
298
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

PAPER Special Section on Reconfigurable Systems

Performance Modeling of Stencil Computing on a Stream-Based
FPGA Accelerator for Efficient Design Space Exploration∗

Keisuke DOHI†, Member, Koji OKINA†, Rie SOEJIMA†, Nonmembers, Yuichiro SHIBATA†a),
and Kiyoshi OGURI†, Members

SUMMARY In this paper, we discuss performance modeling of 3-D
stencil computing on an FPGA accelerator with a high-level synthesis en-
vironment, aiming for efficient exploration of user-space design parame-
ters. First, we analyze resource utilization and performance to formulate
these relationships as mathematical models. Then, in order to evaluate our
proposed models, we implement heat conduction simulations as a bench-
mark application, by using MaxCompiler, which is a high-level synthesis
tool for FPGAs, and MaxGenFD, which is a domain specific framework of
the MaxCompiler for finite-difference equation solvers. The experimental
results with various settings of architectural design parameters show the
best combination of design parameters for pipeline structure can be sys-
tematically found by using our models. The effects of changing arithmetic
accuracy and using data stream compression are also discussed.
key words: high-level synthesis, FPGA, stencil computation, heat conduc-
tion simulation

1. Introduction

As a key component of computing accelerators, Field Pro-
grammable Gate Arrays (FPGAs) are getting increasing at-
tention especially due to their high energy efficiency [2].
Programming productivity of FPGAs is also progressively
improved by emergence of various commercial and non-
commercial high-level synthesis tools [3]–[7]. Stream-
oriented processing, where input data items are fed into
a series of arithmetic operators and processed in a deeply
pipelined manner, is one of the most promising program-
ming patterns for FPGA acceleration. A wide range of ap-
plications can be described and implemented as the stream-
oriented processing. One of them is stencil computation,
which is widely used for various scientific applications [8]–
[11].

Using the high-level synthesis technologies, users can
easily describe desired applications in a programming lan-
guage without much regard for detailed hardware issues.
However, architectural decisions such as a balance between
depth and parallelism of pipelines still remain up to users.
In order to find the best architectural parameters, time-

Manuscript received May 9, 2014.
Manuscript revised August 31, 2014.
Manuscript publicized November 19, 2014.
†The authors are with the Graduate School of Enginnering,

Nagasaki University, Nagasaki-shi, 852–8521 Japan.
∗A preliminary version of this paper appeared in the Proceed-

ings of the International Conference on Reconfigurable Computing
and FPGAs, ReConFig 2013, Cancun, Mexico, 9–11 December,
2013 [1].

a) E-mail: shibata@cis.nagasaki-u.ac.jp
DOI: 10.1587/transinf.2014RCP0013

consuming synthesis, placement and routing processes are
required to be carried out over and over, severely restricting
the application development productivity.

To cope with this problem, in this paper, we propose
performance and resource usage models for stencil comput-
ing on a Maxeler Technology FPGA accelerator. Then, we
evaluate how the proposed models contribute to finding the
best design parameters and optimizing the performance, tak-
ing a 3-D heat conduction simulation as an example. The
contributions of this paper include:

• Performance and resource usage modeling of 3-D sten-
cil computing on an FPGA accelerator with high-level
synthesis, which formulates how two important user-
space design parameters affect the execution perfor-
mance and resource amounts.
• Empirical evaluation of two types of 3-D heat conduc-

tion simulations in 32-bit floating-point and fixed-point
arithmetic on a Maxeler system, which characterizes
the performance and resource usage with exhaustively
various design parameters.
• Evaluation and validation of our proposed models

based on the empirical evaluation results, which
demonstrates that our approach gives reasonable esti-
mation of performance and resource usage, and easily
determines the best combination of the design parame-
ters.

In addition to the results of our preliminary work [1], the ef-
fects of changing arithmetic accuracy and using data stream
compression are also discussed.

The remainder of this paper is organized as follows.
Section 2 explains the MaxCompiler and an overview
of Maxeler’s FPGA accelerator. Section 3 shows Max-
GenFD [12], a domain specific framework for 3-D stencil
computing on MaxCompiler, and discusses user-space pa-
rameters of MaxGenFD. Section 4 proposes resource and
performance models for stencil computation. Then, Sect. 5
shows implementation of heat conduction simulations with
floating-point and fixed-point arithmetic as benchmark ap-
plications. Section 6 compares empirical implementation
results with estimation results and discusses how the best de-
sign parameters are determined by using our proposed mod-
els. Finally, Sect. 7 summarizes the paper.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

DOHI et al.: PERFORMANCE MODELING OF STENCIL COMPUTING ON A STREAM-BASED FPGA ACCELERATOR
299

2. MaxCompiler and Data Flow Engines

MaxCompiler is one of high-level synthesis tools developed
by Maxeler Technologies. MaxCompiler provides a Java-
based development environment with a stream-oriented pro-
gramming model for high-performance computing on spe-
cial FPGA accelerators. MaxCompiler generates arith-
metic pipelines for FPGAs, PCIe interface, DRAM inter-
face, FPGA-to-FPGA interface and APIs to access the ac-
celerator from host code.

