote X2. In
Table 5, since no collision occurs, it can be realized by the
IGU shown in Fig. 6.

The linear transformation for p variables is imple-
mented by p copies of two-input EXORs. In an FPGA, since
these can be realized by p LUTs, their amount of hardware
is negligibly small.

As shown in Example 3.5, index generation functions
can often be represented with fewer variables than original
functions. By increasing the number of inputs p for the main
memory, we can store virtually all vectors.

Conjecture 3.1: [20] Consider a set of uniformly dis-
tributed index generation functions with weight k (≥ 7). If
p ≥ 2�log2(k+1)�−3, then, more than 95% of the functions
can be represented by an IGU with the main memory having

266
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Table 6 Decomposition chart for f̂ ′(Y1).

0 0 0 0 1 1 1 1 y1

0 0 1 1 0 0 1 1 y2 Y1

0 1 0 1 0 1 0 1 y3

0 5 2 3 4 6
1 1
y4

Y2

Table 7 Decomposition chart for f̂ ′ after row-shift.

0 0 0 0 1 1 1 1 y1

0 0 1 1 0 0 1 1 y2 Y1

0 1 0 1 0 1 0 1 y3

0 5 2 3 4 6
1 → → → 1
y4

Y2

Fig. 7 Row-shift decomposition.

p inputs.

For the IPv6 prefix lookup problem, a linear transfor-
mation of p variables can reduce the amount of memory
2l�log2(k + 1)� into 2p�log2(k + 1)�.

3.2 Row-Shift Decomposition for Main Memory

In this part, we introduce a row-shift decomposition [18],
which shifts the non-zero elements to further reduce of
memory size for the IGU. Table 6 shows a decomposition
chart for the index generation function f̂ ′(Y1,Y2), where
Y1 = (x3 ⊕ x1, x4 ⊕ x1, x5) and Y2 = (x6). In Table 6, the first
column has a collision for the entries “1” and “5”. Consider
the decomposition chart shown in Table 7 that is obtained
from Table 6 by shifting the rows for y4 = 1 by three bit
to the right. Table 7 has at most one non-zero element in
each column. Thus, the modified function can be realized
by a main memory with inputs Y1. In Fig. 7, assume that
the memory for H stores the number of bits to shift (h(Y2))
for each row specified by Y2, while the memory for G stores
the non-zero element of the column after the shift operation:
h(Y2)+ Y1, where “+” denotes an unsigned integer addition.

In Fig. 7, in the row-shift decomposition, the main
memory is decomposed into two smaller memories. Thus,
we can reduce the main memory for the IGU. Figure 8
shows the IGU using a linear transformation and a row-shift
decomposition. Note that, in this case, the comparator has
to check the equality of both free variables and bound vari-
ables.

Example 3.6: Figure 9 shows the IGU using a linear trans-

Fig. 8 IGU using a row-shift decomposition and a linear transformation.

Fig. 9 An example of IGU.

formation and a row-shift decomposition realizing the func-
tion f ′ in Table 3. Let Y = (Y1,Y2), where Y1 = (x3 ⊕
x1, x4 ⊕ x1, x5), and Y2 = (x6). First, EXOR gates gener-
ate Y. Second, the memory for H produces the shift value
h(Y2). Third, the adder produces h(Y2) + Y1. In this im-
plementation, since we realize both the memory for G and
the AUX memory by a single memory, the memory for G
produces the index and (x1, x2, x3, x4, x5, x6) simultaneously.
Next, the comparator checks if they are equal or not. Finally,
the AND gates produces the correcting index.

Example 3.7: To realize f ′ shown in Table 3, a single-
memory realization requires 26 × 3 = 192 bits. On the
other hand, in the IGU shown in Fig. 9, the memory for H
requires 21 × 3 = 6 bits, and the memory for G requires
23 × (3 + 6) = 72 bits. Thus, the IGU requires 78 bits in to-
tal. In this way, we can reduce the total amount of memory
by using a linear transformation and a row-shift decomposi-
tion.

