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SUMMARY  MapReduce is considered as the de facto framework for
storing and processing massive data due to its fascinating features: simplic-
ity, flexibility, fault tolerance and scalability. However, since the MapRe-
duce framework does not provide an efficient access method to data (i.e., an
index), whole data should be retrieved even though a user wants to access a
small portion of data. Thus, in this paper, we devise an efficient algorithm
constructing quadtrees with MapReduce. Our proposed algorithms reduce
the index construction time by utilizing a sampling technique to partition a
data set. To improve the query performance, we extend the quadtree con-
struction algorithm in which the adjacent nodes of a quadtree are integrated
when the number of points located in the nodes is less than the predefined
threshold. Furthermore, we present an effective algorithm for incremen-
tal update. Our experimental results show the efficiency of our proposed
algorithms in diverse environments.
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1. Introduction

MapReduce proposed by Google is becoming the de facto
framework for storing and processing massive data due to its
fascinating properties: simplicity, flexibility, fault tolerance
and scalability [7]. Efficient data processing in MapReduce
has received a lot of attention since its debut. MapReduce
is a distributed parallel processing model and execution en-
vironment that allows easy development of scalable parallel
applications to process big data on large clusters of com-
modity machines. Google’s MapReduce or its open-source
equivalent Hadoop [2] is a powerful tool for building such
applications. Of particular, the development of variants of
Hadoop has been active, e.g., Hadoop++ [9], MapReduce
Online [6], Pig [15], Hive [18] and others. Much work has
been conducted also to make efficient parallel algorithms
running on the MapReduce framework [11], [16], [23].

The commonly argued issue of the above work is that
the MapReduce framework does not provided efficient data
access methods such as spatial indexes. Thus, even though
a user want to retrieve a subset of data, the whole data
should be accessed in the MapReduce framework. To al-
leviate this problem, we propose a parallel algorithm con-
structing quadtrees running on the MapReduce framework.
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By utilizing the constructed quadtree, we can rapidly reduce
the search space using and, in nature, apply the MapReduce
framework to process data in parallel. Thus, we can enhance
the performance of big data processing. In our work, we uti-
lize a sampling technique to split a data set into partitions in
order to reduce the quadtree construction time.

Each set of points belonging to each leaf node of the
constructed quadtree is stored into a separate file. Many files
tend to contain only a few points due to the skewness of data
distribution. Thus, when we retrieve some points using a
range query, the query performance may be degraded due
to a large number of files overlapped with the query range.
To improve the query performance, we extend the quadtree
construction algorithm in which the adjacent leaf nodes of a
quadtree are consolidated when the number of points located
in the nodes is less than the predefined threshold.

Organization. The remainder of the paper is orga-
nized as follows. In Sect.2, we present the background
of our work. Section 3 discusses related work. Section 4
presents our proposed algorithms for quadtree construction
on the MapReduce framework. Section 5 presents an empir-
ical evaluation. Finally, Sect. 6 summarizes our work.

2. Preliminary
2.1 Quadtrees

For databases, several index structures such as B+-tree [5]
and R*-tree[3] have been proposed. As one of the
prominent index structures for multi-dimensional data, a
quadtree [10] is used in diverse areas such as spatial data
management and image processing since it is conceptually
simple and easy to maintain.

Given a set D of d-dimensional points, the quadtree [10]
subdivides the d-dimensional space recursively into sub-
regions. In the quadtree, each internal node has exactly
2¢ children and each leaf node has at most a predefined
number of points ¢, denoted as capacity. Every node n
in the quadtree represents a d-dimensional region, denoted
as nregion = ([n(1)",n(1)"),...,[n(d)",n(d)")) where
[n(k)~,n(k)*) is the range of the k-th dimension of n’s cov-
ering region. When a quadtree is constructed, if the num-
ber of points located in n.region is greater than the capacity
¢, n.region is divided into equi-sized 2¢ subspaces each of
which is associated with n’s child node. Thus, every inter-
mediate node of the quadtree has 2¢ child nodes and every
leaf node n has a subset of points which are located in the
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Fig.1  An example of a quadtree

region presented by n. Figure 1 shows a quadtree for a 2-
dimensional data set with the capacity ¢ = 3.