Components generated by MaxCompiler are roughly
classified into (a) kernels, (b) managers, (c) streams and
(d) host APIs. The kernels are main components for com-
putation with pipelined-architecture consisting of arithmetic
units and registers. Stall control mechanisms are also auto-
matically generated by the compiler, so that users can de-
scribe desired operations in Java without being aware of
latencies of arithmetic units and pipeline stalls. The man-
agers are components which handle I/O configurations of
kernels and provide communication among accelerators and
the host. Attributes such as a clock frequency for kernels
are also managed by the managers. The streams are routes
which data items flow along. Communications among the
host, kernels and DRAM are established via streams. APIs
are generated by the MaxCompiler to control accelerators
from applications on the host. The APIs are described in C
language.

Since the MaxCompiler mainly intends to achieve
high-throughput processing by making the best use of large-
scale pipelines, resource reduction techniques such as re-
source sharing are not implicitly performed. Users have
to explicitly describe the code so that resources are shared,
when it is needed.

The FPGA accelerators supported by MaxCompiler
are called Data Flow Engines (DFEs). The overview of
MAX3424A DFE, which is a target of this work, is shown
in Fig. 1. This accelerator is equipped with one Virtex-
6 SX475T FPGA and six 4 GB DDRIII memories which
achieve 38.4 GB/sec peak memory bandwidth in total. The
FPGA and the host processor are connected via PCIe gen2
x8 interface. Kernels are mapped on the FPGA and con-
nected with streams based on designation of the manager as

Fig. 1 Architecture overview of MAX3424A.

shown in Fig. 1.

3. MaxGenFD

MaxGenFD is an application framework for 3-D stencil
computations which is built on MaxCompiler [6]. The Max-
GenFD provides various libraries and features for helping
users to easily develop desired applications taking an ad-
vantage of stream-oriented processing. This section de-
scribes an architecture overview for 3-D stencil computa-
tion which is generated by MaxGenFD and introduces two
important design parameters that affect the performance:
multi-pipelines and multi-steps.

3.1 Overview

In MaxGenFD, users can specify the size of a computa-
tional space of the simulation target at run time. As shown
in Fig. 2, the computational space is decomposed into sub-
regions called blocks. This block decomposition [13], [14]
is performed in x and y dimensions, but not in z dimension.
That is, when the computational size (X,Y,Z) and the block
size (BW , BH) are designated, the computation is performed
in units of a (BW , BH ,Z) block.

Accesses to the off-chip DDRIII memory are per-
formed in units of a tile, which is a (TW ,TH) 2-D array. Tiles
fetched from the memory are stored in on-chip Block RAM
(BRAM) and necessary data items are sent to the pipelines.
Sizes of the block (BW , BH) and the tile (TW ,TH) are speci-
fied by users at compile time.

3.2 Multi-Pipelines and Multi-Steps

3-D stencil computation can be accelerated (1) by paral-
lelizing arithmetic pipelines and (2) by applying the update
equations more than once per off-chip DRAM access; these
methods are called multi-pipelines and multi-steps. Figure 3
shows configuration examples of kernels with the multi-
pipelines and the multi-steps.

The multi-pipeline is a method to parallelize arithmetic
pipelines in space so that multiple elements are computed at
the same time as shown in Fig. 3 (b). This method improves

Fig. 2 Computational space decomposed into blocks and tiles.

300
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 3 Kernel configurations with multi-pipelines and multi-steps.
(a) Simple kernel. (b) Kernel with 4 multi-pipelines. (c) Kernel with 2
multi-steps. (d) Kernel with 4 multi-pipelines and 2 multi-steps.

computational performance if enough memory bandwidth
is available. Since the pipelines can share data caches, the
increase in the number of pipelines gives a small impact on
the BRAM amount devoted to caches. MaxGenFD requires
the number of pipelines to be dividable by the tile width TW .

In the multi-step method, multiple steps of arithmetic
pipelines are cascaded so that the update equation is ap-
plied more than once per off-chip DRAM access as shown
in Fig. 3 (c). In contrast to the multi-pipeline method, this
method can increase computational performance without in-
creasing bandwidth requirements for off-chip DRAM. The
number of steps can be changed in units of a step. Thus, the
granularity of optimization is finer than that of the multi-
pipelines. On the other hand, this method has a large impact
on BRAM usage in proportion to the number of steps.

The multi-pipelines and the multi-steps can be used at
the same time. The number of pipelines Np and the num-
ber of steps Ns can be independently assigned as shown
in Fig. 3 (d). Therefore, determining the optimal combina-
tion of the parameters considering available resources on the
FPGA and characteristics of the update equations is crucial
for bring out the best performance of the accelerator.

Note that configurations shown in Fig. 3 illustrate logi-
cal architectures of stencil computation kernels. In the case
of 3-D stencil computation, long (longer than 2BW BH) logi-
cal shift registers with multiple outputs from intermediate
stages are required on the FPGA. In actual design, these
logical shift registers are implemented with a combination
of BRAM FIFOs, LUTs and flip-flops. Although actual
resource mapping is more complicated in MaxGenFD, the
logical shift register model provides us a reasonable view
for resource estimation.

4. Analysis and Modeling for Resource-Performance
Estimation

The number of pipelines Np and the number of steps Ns

for multi-pipelines and multi-steps can be easily changed
by just assigning desired numbers to variables in MaxCom-

piler. By assigning the best values of Np and Ns, it becomes
possible to maximize the FPGA resources that are devoted
to valid computation. At the same time, these optimization
techniques inevitably increase synthesized circuit size and
the time required for FPGA mapping (synthesis, placing and
routing). Thus, it is important to narrow down the large ar-
chitectural parameter space to a realistic size by formulating
resource-performance estimation models.