Experimental results [18] show that the row-shift de-
composition requires 2k�log2 k� + kl bits to implement an
index generation function with weight k.

NAKAHARA et al.: A MEMORY-BASED IPV6 LOOKUP ARCHITECTURE USING PARALLEL INDEX GENERATION UNITS
267

4. Design of IGU

4.1 Method to Find a Linear Transformation

From here, we present a method to find a linear transforma-
tion. We assume that the prefix lookup architecture needs
to update its prefix patterns frequently. In this case, it is
impractical to find an optimum solution by spending much
computation time. To find a reasonably good linear trans-
formation in a short time, we use the following heuristic al-
gorithm [21], which is simple and efficient.

Algorithm 4.1: Let f (X1, X2) be the index generation
function of l variables with weight k, and p = �log2((k +
1)/3)� + 1 be the number of the bound variables in the de-
composition chart.

1. Let X1 = (x1, x2, . . . , xp) be the bound variables, and
X2 = (xp+1, xp+2, . . . , xl) be the free variables.

2. While |X1| ≤ p, find the variable xi ∈ {X2} that mini-
mizes the value:

|(# of vectors with xi = 0)

− (# of vectors with xi = 1)|.
Let {X1} ← {X1} ∪ {xi}.

3. For each pair of variables (xi, x j), where xi is a bound
variable, and x j is a free variable, if the exchange of xi

with x j decreases the number of collisions, then do it,
otherwise discard it.

4. For each pair of variables (xi, x j), if the replacement of
xi with yi = xi ⊕ x j decreases the number of collisions,
then do it, otherwise discard it.

5. Terminate.

4.2 Design of IGU Using Row-Shift Decomposition

In Table 7, we can represent the function without increasing
the columns. However, in general, we must increase the
columns to represent the function. Since each column has
at most one non-zero element after the row-shift operations,
at least k columns are necessary to represent a function with
weight k. We use the first-fit method [24], which is simple
and efficient.

Algorithm 4.2: (Find row-shifts) [18]

1. Sort the rows in decreasing order by the number of non-
zero elements.

2. Compute the row-shift value for each row at a time,
where the row displacement r(i) for row i has the small-
est value such that no non-zero element in row i is in
the same position as any non-zero element in the pre-
vious rows.

3. Terminate.

When the distribution of non-zero elements among the
rows is uniform, Algorithm 4.2 reduces the memory size

effectively. To reduce the total amount of memories, we use
the following:

Algorithm 4.3: (Row-shift decomposition) [18]

1. Reduce the number of variables by the method [20]. If
necessary, use a linear transformation [19] to further re-
duce the number of the variables. Let l be the number
of variables after reduction.

2. Let q1 ← � l
2 �. From t = −2 to t = 2, perform Steps 3

through 6.
3. Partition the inputs X into (X1, X2)†, where X1 = (xp,

xp−1, . . . , x1) denotes the rows, and X2 = (xn, xn−1, . . . ,
xp+1) denotes the columns.

4. p← q1 + t.
5. Obtain the row-shift value by Algorithm 4.2.
6. Obtain the maximum of the shift value, and compute

the total amount of memories.
7. Find t that minimizes the total amount of memories.
8. Terminate.

5. Parallel IGU Using Complete Pipelines

5.1 IP Lookup Architecture Using Complete Pipelines

To archive high throughput, we used a complete pipeline
in the parallel IGU. As for the priority encoder shown in
Fig. 3, we implemented a cascade of maximum selectors in-
stead of a tree structure, which tends to be a critical path.
Figure 10 shows the parallel IGU using a complete pipeline.
Although the latency for the pipelined architecture is larger
than the tree structure, its throughput can be higher. In the
IP lookup application, the high-throughput is desired even if
it increases latency.

Fig. 10 Parallel IGU using a complete pipeline.

†In the row-shift decomposition, we can assume that non-zero
elements are uniformly distributed in the decomposition chart. In
the IPv6 prefix, distribution of non-zero elements is almost uni-
form. Thus, unlike ordinary functional decompositions, the influ-
ence of the partition (X1, X2) is relatively small.

