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SUMMARY One of the main research tasks in community question an-
swering (cQA) is finding the most relevant questions for a given new query,
thereby providing useful knowledge for users. The straightforward ap-
proach is to capitalize on textual features, or a bag-of-words (BoW) repre-
sentation, to conduct the matching process between queries and questions.
However, these approaches have a lexical gap issue which means that, if
lexicon matching fails, they cannot model the semantic meaning. In addi-
tion, latent semantic models, like latent semantic analysis (LSA), attempt
to map queries to its corresponding semantically similar questions through
a lower dimension representation. But alas, LSA is a shallow and linear
model that cannot model highly non-linear correlations in cQA. Moreover,
both BoW and semantic oriented solutions utilize a single dictionary to rep-
resent the query, question, and answer in the same feature space. However,
the correlations between them, as we observe from data, imply that they lie
in entirely different feature spaces. In light of these observations, this pa-
per proposes a tri-modal deep belief network (tri-DBN) to extract a unified
representation for the query, question, and answer, with the hypothesis that
they locate in three different feature spaces. Besides, we compare the uni-
fied representation extracted by our model with other representations using
the Yahoo! Answers queries on the dataset. Finally, Experimental results
reveal that the proposed model captures semantic meaning both within and
between queries, questions, and answers. In addition, the results also sug-
gest that the joint representation extracted via the proposed method can
improve the performance of cQA archives searching.
key words: cQA, deep belief networks, joint representation, tri-modal deep
belief network

1. Introduction

Recently, community question answering (cQA) sites, such
as Yahoo! Answers, Quora, and Baidu Knows have become
popular platforms to maintain and distribute user-generated
web content in the form of textual questions and answers.
cQA sites have proven a success in knowledge sharing for
their enabling of cQA users to get answers to personal,
specific, and open-ended questions, and accordingly have
accumulated extremely large information archives at ever-
increasingly faster speed, which calls for an effective and
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efficient mechanism for leveraging information in cQA sys-
tems [1].

On the whole, cQA sites support general search en-
gines or their own site search engines to retrieve informa-
tion wherein short queries are widely used. But cQA users
often ask questions via natural language, which is easier for
users to express their knowledge request this way [2]. In
these scenarios, one of the most common tasks is the match-
ing of queries and questions to the underlying information
needed by the user [3]. However, the process of matching
queries and questions is error-prone and quite often irrel-
evant questions are returned [4]. Therefore it has become
an important challenge to find similar and related questions
from past archives, with regard to new queries, and obtain
useful knowledge for the users from a linguistic as well as
semantic point of view.

Traditionally, TF-IDF algorithm is widely used in
search engines based on the bag-of-words (BoW) repre-
sentation, and has proven its success due to its simplicity
and robust implementation [5]. However, it cannot model
semantic similarity when keyword-based matching fails,
which is referred to as a lexical gap. In some cases, two sen-
tences can hold the opposite meaning while they have the
same BoW representation [6], whereas in other cases, dif-
ferent BoW representations can express similar meanings.

To handle this gap, LSA model [7], such as proba-
bilistic latent semantic index (pLSI) [8] and Latent Dirich-
let Allocation (LDA) [9] have been proposed to extract low-
dimensional semantic features. Although integrating extra
semantic information is promising, this kind of approach
only build linear and shallow models that can only capture
pairwise semantic relationships between words [10].

Although BoW and semantic oriented solutions have
proven their capability and feasibility to some extent, both
regard queries, questions, and answers in the same feature
space. However, in reality queries are composed of short
and incomplete sentences, the questions length is usually
longer and will typically be a single sentence, while an-
swers are the most informative part and generally comprise
many sentences. As such, it can be assumed that there are
three different modalities, lying in distinct feature spaces.
Inspired by this hypothesis, we propose a tri-modal deep
belief network (triDBN) to obtain a unified representation
that captures highly non-linear correlation between differ-
ent modal inputs, from three separate feature spaces for the
queries, questions, and answers. The core procedure of the
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proposed method is as follows.
First, three separate deep belief networks (DBN) are

employed to model the highly non-linear correlation be-
tween queries, questions, and answers in their own feature
spaces. Then, another DBN is used to obtain a unified rep-
resentation from them in the joint space. We perform an
experimental study on a Yahoo! Answers dataset on “query
and question semantic level classification”. Our results de-
picted that using the unified representation as features to
train the classifier significantly outperform baselines using
BoW, LSA or unimodal DBN representation.