4.1 Resource Estimation Model

We shall first address constraints on the design parameters
caused by available amount of FPGA resources. The num-
ber of DSP modules is one of the main factors that restrict
the degree of the multi-pipelines and the multi-steps. The
constraint on Np and Ns imposed by the number of DSPs is
expressed as:

Np × Ns × N(1,1)
DSP ≤ ADSP − α (1)

where N(1,1)
DSP is the number of DSPs required for the compu-

tation when (Np,Ns) = (1, 1), ADSP is the available number
of DSPs on a target FPGA device, and α is the number of
DSPs which are utilized except for the arithmetic pipelines.
In addition, on the assumption that BRAM utilization per
step is linearly increased with Np, the constraint on the pa-
rameters imposed by the number of BRAMs is expressed
as: (

N(1,1)
BRAM +Cp × Np

)
× Ns ≤ ABRAM − β (2)

where N(1,1)
BRAM is the number of BRAMs required for com-

putation when (Np,Ns) = (1, 1), Cp is a constant factor for
Np, ABRAM is the available number of BRAMs on the FPGA,
and β is the number of BRAMs which are used except for the
pipelines. Since FPGAs offer abundance of other resource
such as LUTs and FFs compared to DSPs and BRAMs,
Eqs. (1) and (2) give us available combinations of Np and Ns

in the FPGA. Note that Cp is expected to be a small value
because spatially parallelized pipelines can share large part
of BRAMs.

4.2 Performance Estimation Model

The peak performance of a design is limited by the computa-
tional ability or the external memory bandwidth, whichever
is smaller. Given that an FPGA has infinite off-chip memory
bandwidth, the ideal computational performance Pcompute

can be estimated as:

Pcompute = ηNpNsFs [elements/sec] (3)

where η is computational efficiency and Fs is the clock fre-
quency of pipelines. Since stencil computations need values
of neighboring elements to update one element, updating all
the elements in a block requires values of elements located
outside of the block, dubbed halo or ghost zone [15]. Due to
the halo region, pipelines require additional clock cycles for

DOHI et al.: PERFORMANCE MODELING OF STENCIL COMPUTING ON A STREAM-BASED FPGA ACCELERATOR
301

Fig. 4 Examples of stencils which are assumed in this paper. (a) Stencil
of S d = 1 (b) Stencil of S d = 3.

loading elements from the halo region to shift registers. The
size of the halo region is increased according to Ns. To for-
mulate this effect, the computational efficiency η is defined
as a ratio of written elements to read elements per block:

η =
Gwrite

Gread
(4)

where Gwrite is the number of elements which are produced
and written to the off-chip memory and Gread is the number
of elements which are loaded from the off-chip memory per
block computation. The number of written elements Gwrite

is defined in a straightforward way, since it corresponds to
the number of elements in a block:

Gwrite = BW × BH × Z (5)

where BW , BH and Z are sizes of the block. On the other
hand, definition of Gread is a bit more complex:

Gread =

(
BW + 2

⌈
S dNs

TW

⌉
TW

) (
BH + 2

⌈
S dNs

TH

⌉
TH

)
Z

(6)

where TW and TH are sizes of a tile and S d is size of a sten-
cil, which is a distance between an updated element and the
farthermost element needed for the calculation. While the
size of the stencil S d depends on applications and the Max-
GenFD supports various forms of stencils, we assume that
stencils have symmetric forms as shown in Fig. 4. The ceil-
ing functions are needed to reflect the fact that all the mem-
ory accesses are made in units of a tile [16].

4.3 Memory-Restricted Performance Model

The performance Pmem restricted by the external memory
bandwidth is described as:

Pmem = Gwrite
Tmem

Bmem
Ns [elements/sec] (7)

where Tmem is the peak memory bandwidth of the system
and Bmem is required amount of data transfer between the
FPGA and the memory for both read and write operations.
The peak memory bandwidth Tmem can be described as:

Tmem = 8 × Nmem × 2 × Fmem [Bytes/sec] (8)

where Nmem is the number of memory channels and Fmem is
the frequency of the memory bus clock. The amount of data
transfer Bmem strongly depends on each application. More-
over, MaxGenFD provides a data compression mechanism
for data streams, which also affects Bmem. Thus, we formu-
late Bmem as:

Bmem = Gwrite

n∑
i=1

γiWi [Bytes] (9)

where γi and Wi are the data compression ratio and the data
width for the i-th stream, respectively, and n is the number
of data streams utilized in the application. Although it is
difficult to know the exact values of γi, we can use the target
compression ratios which are designated in user descriptions
for MaxGenFD.

Finally, the peak performance P can be expressed as:

P = min
(
Pcompute, Pmem

)
. (10)

The design space exploration for Np and Ns can be formu-
lated as a maximization problem of P where constraint con-
ditions are given by Eqs. (1) and (2).