268
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 11 Example of prefix expansion.

5.2 Prefix Expansion and Merge

Let Pi be the set of the prefixes with length i, and P =
{P1, P2, . . . Pl}. As shown in Fig. 10, the parallel IGU con-
sists of l IGUs. Thus, the straightforward implementation
requires many IGUs. To reduce the number of IGUs, we
merge sets of prefixes into fewer groups. By expanding the
prefixes in Pi to ones with length i+1, we can make a group
that includes both Pi+1 and Pi. We call this prefix expansion
and merge. The next example illustrates this.

Example 5.8: The left-hand side of the table in Fig. 11
consists of three groups: {P2, P3, P4}, where P2 = {00∗∗},
P3 = {001∗}, and P4 = {0001}. By performing prefix ex-
pansion to P2, we have P′3 = {000∗, 001∗}. By the longest
prefix matching (LPM) rule, the prefix {001∗} in P′3 that is
equal to {001∗} in P3 is ignored. Also, by performing prefix
expansion to P′3, we have P′4 shown in the right-hand side
of the table in Fig. 11. In this case, three groups are merged
into one.

5.3 Design of Parallel IGU Using Off-Chip Memories

Figure 2 shows that the variance of the prefix of lengths
is quite large. When the prefix expansions with a small
number of prefixes is applied, they can often be stored into
a single BRAM†. On the other hand, when the prefix ex-
pansion is applied to a set with a large number of pre-
fixes, in the worst case, the size would be too large to be
stored in a BRAM. Thus, we make a non-uniform group-
ing G = {G1,G2, . . . ,Gr}, where Gi may be generated from
the different number of sets. As for the large groups Gi, we
realize them by off-chip memories. To find a good grouping,
we use the following:

Algorithm 5.4: (Non-uniform grouping) Let Mo f f be the
size of off-chip memory, Mon be the size of on-chip mem-
ory, Pi be the set of the prefixes with length i, P =

{P1, P2, . . . , Pl} be the set of the prefixes, G j consists of sin-
gle or several Pis, r be the number of reduced groups, and
G = {G1,G2, . . . ,Gr}, where r ≤ l.

1 Mem← Memo f f , G ← ∅.
2 Gmerge ← ∅.
3 Select Pi in P, which has maximum the number of pre-

fixes, g← Pi, P ← P − {Pi}.
4 Apply Algorithms 4.1 and 4.3 to Gmerge ∪ Pi to gener-

ate the IGU. Let MemIGU be the amount of memory to
realize the IGU.
†For Xilinx Virtex 6 FPGA, the BRAM stores 36Kbits.

5 if(MemIGU ≤ Mem)begin
Gmerge ← Gmerge ∪ {g}.
if(P = ∅)begin

G ← G ∪ {Gmerge}, and go to Step 7.
end else begin

Go to Step 3.
end

end
6 if(Gmerge � ∅)begin

G ← G ∪ {Gmerge}, and go to Step 2.
end else if(Mem = Memo f f)begin

Mem← Memon, and go to Step 2.
end else begin

Printout “Failed to generate IGU”.
end

7 Terminate.

6. Experimental Results

6.1 Implementation Environment

We designed the parallel IGU using Xilinx ISE 14.7, and
implemented on the ROACH2 board (FPGA: Xilinx Virtex 6
(XC6VSX475T), 74,400 Slices, 1,064 BRAMs (36Kb)). To
make a fair comparison with [12], pseudo IPv6 prefixes were
generated from the present raw 340 K IPv4 prefixes (May
23, 2013) using the method in [26].

6.2 Comparison of Grouping Methods

Table 8 shows numbers of BRAMs in IGUs to load 340 K
pseudo IPv6 prefixes generated by Algorithm 5.4. Also, it
shows the computation time for Algorithm 5.4. In the ex-
periment, we used a PC with INTEL Xeon X5570 CPU,
2.93 GHz, and 32 GB RAM, on Ubuntu 12.04 LTS Op-
erating System. Table 9 compares proposed non-uniform
grouping with previous one [12] and a direct realization (in
other word, without grouping). In Table 9, #Slices includes
the numbers of slices for both IGUs and the priority en-
coder. Table 9 shows that, although the proposed non-
uniform grouping requires off-chip memories, the proposed
grouping requires fewer BRAMs than the existing grouping.