The main contributions of this paper are: 1) We thor-
oughly investigate the relationship between queries, ques-
tions, and answers. From real dataset, it is found that there
exist quite a lot different patterns among queries, questions
and answers. Inspired by that, in this paper, we assume that
they are in three separate feature spaces instead of being rep-
resented in one feature space; 2) We propose a tri-modal
deep belief network (triDBN) that is characterized by fusing
queries, questions, and answers into a joint feature space.
Our experimental study on Yahoo! Answers queries to ques-
tion dataset show triDBN’s promising potential.

The rest of the paper is organised as follows. The back-
ground about cQA and DBN is presented in Sect. 2. In
Sect. 3, the proposed method is elaborated and in Sect. 4, we
illustrate and discuss the experimental study on the Yahoo!
Answers dataset. Finally, in Sect. 5, we conclude the paper
and depict the future research directions.

2. Background

2.1 Community Question Answering

The value of user-generated question and answer has not
been emphasized until recent years. Unlike traditional
search engines, community question answering (cQA) sites
can help users find and share knowledge with others. Fur-
thermore, different from search engines, which employ key-
word based searches, in cQA based forums users can use
natural language to communicate with each other. There-
fore, one of the most important challenges is to be able to
match queries with questions, which is useful in supporting
query suggestion, question recommendation [11], [12], and
answer ranking in cQA sites [13].

In the process of matching queries and questions, Zhao
et al. proposed an approach trying to automatically generate
questions from query logs in cQA [3], viz. finding the most
semantically similar questions to a query. Their model is
built on templates introduced from search engine query logs.
The core idea is to first extract pairs of queries and user-
selected questions from query logs that are used for template
extraction. Afterwards, when a new query is submitted, the
model selects the most appropriate templates to generate a
list of selected and sorted questions that are returned to the
users.

Another approach is to to generate questions from
queries in term of keywords by considering the query his-

tory and user feedback [14]. This method also introduces
question templates while employing an adaptive language
model in the process of question forming, which depends
on templates and cannot grasp semantic information. Sim-
ilarly, Figueroa and Neumann proposed an approach to ex-
tract query paraphrases to questions using learning to rank
technology [15]. They first extract a corpus of query para-
phrases from Yahoo! Search and Yahoo! Answers using the
query-question click history. Second, they use query para-
phrases to form positive and negative examples, which are
then fed into the SVM-Ranking model [16]. This method
can capture semantic meaning to some degree.

When we further investigate the widely employed
methods in matching of queries and questions, we find that
none of these methods distinguish between the feature space
of queries, questions, and answers. However, in the daily
use of cQA sites such as Yahoo! Answers or Baizhu Knows,
queries are usually short and incomprehensible, while an-
swers tend to be very informative and are usually provided
in form of sentences or paragraphs and much longer than
questions. In this paper we assume that queries, questions,
and answers exist in different feature spaces. Accordingly,
we employ a deep learning oriented method to capture the
non-linear correlation between them.

2.2 Deep Belief Network

In recent years, deep learning has shown record performance
across a variety of applications on language models and in-
formation retrieval [17]–[19]. Variant deep learning algo-
rithms are designed to reveal hidden structures and features
that are highly non-linear at different levels of abstraction
from a huge amount of data, which is then used as features
for classification or retrieval [10], [20].

Among deep learning algorithms, the Deep Belief Net-
work (DBN) has been proven an efficient and effective gen-
erative model [21], [22]. At its base, it uses a restricted
Boltzmann machine (RBM) as a building block. Many re-
searchers have emphasized RBM and this has given rise to
many RBM variants being successfully applied across dif-
ferent domains, such as Gaussian RBM [23] and replicated
softmax Model [24]. In this section we give a brief introduc-
tion to these variants.