5. Benchmark Application

We implemented heat conduction simulations with vari-
ous design parameters as benchmark applications of 3-D
stencil computation with the MaxCompiler. Two types of
arithmetic, 32-bit single-precision floating-point and 32-bit
fixed-point were utilized for comparison. The governing
equation of heat conduction is expressed as:

∂T (x, y, z, t)
∂t

= α (x, y, z)∇2T (x, y, z, t) (11)

where T is a temperature, t is a time variable and α is ther-
mal diffusivity. Equation (11) can be approximated by a
finite-difference equation with the explicit scheme as:

Ti, j,k(t + Δt)

= α (x, y, z)Δt

(
Ti+1, j,k(t) − 2Ti, j,k(t) + Ti−1, j,k(t)

Δx2

+
Ti, j+1,k(t) − 2Ti, j,k(t) + Ti, j−1,k(t)

Δy2

+
Ti, j,k+1(t) − 2Ti, j,k(t) + Ti, j,k−1(t)

Δz2

)

+ Ti, j,k(t).

(12)

This can be implemented on the MaxGenFD with the stencil
pattern shown in Fig. 4 (a).

Figure 5 shows a part of the main computation kernel
of the 3-D heat conduction simulation implemented with
MaxGenFD. In this application, three streams are utilized;
in T for an input stream of temperature T , alpha for an in-
put stream of constants α, and out T for an output stream
of temperature T . At line 2, the kernel obtains Ns which

302
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 5 An outline of the computation kernel of the benchmark.

Table 1 Common parameters of target designs.

Parameter Value

Block size BW × BH (192 × 120)
Tile size TW × TH (16 × 12)

Pipeline frequency Fs 150 MHz
Memory bus frequency Fm 300 MHz

Stencil size S d 1

is given as an external parameter and the multi-step behav-
ior is explicitly described at lines 14–19. Np is also defined
outside the kernel and multiple pipelines are automatically
generated by the MaxGenFD according to the value of Np.
Thus, the multi-pipeline structure does not explicitly appear
in the kernel code.

6. Evaluation

To validate our proposed models, we implemented and
evaluated the performance of the heat conduction simu-
lation for (512, 512, 512) of a computational space with
1,024 iterations on a MAX3424A DFE equipped in a PC
with Intel Core i7-2600S 2.8 GHz, DDRIII 16 GB run-
ning Cent OS 6.4. The Virtex-6 XC6VSX475T FPGA on
the MAX3424A DFE has 297,600 LUTs, 595,200 FFs,
4,788 KBytes of BRAMs and 2,016 DSPs. The evaluated
designs were compiled and synthesized using MaxCom-
piler 2013.3, MaxGenFD 2013.3 and ISE 13.3. Place and
route for each design parameter were retried up to 16 times
using different cost tables until all the timing constraints
were met. Table 1 summarizes common parameters for the
designs.

6.1 Floating-Point Designs

Table 2 shows implementation results of floating-point de-
signs with no stream compression. As a result of synthesis
for the design of (Np,Ns) = (1, 1), N(1,1)

DSP and α in Eq. (1)
are estimated as 39 and 1, respectively. Then, DSP usage
NDSP follows NDSP = 39 × Np × Ns + 1, and Eq. (1) can be
transformed to Np × Ns < 51. The results in Table 2 reveal
that the designs with larger Np need fewer resources when
the value of (Np × Ns) is the same.

Figure 6 shows limitations on the design parameters

Fig. 6 Estimated available parameters and synthesis results for
floating-point designs.

estimated by our proposed model and synthesis results. The
three solid lines in Fig. 6 illustrate limitations imposed by
the number of DSPs, the number of BRAMs, and the max-
imum Np value supported in MaxGenFD, respectively. The
contour map of the estimated performance is also demon-
strated with dashed lines. Our model estimates that the
threshold value of Np for Pmem < Pcompute is 4.8. Here,
a dot point indicates that the corresponding design param-
eter combination was estimated as available and success-
fully implemented. A cross point indicates that the pa-
rameter combination failed to be implemented. The circled
dot shows the best parameters that were successfully imple-
mented: (Np = 4, Ns = 7). Since a few promising param-
eter combination candidates failed to be implemented due
to placing and routing, the best available design was the 5th
best one in the estimation model. However, among the ac-
tually implemented design parameters, the best parameters
were accurately anticipated as the best. While our resource
estimation model seems to be slightly optimistic, the per-
formance model gives us a good direction to easily choose
parameters without exhaustive parameter space exploration.

Next, we measured the actual execution performances
and compared them to the estimated performances as shown
in Fig. 7. The plotted marks indicate measured values and
dashed lines indicate estimated values by Eq. (10). Table 3
shows estimation errors in terms of the mean absolute per-
centage error (MAPE). All the configurations in this work
have the same computational efficiency η = 0.714. The
evaluation results in Fig. 7 show the performance was well
estimated by our model. In total, the MAPE of the estima-
tion was 10.2%.

6.2 Fixed-Point Designs

For comparison, we also evaluated fixed-point designs of the
heat conduction simulations with the same condition. Ta-
bles 4 and 5 show implementation results. Here, as a result
of synthesis for the design of (Np,Ns) = (1, 1), N(1,1)

DSP and α
in Eq. (1) were estimated as 10 and 1, respectively. Chang-

DOHI et al.: PERFORMANCE MODELING OF STENCIL COMPUTING ON A STREAM-BASED FPGA ACCELERATOR
303

Table 2 Resource utilization and performance for floating-point designs.