6.3 Implementation of the Parallel IGU

To utilize the FPGA resources efficiently, we implemented
small memory parts (marked with “*” in Table 8) by dis-
tributed RAMs [27] instead of BRAMs. Figure 12 shows the
implemented parallel IGU. To increase the system through-
put, we set a dual port mode to on-chip memories, and im-
plemented a pair of IGUs. In the implementation, the pro-
posed parallel IGU consumed 5,278 Slices and 227 BRAMs.
The system used four DDRII+ Static RAMs (SRAMs) [4].
Total amount of memory usage is 25.4 Mbits. From
the logic synthesis (XST), the maximum clock frequency
was 571.1 MHz. We set the timing constraint (system

NAKAHARA et al.: A MEMORY-BASED IPV6 LOOKUP ARCHITECTURE USING PARALLEL INDEX GENERATION UNITS
269

Table 10 Comparison with existing FPGA implementations.

Architecture #prefixes #Slices #36Kb Off-chip Normalized FPGA area Speed
BRAMs SRAM [Mb] #Slices #BRAMs [GLPS]

Baboescu et al. (ISCA2005) [1] 80 K 1,405 530 — 17.5 6.6 0.125
Fadishei et al. (ANCS2005) [5] 80 K 14,274 254 — 178.4 3.1 0.263
Le et al. (FCCM2009) [10] 249 K 16,617 473 — 66.7 1.8 0.340
2-3-tree-IPv6 (IEEE Trans.2012) [7] 330 K 15,358 580 32.5 46.5 1.8 0.373
BST-IPv6 (IEEE Trans.2012) [7] 330 K 14,096 1,025 3.2 42.7 3.1 0.390
On-chip Parallel IGUs (ARC2013) [12] 340 K 5,577 575 — 16.4 1.7 1.002
Proposed Parallel IGUs 340 K 5,278 227 25.4 15.5 0.6 1.100

Table 8 Numbers BRAMs to realize IGUs with non-uniform group-
ing (BRAMs marked with “*” were realized by distributed RAMs in the
actual implementation).

Group #prefixes Memory Memory #36Kb DDRII+ Compt.
in a H G and BRAMs SRAM Time

AUX
group #In #Out #In #Out [Mb] [msec]

(15,16,17,18) 102 4 6 7 24 2* 1
(19,20,21,22) 225 7 7 8 29 2* 3
(23,24,25,26) 1,571 10 11 11 37 3* 18
(27,28) 806 6 11 11 39 3* 9
(29,30) 1,240 6 12 12 42 5* 15
(31) 2,824 9 12 12 43 5* 33
(32) 8,474 9 14 14 46 16 98
(33) 1,469 8 11 11 44 3* 17
(34) 4,408 10 12 12 46 5* 51
(35) 2,318 10 11 13 46 9 27
(36) 6,957 11 13 13 49 9 80
(37) 4,079 13 12 12 49 8 47
(38) 12,237 14 14 14 52 24 141
(39) 6,592 12 12 13 51 11 76
(40) 19,776 13 14 14 54 22 228
(41) 6,874 13 13 13 54 12 79
(42) 20,623 14 15 15 57 42 237
(43) 9,451 14 14 14 57 27 109
(44) 28,354 13 15 15 59 47 326
(45,46,47) 123,110 15 17 17 64 12.6 1,416
(48) 128,305 14 17 17 65 12.8 1,475
(49,50) 929 10 10 10 60 3* 11
(51,52) 1,048 11 11 11 63 4* 12
(53,54) 594 9 10 10 64 3* 7
(55,56) 421 8 9 9 65 2* 5
(57,58) 530 9 9 9 67 2* 6
(59,60,61,62) 289 7 8 9 70 2* 3
(63,64) 386 8 9 9 73 2* 5
Total 398,880 274 25.4

Table 9 Comparison of non-uniform groupings with uniform grouping.