As shown in Fig. 1, an id is assigned to each node n of
the quadtree based on its location. We represent the node
with id i as node(i). In a d-dimensional space, the id of a
node n with depth e is represented by id(n) = ajay -+ aeq
which consists of the first (e — 1) - d bits coming from its par-
ent node and the remaining d bits d(e—1y.4+10(e-1yd+2 - * * Ce-d
where a(,—1).q+i = 0 (Or d(e-1y.4+i = 1) if the i-th dimensional
range of the region represented by the node is the first half
(or the second half) of its parent’s i-th dimensional range.
For instance, in Fig. 1 the first child node of the node with
the id ‘10° has ‘1000’ as its id. In the id ‘1000, the first
two digits ‘10’ come from its parent node. Since the region
corresponding to the node with the id ‘1000’ locates in the
first half part on each dimension, the remained 2 digits are
‘00°.

2.2 MapReduce

Inspired by the map and reduce primitives present in func-
tional languages, Google developed the MapReduce [7]
framework that enables the users to easily develop large
scale distributed applications. MapReduce is a distributed
as well as parallel processing model and execution envi-
ronment in the shared-nothing clusters of commodity ma-
chines. Hadoop [2] is implemented in the OpenSource com-
munity as the MapReduce framework. In Hadoop, using the
Hadoop Distributed File System (HDFS), a large sized file
is initially partitioned into several fragments, called chunk,
and stored in several machines redundantly for reliability.
The size of a chunk is typically 64 MByte.

In MapReduce, a program consists of a map function
and a reduce function which are user-defined functions. The
associated implementation parallelizes large computations
easily as each map function invocation is independent and
uses re-execution as the primary mechanism of fault toler-
ance. Basically, the MapReduce framework consists of one
job tracker and several task trackers. Each task tracker is
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Fig.2  The data flow in MapReduce

running on a commodity machine, called slave. A slave pro-
cesses data using a map function and a reduce function each
of which is invoked by the task tracker. The job tracker run-
ning on a single machine, called master, takes responsibility
for error detection, load balancing and so on.

Conceptually, the map and reduce functions imple-
mented by the user have the following types:

map(key,,value,) — list(key,, value;)

reduce(keys, list(valuey)) — (keys, list(valuess))

In the MapReduce framework, the computation takes
a set of input key/value pairs, and produces a set of output
key/value pairs. The data processing in MapReduce is com-
posed of three phases: map phase, shuffle phase and reduce
phase. Figure 2 illustrates the data flow in the MapReduce
framework.

Map phase: A map function takes a key-value pair
(key1, valuey) as input, executes some computation and may
output a set of intermediate key-value pairs (key,, value;).
In addition, by applying a combine function, additional
computation to intermediate results can be executed.

Shuffle phase: In this phase, intermediate key-value
pairs are grouped with respect to the key key,. Thus, a re-
duce function to be executed in the next phase can obtain
a list of values having the same key. Therefore, through
this phase, each work is assigned the data lists as (keys,,
list(value,)).

Reduce phase: Each reduce function executes compu-
tation for the value list and emits a key-value list pair (keys,
list(values)) as a final result. The intermediate values are
supplied to the reduce function via an iterator. This allows
MapReduce to handle lists of values that are too large to fit
in main memory.

3. Related Work

Recently, many techniques using the MapReduce frame-
work have been proposed. In [22], the raster image sort-
ing technique using the road information in satellite images
was proposed. In [13], the parallel algorithm for construct-
ing suffix array for DNA sequence analysis was proposed.
In [12], for IR systems, four parallel algorithms to con-
struct inverted index were proposed and evaluated their ef-
ficiencies on the MapReduce framework. In [1], k-Nearest
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Neighbor (k-NN) and reverse nearest neighbor problems are
solved using MapReduce based on the Voronoi partitioning.
In [11], an efficient k-NN join technique using MapReduce
was proposed. In [21], the query for ALL Nearest Neighbor
(ANN) was processed on the MapReduce framework. Of
particular, similar to our work, the data space is divided into
several tiles for load balancing and the tiles are integrated
according to Z-order in [21]. However, if this technique is
applied to the quadtree construction, it is hard to consoli-
date the local quadtrees generated for tiles into the global
quadtree.