Case Np Ns Np × Ns LUTs FFs BRAMs DSPs Performance [elements/sec]

1 1 1 1 45,911 65,678 165 40 1.29e+08
2 1 2 2 50,154 71,186 239 79 2.57e+08
3 1 3 3 56,729 78,021 334 118 3.86e+08
4 1 4 4 61,893 84,647 430 157 5.13e+08
5 1 5 5 67,022 92,033 525 196 6.44e+08
6 1 6 6 74,808 99,259 621 235 7.75e+08
7 1 7 7 79,485 105,596 715 274 8.96e+08
8 1 8 8 85,839 112,111 812 313 1.03e+09
9 1 9 9 91,444 118,814 907 352 1.16e+09

10 1 10 10 96,884 125,676 1,003 391 1.28e+09

11 2 1 2 48,108 69,660 167 79 2.36e+08
12 2 2 4 56,323 80,038 244 157 4.75e+08
13 2 3 6 65,540 90,739 340 235 7.03e+08
14 2 4 8 72,777 100,548 437 313 9.52e+08
15 2 5 10 81,565 110,304 534 391 1.19e+09
16 2 6 12 88,773 120,623 631 469 1.41e+09
17 2 7 14 96,495 130,956 727 547 1.63e+09
18 2 8 16 105,868 141,143 826 625 1.89e+09
19 2 9 18 113,188 150,982 924 703 2.13e+09
20 2 10 20 120,402 161,614 1,021 781 2.40e+09

21 4 1 4 56,080 79,205 174 157 4.03e+08
22 4 2 8 70,237 97,614 258 313 8.12e+08
23 4 3 12 85,344 115,945 360 469 1.21e+09
24 4 4 16 99,161 134,233 463 625 1.63e+09
25 4 5 20 113,478 151,871 565 781 2.03e+09
26 4 6 24 128,643 171,315 669 937 2.44e+09
27 4 7 28 143,519 189,526 771 1,093 2.86e+09
28 4 8 32 Failed to place and route
29 4 9 36 Failed to place and route
30 4 10 40 Failed to place and route

31 8 1 8 73,311 99,897 182 313 4.88e+08
32 8 2 16 102,129 134,467 262 625 9.99e+08
33 8 3 24 127,970 169,229 360 937 1.49e+09
34 8 4 32 155,346 204,150 462 1,249 1.98e+09
35 8 5 40 Failed to place and route
36 8 6 48 Failed to place and route

37 16 1 16 Failed to place and route
38 16 2 32 Failed to place and route
39 16 3 48 Failed to place and route

Fig. 7 Estimated and actual performance for floating-point designs.

ing arithmetic from floating-point to fixed-point, resource
utilization of DSPs was reduced to about one-quarter. Thus,
DSP usage NDSP follows NDSP = 10×Np×Ns+1, and Eq. (1)

Table 3 Estimation errors for floating-point designs.

Np MAPE [%]

1 16.7
2 9.3
4 5.6
8 3.9

Total 10.2

can be transformed to Np ×Ns < 202, making a much larger
design space.

The effect of the alleviation of the resource limitation
is clearly shown in Fig. 8; the number of available combi-
nations of Np and Ns was increased. On the other hand, the
performance saturation point in Np due to the external mem-
ory bandwidth remained to be the same, since the width of
data streams is 32 bits for both floating-point and fixed-point
designs. Thanks to the increase in the number of design al-
ternatives, the performance achieved by the best fixed-point
implementation surpassed that of the best floating-point im-

304
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Table 4 Resource utilization and performance for fixed-point designs.

Case Np Ns Np × Ns LUTs FFs BRAMs DSPs Performance [elements/sec]

1 1 1 1 40,234 59,979 160 11 1.30e+08
2 1 2 2 43,172 62,585 203 21 2.59e+08
3 1 3 3 45,202 65,501 270 31 3.90e+08
4 1 4 4 44,891 67,301 330 41 5.16e+08
5 1 5 5 48,204 69,564 391 51 6.49e+08
6 1 6 6 49,555 71,552 458 61 7.78e+08
7 1 7 7 51,775 72,637 518 71 9.08e+08
8 1 8 8 52,411 74,234 572 81 1.03e+09
9 1 9 9 54,167 76,450 637 91 1.16e+09

10 1 10 10 56,742 78,860 704 101 1.29e+09
11 1 11 11 57,836 80,214 765 111 1.42e+09
12 1 12 12 59,696 82,394 832 121 1.55e+09
13 1 13 13 61,606 83,013 892 131 1.68e+09
14 1 14 14 62,151 85,496 951 141 1.81e+09
15 1 15 15 65,035 86,649 1,018 151 1.93e+09
16 1 16 16 Over BRAMs utilization (1,078 > 1,064)

17 2 1 2 42,262 61,765 162 21 2.39e+08
18 2 2 4 43,754 64,480 207 41 4.80e+08
19 2 3 6 44,518 67,177 272 61 7.12e+08
20 2 4 8 46,914 69,215 330 81 9.61e+08
21 2 5 10 48,246 71,282 394 101 1.20e+09
22 2 6 12 50,450 73,861 459 121 1.42e+09
23 2 7 14 52,450 76,274 520 141 1.67e+09
24 2 8 16 54,292 78,545 583 161 1.92e+09
25 2 9 18 55,517 80,731 647 181 2.15e+09
26 2 10 20 58,008 83,042 707 201 2.38e+09
27 2 11 22 59,671 85,211 771 221 2.64e+09
28 2 12 24 60,096 87,518 834 241 2.87e+09
29 2 13 26 63,160 89,661 895 261 3.09e+09
30 2 14 28 64,250 92,172 959 281 3.31e+09
31 2 15 30 64,481 93,682 1,022 301 3.59e+09
32 2 16 32 Over BRAMs utilization (1,083 > 1,064)