Grouping #prefixes #groups #BRAMs #Slices Off-chip
Mem [Mb]

Uniform grouping 348,877 50 655 3,979 0
(direct realization of P)
Non-uniform [12] 347,749 30 616 2,299 0
(On-chip mems only) 0
Non-uniform (Table 8) 398,880 28 274 1,927 25.4
(On-chip and
Off-chip mems)

clock frequency) to 550 MHz which is supported by the
DDRII+ SRAMs. After the place-and-root (PAR), the tim-
ing constraint met 550 MHz. Thus, the lookup speed was
1.100 GLPS which satisfies the requirement of 400 Gbps
link throughput.

Fig. 12 Implemented parallel IGU for IPv6 prefix lookup.

6.4 Comparison with Existing FPGA Implementations

Table 10 compares the proposed parallel IGU with exist-
ing FPGA implementations. Since they stored different
numbers of prefixes, we used the normalized FPGA area,
which shows the necessary number of FPGA primitives (#
of slices or BRAMs) per 1 K prefixes. Also, it compares the
amount of off-chip SRAMs. Table 10 shows that, as for the
lookup speed, the proposed parallel IGU is faster than other
implementations. Especially, it just satisfies the require-
ment of 1.087 GLPS, which is requirement of 400 GLPS
link throughput. As shown in Fig. 3, the on-chip parallel
IGU (previous method) [12] used a priority encoder with a
tree-structure, which was a critical path. On the other hand,
as shown in Fig. 12 in the proposed parallel IGU, we imple-
mented it by a cascaded, which is suitable for a complete

270
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

pipeline architecture. Table 10 showed that, as for the nor-
malized FPGA area, the proposed parallel IGU is the most
efficient implementation. As for the off-chip SRAM, the
BST-IPv6 required smaller memory than our architecture.
However, since the price of the FPGA dominates that of
SRAM, the system cost of proposed parallel IGU is lower
than the BST-IPv6. Therefore, the parallel IGU outperforms
existing FPGA realizations.

7. Conclusion

This paper showed that the parallel IGU using both on-chip
and off-chip memories to reduce the system cost. To reduce
the memory size of the IGU, we used linear transforma-
tion and row-shift decomposition. Also, this paper showed
a method to store prefixes in given memories. We imple-
mented the proposed parallel IGU using a complete pipeline
on the Xilinx Virtex 6 FPGA and four off-chip DDRII+
SRAMs. Its lookup speed was 1.100 GLPS which exceeded
1.087 GLPS at 400 Gbps link throughput. Thus, our archi-
tecture fits to the next generation standard of link through-
put. Experimental results showed that the proposed parallel
IGU outperforms existing FPGA implementations.

Since Internet routers are updated frequently, the paral-
lel IGU also must be updated. When the new prefix collides
with existing ones, the corresponding IGU should be recon-
figured. As shown in Table 8, as for the worst case, its down
time is about 1.5 second. Luo et al. proposed a hybrid ar-
chitecture using a memory-based lookup engine and a small
TCAM [11] without down time for the update. The paral-
lel IGU is also applicable to such architecture. The future
project is an implementation of Luo’s hybrid architecture
using the parallel IGU.

Acknowledgments

This research is supported in part by the Grants in Aid for
Scientific Research of JSPS, and the Adaptable and Seam-
less Technology Transfer Program through target-driven
R&D of JST. Reviewer’s comments were quite useful to im-
prove the presentation.

References

[1] F. Baboescu, D.M. Tullsen, G. Rosu, and S. Singh, “A tree
based router search engine architecture with single port memories,”
ISCA2005, p.123, 2005.

[2] M. Bando, L. Yi-Li, and H.J. Chao, “FlashTrie: Beyond 100-Gb/s IP
route lookup using hash-based prefix-compressed trie,” IEEE Trans.
Netw., vol.4, no.20, pp.1262–1275, 2012.