In [4], R-tree was constructed using MapReduce. All
objects are sorted with respect to a space filling curve such
as Z-order and partitioned into the subsets. For each subset,
a local R-tree is constructed in each machine. Then, the
local R-trees are combined into a final R-tree. However, in
this work, the maintenance of the constructed R-tree is not
mentioned and the access method using the R-tree on the
MapReduce framework is not introduced.

The most related work to ours is [17]. To perform the
earthquake simulation, a quadtree for 3-dimensional points
is constructed on the MapReduce framework. In [17], the
quadtree is constructed in a bottom-up fashion. In the first
MapReduce pahse, each point is transformed to a node of a
quadtree and the nodes are merged into a partial quadtree.
In the next MapReduce phase, the partial quadtrees gener-
ated in the previous phase are merged. This job is iteratively
conducted until a single quadtree is generated. Therefore,
since several MapReduce phases are required to construct
the final quadtree, overall performance is degraded.

Recently, Park et al.[16] presented an efficient paral-
lel algorithm for skyline processing on MapReduce. In this
work, to prune out non-skyline points eagerly, a variant of
the quadtrees is used. However, the performance can be de-
graded since the variant of the quadtrees is constructed using
a sample data only on a single machine.

4. Quadtree Construction on MapReduce

In this section, we first present an efficient parallel quadtree
construction algorithm proposed in [14] briefly and next
propose an enhanced quadtree construction algorithm to im-
prove the query performance.

4.1 Efficient Quadtree Construction

In [14], we proposed an efficient quadtree construction al-
gorithm on the MapReduce framework, called SOMR (Sam-
ple based Quadtree with MapReduce), which utilizes a sam-
pling technique in order to identify the data distribution ap-
proximately. We present some notations of quadtree used in
our work.

Definition 1: Given d-dimensional point set D whose size
is |D|, the global quadtree is the quadtree QP constructed
with D where the capacity is c.

Definition 2: Given d-dimensional point set D, the base
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Fig.3  The hierarchical structure of the global quadtree

Function SQMR( D, ¢, d, t, )
D: adata set, S: a sample set, ¢: capacity, d: the dimension
t: the number of machines, f: sampling ratio
begin
//Base Quadtree Construction Step
1. § =ReservoirSampling(D, f)
2. wal = ConQuadTree( S, |S|/t)
//Local Quadtree Construction Step on MapReduce
3. Broadcast Qg‘/, and ¢
4. LocalTrees = RunMapReduce(LOCALQ.map, LOCALQ.reduce)
//Consolidation Step
5. QuadTree = GLOBALQ(Q:
6. return QuadTree
end

S AT rees
S1/° LocalT rees )

Fig.4  The algorithm of SQMR

quadtree is the quadtree Q‘%l st constructed with D where the
capacity is |D|/t and t is the number of machines.

Definition 3: Given a leaf node n of the base quadtree and
the d-dimensional point set D, the local quadtree is the
quadtree QF constructed with a set of points P € D which
are located in n.region with the capacity c.

Figure 3 illustrates the hierarchical structure of the
global quadtree which is composed of a base quadtree and
a set of local quadtrees. The pseudocode of SOMR is pre-
sented in Fig.4. SQMR is composed of three steps: base
quadtree construction step, local quadtree construction step
and consolidation step.

In the base quadtree construction step, to split d-
dimensional data space into the subspaces, we build a base
quadtree (lines 1-2 in Fig.4). To improve the performance,
we first generate a sample S from the data D using the reser-
voir sampling [20] (line 1 of SQMR in Fig.4). In the reser-
voir sampling, instead of flipping a coin for each point p € D
to add p into S, the number of skipped points before the
next point to be added to S is determined with respect to the
sampling ratio f(= |S|/|D|). Thus, the reservoir sampling is
adequate for a large sized data set since some points in D
are skipped without retrieval.