33 4 1 4 44,439 64,726 164 41 4.18e+08
34 4 2 8 45,514 67,835 214 81 8.32e+08
35 4 3 12 48,699 71,231 278 121 1.22e+09
36 4 4 16 51,506 74,463 341 161 1.64e+09
37 4 5 20 53,069 77,506 404 201 2.05e+09
38 4 6 24 56,718 80,923 469 241 2.50e+09
39 4 7 28 56,747 84,295 532 281 2.89e+09
40 4 8 32 60,938 87,429 596 321 3.33e+09
41 4 9 36 60,378 90,216 669 361 3.66e+09
42 4 10 40 66,382 93,394 735 401 4.06e+09
43 4 11 44 67,892 97,363 787 441 4.54e+09
44 4 12 48 69,895 99,816 864 481 4.99e+09
45 4 13 52 71,022 104,284 915 521 5.37e+09
46 4 14 56 73,684 106,682 995 561 5.57e+09
47 4 15 60 75,205 110,639 1,041 601 6.08e+09
48 4 16 64 Over BRAMs utilization (1,106 > 1,064)

plementation. In this case, our model was able to correctly
estimate the best available design parameters.

Figure 9 shows the measured and estimated perfor-
mances for the fixed-point designs and Table 6 summarizes
the estimation errors. As is the case with floating-point de-
signs, the performance estimation results agree well with the
measured ones, including the performance saturation due to
the memory bandwidth that is shown when Np is 8 and 16.
The total MAPE of the estimation was 7.2%.

6.3 Effect of Data Compression

Finally, we evaluated the effect of the stream compres-

sion that MaxGenFD offers. We implemented the heat
conduct simulations with floating-point arithmetic enabling
the stream compression. The target compression ra-
tios were designated as 0.5 for two streams and 0.3125
for the other stream. The designs were compiled us-
ing MaxCompiler 2012.1, MaxGenFD 2012.1 and ISE 13.3
with 303 MHz of the memory bus frequency.

Table 7 summarizes the implementation results. Com-
pared to the results in Table 2, the DSP utilization was the
same. Also for LUTs, FFs and BRAMs, the utilization was
the almost same, suggesting the data compression mecha-
nism of Maxeler has a limited impact on hardware amount.

Figure 10 shows the estimated available design param-

DOHI et al.: PERFORMANCE MODELING OF STENCIL COMPUTING ON A STREAM-BASED FPGA ACCELERATOR
305

Table 5 Resource utilization and performance for fixed-point designs (continued).

Case Np Ns Np × Ns LUTs FFs BRAMs DSPs Performance [elements/sec]

49 8 1 8 50,373 72,957 174 81 5.01e+08
50 8 2 16 53,330 77,383 220 161 1.00e+09
51 8 3 24 56,829 82,805 280 241 1.50e+09
52 8 4 32 59,515 88,145 341 321 2.04e+09
53 8 5 40 65,388 93,273 399 401 2.49e+09
54 8 6 48 69,450 99,021 459 481 3.06e+09
55 8 7 56 70,687 104,444 520 561 3.56e+09
56 8 8 64 75,110 109,150 578 641 4.06e+09
57 8 9 72 80,027 115,009 637 721 4.54e+09
58 8 10 80 81,410 120,397 698 801 5.11e+09
59 8 11 88 87,223 125,949 757 881 5.63e+09
60 8 12 96 90,426 131,310 817 961 6.14e+09
61 8 13 104 94,736 136,564 878 1,041 6.62e+09
62 8 14 112 99,079 141,886 937 1,121 7.10e+09
63 8 15 120 101,217 147,359 997 1,201 7.55e+09
64 8 16 128 105,528 152,450 1,056 1,281 8.18e+09

65 16 1 16 60,321 86,136 205 161 5.00e+08
66 16 2 32 66,651 95,125 254 321 1.00e+09
67 16 3 48 71,962 104,511 315 481 1.53e+09
68 16 4 64 79,502 113,996 373 641 2.03e+09
69 16 5 80 85,061 123,278 432 801 2.52e+09
70 16 6 96 90,142 132,456 495 961 3.04e+09
71 16 7 112 96,779 142,159 556 1,121 3.56e+09
72 16 8 128 103,548 151,347 613 1,281 3.97e+09
73 16 9 144 108,962 160,673 669 1,441 4.60e+09
74 16 10 160 117,248 170,224 729 1,601 5.11e+09
75 16 11 176 124,660 180,139 792 1,761 5.43e+09
76 16 12 192 129,748 189,588 858 1,921 6.11e+09

Fig. 8 Estimated available parameters and synthesis results for
fixed-point designs.

eters and their synthesis results. Although the selectable pa-
rameters are the same with the case in Fig. 6, Bmem in Eq. (7)
depends on the compression ratios and thus the estimated
performance lines were changed. The threshold value of Np

which makes the performance saturation due to the mem-
ory bandwidth was also increased to 44.9. The best per-
formance in the floating-point design with compression was
achieved when (Np,Ns) = (8, 5) and was about 1.4 times
faster than the best floating-point design without compres-
sion. The number of more promising designs, which were
estimated as available but actually failed, was four. This in-
dicates again that our resource estimation models have room
to be improved to take into account place and routing issues.