[3] H.J. Chao and B. Liu, High performance switches and routers, John
Wiley & Sons, Hoboken, NJ, USA, 2007.

[4] Cypress Inc., “DDR II+ Static RAM (SRAM),”
http://www.cypress.com/

[5] H. Fadishei, M.S. Zamani, and M. Sabaei, “A novel reconfigurable
hardware architecture for IP address lookup,” ANCS2005, pp.81–
90, 2005.

[6] IEEE 802.3 400 Gbps Ethernet study group 2013,
http://www.ieee802.org/3/400GSG/index.html

[7] H. Le and V.K. Prasanna, “Scalable tree-based architectures for
IPv4/v6 lookup using prefix partitioning,” IEEE Trans. Comput,,
vol.61, no.7, pp.1026–1039, 2012.

[8] S. Kumar, M. Becchi, P. Crowley, and J.S. Turner, “CAMP: Fast and
efficient IP lookup architecture,” ANCS2006, pp.51–60, 2006.

[9] H. Le, T. Ganegedara, and V.K. Prasanna, “Memory-efficient and
scalable virtual routers using FPGA,” FPGA2011, pp.257–266,
2011.

[10] H. Le and V.K. Prasanna, “Scalable high throughput and power effi-
cient IP-lookup on FPGA,” FCCM2009, pp.167–174, April, 2009.

[11] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian, “A hybrid IP
lookup architecture with fast updates,” INFOCOM2012, pp.2435–
2443, 2012.

[12] H. Nakahara, T. Sasao, and M. Matsuura, “An architecture for IPv6
lookup using parallel index generation units,” LNCS7806, pp.59–71,
2013.

[13] F. Pong and N.F. Tzeng, “Concise lookup tables for IPv4 and IPv6
longest prefix matching in scalable routers,” IEEE Trans. Netw.,
vol.20, no.3, pp.729–741, 2012.

[14] V.C. Ravikumar and R.N. Mahapatra, “TCAM architecture for IP
lookup using prefix properties,” IEEE Micro, vol.24, no.2, pp.60–
69, 2004.

[15] University of Oregon Route Views Project,
http://www.routeviews.org/

[16] R. Sangireddy and A.K. Somani, “High-speed IP routing with binary
decision diagrams based hardware address lookup engine,” IEEE J.
Sel. Areas Commun., vol.21, no.4, pp.512–521, 2006.

[17] R. Sangireddy, N. Futamura, S. Aluru, and A.K. Somani, “Scalable,
memory efficient, high-speed IP lookup algorithms,” IEEE Trans.
Netw., vol.13, no.4, pp.802–812, 2005.

[18] T. Sasao, “Row-shift decompositions for index generation func-
tions,” DATE2012, pp.1585–1590, 2012.

[19] T. Sasao, “Linear decomposition of index generation functions,” AS-
PDAC2012, pp.781–788, 2012.

[20] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[21] T. Sasao, M. Matsuura, and H. Nakahara, “A realization of index

generation functions using modules of uniform sizes,” IWLS2010,
pp.201–208, June 2010.

[22] T. Sasao and J.T. Butler, “Implementation of multiple-valued CAM
functions by LUT cascades,” ISMVL2006, pp.1–7, Singapore, May
2006.

[23] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “Ipv6 lookups
using distributed and load balanced bloom filters for 100Gbps core
router line cards,” INFOCOM2009, pp.2518–2526, 2009.

[24] R.E. Tarjan and A.C-C. Yao, “Storing a sparse table,” Commun.
ACM, vol.22, no.11, pp.606–611, 1979.

[25] R. Tucker, “Optical packet-switched WDM networks: A cost and
energy perspective,” OFC/NFOEC2008, pp.1–25, 2008.

[26] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random generator
for IPv6 tables,” HOTI2004, pp.35–40, 2004.