Using a sample S, we construct an approximate base
quadtree Q|SS| It where the capacity is |[S|/¢ (line 2 of SQMR).
In the statistical view, when |S| > 30, by the central limit
theorem, the expected sample mean is population mean and
the expected sample variance is equal to the population vari-
ance divided by |S|-1[8]. Thus, the variance of sample
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points in each dimension is an unbiased estimator for the
variance of D in each dimension. In addition, the d X d co-
variance matrix of S is also an unbiased estimator for the
covariance matrix of D [19]. Thus, the shape of an approxi-
mate base quadtree will be similar to that of a base quadtree.

In the local quadtree construction step, the data set D
is split into partitions based on the regions divided by an
approximate base quadtree Q|SS| p and a local quadtree for
each partition is computed in parallel on the MapReduce
framework (lines 3-4 in Fig.4). To do so, the approximate
base quadtree QISSI s and the capacity ¢ are broadcast to all
machines. Then, each map function (i.e., LOCALQ.map)
invoked with a point p € D finds the leaf node n of QI%I P
where p is located in n.region and emits the key-value pair
(n, p). During the shuffle phase, the key-value pairs gener-
ated by all map function are sorted and grouped by key. The
reduce function (i.e., LOCALQ.reduce) is called with each
key n and the corresponding point list P. Then, the reduce
function constructs the local quadtree QF with the capacity
c and outputs the local quadtree QF with n (i.e, a leaf node
of the approximate base quadtree Q|SS| / D

Given a leaf node n; of a local quadtree QF, let P(n;)
be the set of points located in ng.region (i.e., P(ng) = {p €
D|p is located in ng.region}). The set P(n;) of every n, of a
local quadtree QF is stored into a separated file and each leaf
node only keeps the name of the corresponding file where
the file name storing P(n;) is the id of n; (i.e., id(n¢)).

Finally, we construct the global quadtree using the lo-
cal quadtrees for all partitions in the consolidation step
(lines 5-6 in Fig.4). Since each partition associates with
each leaf node of an approximate base quadtree, by replac-
ing the leaf node of an approximate base quadtree to the
proper local quadtree’s root node, a global quadtree is easily
constructed.

4.2 Enhanced Quadtrees

To process a range query g retrieving a small portion of data
with the MapReduce framework only, whole points should
be retrieved. In contrast, if we utilize a quadtree, we can
reduce the search space significantly.

Let g.region be the query region of a query gq.
Then, by traversal of the constructed global quadtree

? , we can collect a set of leaf nodes whose regions
are overlapped with g.region. We refer to such set of
leaf nodes in QP with respect to g.region as N, =
{n¢ln; is a leaf node of QP and n,.region overlaps with g.re
gion}. Recall that, as mentioned in Sect. 4.1, each leaf node
ny keeps the name (i.e., id(n;)) of the file for the set of all
points P(n,). Thus, we can generate the query result A, of g
in parallel by retrieving P(n,) independently where n, is in
N, such that, for each leaf node n, € N, if a point p € P(n,)
is in g.region, we put p into A,.

Typically, in the MapReduce framework, the task
tracker called mapper takes responsibility for invoking ev-
ery map function with each key-value pair in each chunk.
Thus, we set the capacity ¢ 64Mbyte/sizeof(p) where
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Fig.5 An example of enhanced quadtrees

sizeof(p) returns the size of a point p so that the size of each
file is at most 64Mbyte (i.e., chunk size), and hence, each
file is processed by each distinct mapper. However, as the
number of files whose corresponding leaf nodes’ regions are
overlapped with the query range increases, the query perfor-
mance tends to decrease since the number of mappers in-
creases. Thus, to improve the query performance, we devise
an enhanced quadtree by merging the files. An example of
an enhanced quadtree is shown in Fig. 5.