Fig. 9 Estimated and actual performance for fixed-point designs.

Table 6 Estimation errors for fixed-point designs.

Np MAPE [%]

1 17.2
2 10.3
4 4.3
8 1.5

16 1.8
Total 7.2

A comparison between Table 2 and Table 7 reveals
that data compression improved the performance only when
Np ≥ 4, and performance slowdowns were observed for the
other cases. One of the negative side effects of the data com-

306
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Table 7 Resource utilization and performance for floating-point designs with data compression.

Case Np Ns Np × Ns LUTs FFs BRAMs DSPs Performance [elements/sec]

1 1 1 1 49,105 70,074 175 40 1.07e+08
2 1 2 2 54,490 77,285 248 79 2.13e+08
3 1 3 3 58,349 83,804 345 118 3.18e+08
4 1 4 4 65,907 90,434 440 157 4.23e+08
5 1 5 5 70,782 96,401 535 196 5.27e+08
6 1 6 6 75,727 103,328 631 235 6.30e+08
7 1 7 7 82,076 110,125 727 274 8.38e+08
8 1 8 8 88,695 117,145 822 313 8.39e+08
9 1 9 9 93,314 123,686 917 352 9.39e+08

10 1 10 10 99,420 129,822 1,011 391 1.04e+09

11 2 1 2 52,603 75,163 178 79 2.12e+08
12 2 2 4 59,690 85,445 254 157 4.23e+08
13 2 3 6 67,938 95,837 350 235 6.32e+08
14 2 4 8 78,077 107,087 447 313 8.41e+08
15 2 5 10 84,601 115,832 546 391 1.05e+09
16 2 6 12 93,069 128,687 641 469 1.25e+09
17 2 7 14 100,655 136,433 739 547 1.45e+09
18 2 8 16 109,664 150,707 834 625 1.67e+09
19 2 9 18 117,755 157,225 931 703 1.87e+09
20 2 10 20 126,181 167,481 1,031 781 2.06e+09

21 4 1 4 58,949 84,050 183 157 4.21e+08
22 4 2 8 74,231 102,657 267 313 8.38e+08
23 4 3 12 89,764 121,454 369 469 1.25e+09
24 4 4 16 104,261 139,497 471 625 1.66e+09
25 4 5 20 119,424 157,814 573 781 2.08e+09
26 4 6 24 131,246 176,207 677 937 2.48e+09
27 4 7 28 147,648 194,462 780 1,093 2.88e+09
28 4 8 32 185,949 595,200 884 1249 3.30e+09
29 4 9 36 Failed to place and route
30 4 10 40 Over BRAMs utilization (1,092 > 1,064)

31 8 1 8 75,543 105,508 201 313 8.30e+08
32 8 2 16 104,747 140,537 281 625 1.65e+09
33 8 3 24 132,534 175,847 381 937 2.45e+09
34 8 4 32 157,202 211,046 481 1,249 3.26e+09
35 8 5 40 188,686 247,667 577 1,561 4.06e+09
36 8 6 48 Failed to place and route

37 16 1 16 111,929 150,289 238 625 1.60e+09
38 16 2 32 165,106 218,620 326 1,249 3.18e+09
39 16 3 48 Failed to place and route

Fig. 10 Estimated available parameters and synthesis results for
floating-point designs with data compression.

Fig. 11 Estimated and actual performance for floating-point designs with
data compression.

DOHI et al.: PERFORMANCE MODELING OF STENCIL COMPUTING ON A STREAM-BASED FPGA ACCELERATOR
307

Table 8 Estimation errors for floating-point designs with data
compression.

Np MAPE [%]

1 2.5
2 2.4
4 3.1
8 4.5
16 7.4

Total 3.2

pression is to disable an in-block memory access optimiza-
tion, which is automatically performed by MaxGenFD. For
the designs with small Np, originally the memory bandwidth
was not a severe bottleneck. Therefore, the data compres-
sion did not improve the performance and the side effect was
actualized. On the other hand, for the designs with large Np,
the data compression effectively alleviated the memory bot-
tleneck, overcoming the side effect.

Figure 11 shows performance evaluation results for the
floating-point designs with data compression and their esti-
mation errors are shown in Table 8. The performance was
well estimated also in this case, showing a total MAPE of
3.2%. In addition, we compared the DFE designs with
multi-threaded CPU implementation with SIMD instruc-
tions on the host PC which was used for above evalua-
tions. The CPU implementation achieved the performance
of 6.66 × 108 elements/sec, and it is equivalent to the DFE
designs which have (Np × Ns) = 6 in 32-bit single-precision
floating-point. The best configuration (Np,Ns) = (8, 5) in
floating-point with data compression was about six times
faster than the CPU implementation. As shown in Fig. 11,
some of the DFE designs were actually slower than the CPU
implementation. This suggests the importance of appropri-
ate selection of design parameters for application accelera-
tion.