[27] Xilinx Inc., “Spartan-6 FPGA configurable logic block,”
http://www.xilinx.com/

NAKAHARA et al.: A MEMORY-BASED IPV6 LOOKUP ARCHITECTURE USING PARALLEL INDEX GENERATION UNITS
271

Hiroki Nakahara received the B.E.,
M.E., and Ph.D. degrees in computer science
from Kyushu Institute of Technology, Fuku-
oka, Japan, in 2003, 2005, and 2007, respec-
tively. He has held faculty/research positions at
Kyushu Institute of Technology, Iizuka, Japan
and Kagoshima University, Kagoshima, Japan.
Now, he is a senior assistant professor at Ehime
University, Japan. He was the Workshop Chair-
man for the 23rd International Workshop on
Post-Binary ULSI Systems (ULSIWS) held in

Bremen, Germany in 2014. He received the 8th IEEE/ACM MEMOCODE
Design Contest 1st Place Award in 2010, the SASIMI Outstanding Paper
Award in 2010, IPSJ Yamashita SIG Research Award in 2011, the 11st
FIT Funai Best Paper Award in 2012, the 7th IEEE MCSoC-13 Best Paper
Award in 2013, and the ISMVL2013 Kenneth C. Smith Early Career Award
in 2014, respectively. His research interests include logic synthesis, recon-
figurable architecture, digital signal processing and embedded systems. He
is a member of the IEEE, the ACM, and the IEICE.

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in Electronics Engineering
from Osaka University, Osaka Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, IBM T. J. Watson Research Center, York-
town Height, NY and the Naval Postgraduate
School, Monterey, CA. He has served as the Di-
rector of the Center for Microelectronic Systems
at the Kyushu Institute of Technology, Iizuka,
Japan. Now, he is a Professor of Department of

Computer Science, Meiji University, Kawasaki, Japan. His research areas
include logic design and switching theory, representations of logic func-
tions, and multiple-valued logic. He has published more than nine books
on logic design including, Logic Synthesis and Optimization, Representa-
tion of Discrete Functions, Switching Theory for Logic Synthesis, Logic
Synthesis and Verification, and Memory-Based Logic Synthesis, in 1993,
1996, 1999, 2001, and 2011, respectively. He has served Program Chair-
man for the IEEE International Symposium on Multiple-Valued Logic (IS-
MVL) many times. Also, he was the Symposium Chairman of the 28th
ISMVL held in Fukuoka, Japan in 1998. He received the NIWA Memorial
Award in 1979, Takeda Techno-Entrepreneurship Award in 2001, and Dis-
tinctive Contribution Awards from IEEE Computer Society MVL-TC for
papers presented at ISMVLs in 1986, 1996, 2003 and 2004. He has served
an associate editor of the IEEE Transactions on Computers. He is a Fellow
of the IEEE.

Munehiro Matsuura studied at the Kyushu
Institute of Technology from 1983 to 1989. He
received the B.E. degree in Natural Sciences
from the University of the Air, in Japan, 2003.
He has been working as a Technical Assistant at
the Kyushu Institute of Technology since 1991.
He has implemented several logic design algo-
rithms under the direction of Professor Tsutomu
Sasao. His interests include decision diagrams
and exclusive-OR based circuit design.

Hisashi Iwamoto received the B.S. and
M.S. degrees in physics from Kwansei Gakuin
University, Hyogo, Japan in 1987 and 1989,
respectively, and the Ph.D. degree from Infor-
mation and Communication Engineering from
Osaka City University, Osaka, Japan, in 2013.
In 1989, he joined the LSI Laboratory, Mit-
subishi Electric Corporation, Hyogo, Japan,
where he has been engaged in the design, de-
velopment and standardization of the high speed
synchronous DRAM. He transferred to Renesas

Technology Corp. and REVSONIC Corp. in 2003 and 2012, respectively.
He is currently interested in system solution for high performance network.
He is a member of IEICE.

Yasuhiro Terao graduated from Nagasaki
technical high school in 1992. He joined the
Sony LSI design Inc., Japan in 1992. He trans-
ferred to REVSONIC Corp. in 2013. He is cur-
rently interested in designs for DDR3 SRAM.
SDRAMs.