Note that when we construct a local quadtree in SQMR,
the region in which the number of points exceeds the ca-
pacity c is split into 2 subregions. Thus, the numbers of
points in leaf nodes may not be evenly distributed as shown
in Fig. 1. In other words, some leaf nodes could have very
small number of points. Thus, by merging the files having
small number of points into ones whose sizes are at most
¢, we can reduce the number of generated files as well as
every file can be handled by each mapper. Furthermore, to
improve the query performance, we merge the files whose
corresponding leaf nodes are adjacent. Before defining the
adjacency of nodes, we first address the containment rela-
tionship between a pair of ranges.

Definition 4: Given a pair of ranges r = [Fuin, F'max) and

) , ’ . ’ 2
r= 1 Ta)s i Fin < 7, and 1y, < Fiax, We say that r

contains r* which is denoted as r’ C r.

Definition 5: Let i-th range of n.region be n.region(i) =
[n()~, n(i)*). Given a pair of leaf nodes n, n’ of a quadtree
for d-dimensional data set, we say that n and n’ are adjacent
when n.region and n’.region satisty the following two con-
ditions:

(1) In a single i-th dimension (1 < i < d), n(i))* = (i)~ or
n(i)y~ =n'()+

(2) In every other j-th dimension (1 < j < d and j # i),
n.region(j) C n’.region(j) or n’.region(j) C n.region(j)

Informally, we say that a pair of leaf nodes n and »n’
are adjacent when n.region and n’.region meet in d — 1 di-
mensional space. In order that a pair of regions R and R’
meet in d — 1 dimensions, the first condition of Definition 5
addresses that boundaries of R and R’ should be shared in
a single dimension and the second condition illustrates that
the ranges of the other dimensions should have containment

relationships.
The id of a leaf node n with depth e (i.e., id(n) =
ai,...,a.y) can be decomposed into d bit strings sub;(id(n))

for 1 < i < d such that sub;(id(n)) = a;ai+4Gis24 - - - Ais(e-1)d-
Then, by utilizing the ids of leaf nodes, we can check effi-
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Function LOCALQ.map(key, p)
key: null, p: a point

begin

1. wa ,, = LoadBaseQuadTree()
2. n = FindLeafNode(p, QE;VI)
3. emit(n, p)

end

Function LOCALQ.reduce( key, P )
key: anode, P: alist of point

begin

1. ¢ = LoadCapacity()

2. QF = ConQuadTree(P, c)

3. QF = MergingEQMR(Q?, ¢)

4. output(key, Qf)

end

Procedure MergingEQMR( Q, ¢ )

Q: local quadtree, c: capacity

begin

1. Leafnodes = LoadLeaves(Q);

2. for each leaf node n € Leafnodes do {
Leafnodes = Leafnodes - {n}

4 Target = {n}, MergedsS ize = n.size

5 AdjLeafnodes = LookupAdjLeafnode(n)

6. for each leafnode n.q; € AdjLeafnodes do {
7 if MergedSize + nqq;.size < c then {

8

>

Target = Target U {nuq;}

9. MergedS ize += nyqj.size

10. Leafnodes = Leafnodes - {nuq;}

11. AdjLeafnodes = Ad jLeafnodes U LookupAdjLeafnode(n,q;)
12. }

13. 1}

14.  MergeFiles(Targer)
15. }

16. return Q

Fig.6  The algorithm for an enhanced quadtree construction

ciently whether a pair of leaf nodes n and n’ are adjacent or
not based on the following proposition.

Proposition 1: For a pair of leaf nodes n and #’,
consider a pair of n.region(i)y = [n@)~,n()*) and

n'.region(iy = [0 ())~,n’(0)") as well as a pair of i-th
substrings sub;(id(n)) = aia,...a, and sub(id(n')) =
bib,...b,.

(1) When n(i)* = n’(i)7, there exists an integer k with

1 < k < min(p,q) such that a; = b; for j < k, ax = 0,
by = land agyy = -+ = a, = 1 (if k < p) as well as
bk+1 = qu :O(ifk<6]).

(2) When n.region(i) € n’.region(i), p < q and a; = by for
allk=1,...,p.