7. Conclusion

In this paper, we have presented the resource and perfor-
mance estimation models for 3-D stencil computation on
the Maxeler Data Flow Engines for efficient design space
exploration. We have used heat conduction simulations
with 32-bit single-precision floating-point and 32-bit fixed-
point arithmetic as benchmark applications and evaluated
resource utilization and performance for various parame-
ter configurations. The experiments results have shown that
while our resource estimation models were sometimes opti-
mistic due to place and routing issues were not taken in ac-
count, the performance estimation model agreed well with
measure performance. It has been also shown that the pro-
posed models systematically found the best combination of
design parameters of pipeline structure and easily estimated
the effect of fixed-point arithmetic and data stream compres-
sion. Our future work includes improvement of resource
estimation models and introducing of energy consumption
models to optimize energy-performance efficiency.

References

[1] K. Dohi, K. Fukumoto, Y. Shibata, and K. Oguri, “Performance
modeling and optimization of 3-D stencil computation on a stream-
based FPGA accelerator,” ReConFig, pp.1–6, 2013.

[2] High-Performance Computing Using FPGAs, ed. W.
Vanderbauwhede and K. Benkrid, Springer, New York, 2013.

[3] Impulse Accelerated Technologies, “Impulse C,” http://www.
impulseaccelerated.com/

[4] Xilinx, “Vivado HSL Design,” http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design/index.htm

[5] Accellera Systems Inititaive, “System C,” http://www.accellera.org/
home

[6] Maxeler Technologies, “MaxCompiler,” http://www.maxeler.com/
[7] O. Pell, O. Mencer, K. Tsoi, and W. Luk, “Maximum performance

computing with dataflow engines,” in High-Performance Computing
Using FPGAs, ed. W. Vanderbauwhede and K. Benkrid, pp.747–
774, Springer, New York, 2013.

[8] Y. Sato, Y. Inoguchi, W. Luk, and T. Nakamura, “Evaluating re-
configurable dataflow computing using the Himeno benchmark,”
Proc. International Conference on ReConFigurable Computing and
FPGAs, pp.1–7, 2012.

[9] H. Giefers, C. Plessl, and J. Förstner, “Accelerating finite difference
time domain simulations with reconfigurable dataflow computers,”
Proc. 4th International Symposium on Highly-Efficient Accelerators
and Reconfigurable Technologies, pp.33–38, 2013.

[10] K. Sano, “FPGA-based systolic computational-memory array for
scalable stencil computations,” in High-Performance Computing
Using FPGAs, ed. W. Vanderbauwhede and K. Benkrid, pp.279–
303, Springer, New York, 2013.

[11] T. Kobori and T. Maruyama, “A high speed computation system for
3D FCHC lattice gas model with FPGA,” in Field Programmable
Logic and Application, ed. P. Cheung and G. Constantinides, Lec-
ture Notes in Computer Science, vol.2778, pp.755–765, Springer,
Berlin Heidelberg, 2003.

[12] Maxeler Technologies, “MaxGenFD Tutorial Version 2013.3,” Dec.
2013.

[13] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.
Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” Proc.
2008 ACM/IEEE Conference on Supercomputing, SC ’08, pp.4:1–
4:12, Piscataway, NJ, USA, 2008.

[14] A.W. Lim, S.W. Liao, and M.S. Lam, “Blocking and array contrac-
tion across arbitrarily nested loops using affine partitioning,” SIG-
PLAN Not., vol.36, no.7, pp.103–112, June 2001.

[15] M. Jiayuan and S. Kevin, “A performance study for iterative stencil
loops on GPUs with ghost zone optimizations,” International Journal
of Parallel Programming, vol.39, no.1, pp.115–142, 2010.

[16] G. Rivera and C.W. Tseng, “Tiling optimizations for 3D scientific
computations,” Proc. 2000 ACM/IEEE Conference on Supercom-
puting, SC ’00, pp.1–23, Washington, DC, USA, 2000.

Keisuke Dohi received B.E., M.E. and
Ph.D. degrees from Nagasaki University, Japan,
in 2009, 2011 and 2014, respectively. His re-
search interests include reconfigurable systems
and GPGPU computing.

308
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Koji Okina received B.E degree from Naga-
saki University, Japan, in 2014. His research in-
terests include reconfigurable systems.

Rie Soejima received B.E degree from
Nagasaki University, Japan, in 2014. Her re-
search interests include reconfigurable systems.

Yuichiro Shibata received the B.E. degree
in electrical engineering, the M.E. and Ph.D. de-
grees in computer science from Keio University,
Japan, in 1996, 1998 and 2001, respectively.
Currently, he is an associate professor at Depart-
ment of Computer and Information Sciences,
Nagasaki University. He was a Visiting Scholar
at University of South Carolina in 2006. His re-
search interests include reconfigurable systems
and parallel processing. He won the Best Paper
Award of IEICE in 2004.

Kiyoshi Oguri received B.S. and M.S. de-
grees in physics from Kyushu University, Japan,
in 1974 and 1976, respectively. He also re-
ceived the Ph.D. degree in information engineer-
ing from the same university in 1997. Since
joining NTT in 1976, he have been engaged in
the research, design and development of high-
end general purpose computer, high-level logic
synthesis system and a wired logic-based dy-
namic computing architecture. Currently, he is
a professor of Nagasaki University, Japan. His

research interests are in hardware modeling, high-level synthesis, FPGA-
related systems, and Plastic Cell Architecture. Prof. Oguri received the
Motooka Prize in 1987, the Best Paper Award of IPSJ in 1990, the Okochi
Memorial Technology Prize in 1992, the Achievement Award of IEICE in
2000, and the ACM Gordon Bell Prize in 2009.