For instance, as shown in Fig. 1, since sub;(00) = 0
and subi(1001) = 10, the boundaries of node(00).region
and node(1001).region are shared in x-coordination. In ad-
dition, since sub,(00) = 0 and sub,(1001) = 01 satisfy the
condition (2) of Proposition 1, the range of node(00).region
contains that of node(00).region in y-coordination. There-
fore, node(00) and node(1001) are adjacent. However,
node(00) and node(11) are not adjacent since the boundaries
of node(00).region and node(11).region are shared in both
coordinations.

To construct an enhanced quadtree, we present the
enhanced quadtree construction algorithm, referred to as
EQMR (Enhanced Quadtree with MapReduce) as shown in
Fig. 6. Note that, in enhanced quadtrees, the quadtree struc-
ture itself is not changed. Instead, as shown in Fig. 5, leaf
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nodes of an enhanced quadtree point to an identical file.
Thus, the procedure of EQMR is similar to that of SQML
except the reduce phase of local quadtree construction.

As mentioned in Sect.4, each map function invoked
with a point p finds the leaf node n of QI%I p where p is
in n.region (line 2 of LOCALQ.map in Fig.6) and emits
(n, p) (line 3 of LOCALQ.map). After the shuffle phase,
the reduce function LOCALQ.reduce with a node key and
a list of points P is invoked. When the construction of lo-
cal quadtrees QF (line 2 of LOCALQ.reduce in Fig.6) is
finished, the procedure MergingEQMR is invoked to merge
the files corresponding to some leaf nodes (line 3 of LO-
CALQ.reduce).

In the procedure MergingEQMR, all leaf nodes of a
local quadtree Q are collected into the set Leafnodes (line
1 of MergingEQMR in Fig. 6).

For each leaf node n in Leafnodes, the leaf nodes
which can be merged with n are computed and consolidated
(lines 2-15). To avoid computing n redundantly, n is re-
moved from Leafnodes (line 3). A set Target is used to
keep the leaf nodes to be merged with n and MergedS ize
keeps the sum of sizes of files whose corresponding nodes
are in the set Target. Thus, MergedS ize is initially set to
the file size (i.e., n.size) of the leaf node n (line 4). For each
leaf node n in Leafnodes, we collect n’s adjacent leaf nodes
from Leafnodes to a set AdjLeafnodes by using Propo-
sition 1 (line 5) and checks whether file of each adjacent
leaf node n,q; in AdjLeafnodes can be merged with n’s
file (lines 6-13). If the sum of MergedS ize and n,q;.size is
less than c, n,g; is inserted into Target and Mergeds ize in-
creases by nyq;.size. Then, n,g; is removed from Leafnode
(lines 8-10). Since the file of n,4; is merged, the adjacent
nodes of n,q; should be investigated. Thus, n.g;’s adjacent
nodes are appended to Ad jLeafnodes (line 11). Finally, by
invoking MergeFile(), all files which can be merged with
n are consolidated into a single file and the leaf nodes in
Target record the name of the merged file (line 14). The
name of the file generated by merging the files in Target is
assigned to the concatenation of the ids of the leaf nodes in
Target with a delimiter °|’. For instance, the name of the file
pointed by node(00) and node(01) in Fig. 7 (c) is “00]01™.

The following example illustrates the behavior of
MergingEQMR.

Example 1: Let us assume that the quadtree in Fig. 1 be
a local quadtree with the capacity ¢ = 3. As shown in
Fig.7-(a), the procedure MergingEQMR collects the list
AdjLeafnodes of the adjacent leaf nodes for the first leaf
node with the id ‘00’ (i.e., node(00)). Firstly, since node(01)
can be merged with node(00) among the adjacent leaf nodes,
it is put into Target. In addition, since node(11) is an ad-
jacent node of node(01), node(11) is newly inserted into
AdjLeafnodes (Fig.7-(b)). Now, if an adjacent node is
merged additional, the size of the merged file exceeds c.
Thus, the files of node(00) and node(01) are merged by in-
voking MergingE QMR (Fig. 7-(c)). Next, for node(1000),
the adjacent nodes are collected and the nodes whose files
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Fig.7  The behavior of EQMR

can be merged with the file of node(1000) are selected. Con-
sequently, the enhanced quadtree shown in Fig.5 is gener-
ated.

4.3 Incremental Update

In this section, we present how to support incremental up-
date to quadtrees. A naive algorithm to support incremental
update is that a quadtree is newly constructed with whole
data points whenever a new data point is inserted into the
data set or a data point is removed from the data set. It re-
sults in the performance degradation. To alleviate this over-
head, we use a temporary file T that keeps newly inserted
points until the size of the temporary file is at most the ca-
pacity c. Thus, we do not need to construct a quadtree when-
ever a newly point occurs. Instead, when a query is posed,
we retrieve the temporal file T as well as a quadtree simul-
taneously to compute the query result. Since the size of T
is at most ¢, a single mapper can handle T to processing a
query. Furthermore, when the size of T exceeds ¢, we do
not reconstruct a quadtree. Instead, every point p in T is
inserted into the file of the leaf node whose corresponding
region contains p. Then, when the size of the file pointed by
the leaf node exceeds c, the leaf node is split.

Recall that, in an enhanced quadtree, several leaf nodes
may point to an identical file. As mentioned in Sect.4.2,
since the name of the merged file is composed of ids of the
leaf nodes and delimiters ‘|’, we can find the number of leaf
nodes pointing to the file by performing tokenization to the
file name. Thus, when the file size exceeds ¢ by inserting a
point p, if the number of the leaf nodes pointing to the file is
larger than 1, the file is divided. Otherwise (i.e., the number
of the leaf nodes is 1), the leaf node is split. We omit the
pseudocode for the data insertion since it is straightforward.

When a point p is removed from the data set, we re-
move p from the leaf node n whose region contains p. If the
size of the leaf node n becomes zero, we simply remove n
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Table 1  Parameters
Parameter Default value Comments Range
dist skewed Data distribution (uniform, skewed)
|D| 5.0 # of points (x10%) 1.0, 2.5, 5.0,7.5, 10.0
d 4 # of dimensions 2~6
c 64MByte The capacity 64MByte

from a quadtree. Since it is trivial, we also omit the details.
5. Performance Study

In this section, we verify the efficiency and effectiveness of
EQMR by comparing it with the other algorithms.

5.1 Experimental Environments

To perform the experiment, we ran our implemented algo-
rithms on a cluster of 31 commodity machines. One of
machines acts as the master and the others act as slaves.
The master has 3.1 GHz Intel Xeon E3-1220 CPU, 16GByte
memory and 500GByte hard-disk. Each slave has 3.2 GHz
Intel Core i5 CPU, 4GByte memory and 1TByte hard-
disk. All machines are connected through a 1Gbps Ethernet
switch. Every machine is running on Linux (Ubuntu 10.04
Lucid). We used Hadoop 2.0.0 for the MapReduce frame-
work implementation obtained from [2].

We implemented three algorithms using JDK 1.6:
EQMR (in Sect.4.2), SQMR (in Sect.4) and QMR. QMR
partitions the data space into equi-sized subspaces without
considering the data distribution.

To make diverse environments, we used some parame-
ters, as summarized in Table 1. The domain of each dimen-
sion is [0.0, 1000.0]. We generated two types of synthetic
data sets: uniform and skewed. To make the skewed data
set, we used the normal distribution N(300, 50). We also
varied the number of points from 10® to 10°. The sizes for
a set of 1.0 x 10% 2-dimensional points, a set of 5.0 x 10%
4-dimensional points and a set of 10.0 x 10 6-dimensional
points are 1.68Gbyte, 15.83Gbyte and 46.56Gbyte, respec-
tively. As presented in Sect.4, we set the capacity (c)
64Mbyte. For SQMR and EQMR, we chose 10,000 points
as a sample.

5.2 Performance Analysis

We ran each algorithm five times and report the average ex-
ecution time of each algorithm in this section.

Data distribution: Fig. 8 (a) illustrates the perfor-
mance of each algorithm with respect to the data distribu-
tion. The quadtree construction with the skewed data set
takes more time compared to that with the uniform data set
since the node partitioning occurs severely in the skewed
data set. Since SQMR and EQMR identify the data distribu-
tion using sampling while QMR divides the data space into
the equi-sized subspaces blindly, SQMR and EQMR show a
better performance compared to QMR for the skewed data
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set. Furthermore, the performance of EQMR is similar to
that of SQMR although EQMR has an addition procedure
to merge files. This result indicates that the processing over-
head of this procedure in EQMR is quite small compared to
the entire quadtree construction time.

Figure 8 (b) shows the number of files associated with
the leaf nodes of the constructed quadtree. As shown in
Fig. 8 (b), the numbers of files are similar in the uniform and
the skewed data set. The remarkable result is that the num-
ber of files in EQMR is quite smaller than those of QMR and
SQMR since EQMR has the additional procedure to merge
the files of leaf nodes which are adjacent to each other and
the total size of them does not exceed the capacity.

Varying the number of points (|D|) and the num-
ber of dimensions (d): Fig.9(a) and Fig. 10 (a) show the
quadtree construction times of SQMR and EQMR with
varying the number of points and varying the number of di-
mensions, respectively, with the skewed data set. As shown
in Fig. 8, since QMR shows the worst performance, we do
not report the performance of QMR in these experiments.

As the number of points (|D]) as well as the number of
dimensions (d) increase, the data size increases. Thus, the
execution times of SQMR and EQMR increase as |D| and
d increase. However, as shown in Figs. 9 (a) and 10 (a), the
quadtree construction time of SQMR is similar to that of
EQMR like the other experiments although EQMR has an
additional procedure for merging files.

Figure 9 (b) and Fig. 10 (b), show the numbers of files
of the quadtrees constructed by SQMR and EQMR, respec-
tively. As the number of points |D| as well as the number
of dimensions d increase, the number of files of SQMR
increases rapidly since the region in which the number of
points exceeds the capacity c is split into 2¢ equi-sized sub-
regions. Contrarily, in EQMR, since the files are merged,
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the number of files increases slowly.

Data Access: In this experiment, we show the perfor-
mance of the range query processing using the quadtree with
MapReduce, denoted as ROMR, compared with the range
query processing using MapReduce without a quadtree, re-
ferred to RMR. The left lower corner of the query range is
fixed at (200, 200, 200, 200) in 4-dimensional space.

For a range query, Figure 11 shows the performance of
ROMR using an enhanced quadtree and RMR. Since RMR
should retrieve whole points to process the range query, the
performance of RMR does not affect the size of the query
range as shown in Fig. 11. Meanwhile ROMR is better than
RMR since ROMR reduces the search space efficiently using
the quadtree.

Figure 12 presents the performance of ROMR utilizing
the quadtrees generated by QMR, SQMR and EQMR, re-
spectively, in the skewed data set. To make diverse range
queries, we varied the size of the query range from 0.1%
to 30% of the data space. As shown in Fig. 12 (a), as the
size of query range increases, the query performance is de-
graded. The range query processing using an enhanced
quadtree generated by EQMR shows the best performance
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of the range query since the number of files to be retrieved
is smaller than those of the other quadtrees as shown in
Fig. 12 (b). However, the range query processing time us-
ing a quadtree generated by QMR and that using a quadtree
by SQMR are similar to each other since the numbers of
files to be retrieved of both quadtrees are similar as shown
in Fig. 12 (b).

6. Conclusion

In this paper, we present an effective quadtree construction
algorithm with MapReduce to improve the performance of
data access. To evenly divide the data set and assign each
partition to each machine, we build an approximate base
quadtree using sample points. For each partition, we con-
struct local quadtrees in parallel using MapReduce. Then,
we build a global quadtree by integrating an approximate
base quadtree and local quadtrees where each leaf node is
associated with a data file containing the points.

In our experiment, we show the effectiveness to pro-
cess range queries utilizing the constructed quadtree. To
improve the performance of range queries, in EQMR, the
data files correspond to each leaf nodes are merged into a
single file when the merged file size does not exceed the
threshold. By reducing the number of files, EQMR shows
the best performance compared to the other algorithms. In
addition, we present an effective algorithm supporting incre-
mental update.
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