2.2.1 Restricted Boltzmann Machine

Restricted Boltzmann machines (RBMs) have been widely
used as building blocks for deep learning algorithms due to
their power in modelling distributions over binary-valued
data [25], [26]. The traditional RBM is a two-layer undi-
rected graphical model that has stochastic visible units v and
stochastic hidden units h, with visible units and hidden units
being fully connected, as shown in Fig. 1, where circles in
black denote observed states and white circles denote hid-
den states. Given (v,h) pair, where v is a stochastic visible
state and h is a stochastic hidden state, its energy E(v,h; θ)
is computed as follows [27]:
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Fig. 1 Architecture of a Restricted Boltzmann Machine.

E(v,h; θ) = −
m∑

i=1

n∑

j=1

Wi jvih j −
n∑

i=1

vibi −
m∑

i= j

h ja j (1)

where vi is the binary state of visible unit i, h j is the binary
state of hidden unit j, ai and b j are bias terms for the states
of visible unit vi and hidden unit h j, and Wi j is the connected
weight between vi and h j.

Given this energy function, the model assigns a prob-
ability vector to every possible pair of visible and hidden
states (v,h):

P(v,h) =
1
Z exp(−E(v,h)) (2)

with Z being a normalization term that guarantees that the
sum of P(v,h) is 1.

Z =
∑

v,h

exp(−E(v,h)) (3)

The network assigns a probability to a visible vector
v by summing all the possible hidden vectors h, as shown
below:

p(v) =
1
Z
∑

h

exp(−E(v,h)) (4)

On training an RBM and acquiring a high probability
for the observed training data, weights and biases between
visible and hidden units need to be adjusted to lower the en-
ergy of the observed training vector and raise the energy of
other training vectors, in particular those that have very low
energy [28]. It has been proven that lowering the training
vector energy is equal to maximizing the log probability of
the training data [21]. As such, parameters of RBM can be
learned using the following partial derivation:

∂log p(v)
∂Wi j

=
〈
vih j

〉
data
−
〈
vih j

〉
model

∂log p(v)
∂ai

= 〈vi〉data − 〈vi〉model

∂log p(v)
∂b j

=
〈
h j

〉
data
−
〈
h j

〉
model

(5)

where angle brackets 〈·〉P denote the expectation gov-
erned by the subscript P distribution.

Since there is no connections between hidden units, it
is easy to obtain an unbiased value of

〈
vih j

〉
data

. Given a
randomly selected training vector v, the hidden units states
h j have the following probability set to 1.

p(h j = 1|v) = σ(
m∑

i

viwi j + b j) (6)

where σ(x) = 1/(1 + e−x) is the sigmoid function.
In the same way, it is also easy to obtain the probability

of visible units to be set to 1 given a hidden vector, as shown
below:

p(vi = 1|h) = σ(
m∑

j

wi jh j + ai) (7)

The training procedure will be elaborated on in detail
in the next section.

2.2.2 Replicated Softmax Model

In this research, a variant RBM named Replicated Softmax
Model (RSM) is employed to build the block since it has
proven useful for modelling sparse data [24]. Similar to the
traditional RBMs, RSM consists of two layer states, i.e.,
stochastic visible state v and stochastic hidden state h. The
energy function of state v and h is computed as follows:

E(v,h; θ) = −
m∑

i=1

n∑

j=1

Wi jvih j−
m∑

i=1

vibi−M
n∑

j=1

h ja j (8)

where θ = (W, a, b) are model parameters to be learned and
M is the total number of words occuring in a query or ques-
tion.

Given the hidden states, the following conditional dis-
tribution is realized:

p(vi = 1|h) =
exp(bi +

∑n
j=1 h jWi j)∑

i exp(bi +
∑n

j=1 h jWi j)
(9)

p(h j = 1|v) = σ

⎛⎜⎜⎜⎜⎜⎝a j +

m∑

i=1

viWi j

⎞⎟⎟⎟⎟⎟⎠ (10)

3. Tri-Modal DBN Based Approach

3.1 Data Observation

When users use traditional search engines for searching
cQA sites, they usually issue several keywords to represent
their information needs in a query. Whereas in a cQA site,
users normally express their questions with sentences as it
is more convenient to use natural language to ask personal
and specific questions.

In this section, we first analyse the Yahoo! Answers
query to questions dataset† for the discriminative task of
judging the semantic similarity level. As illustrated in
Fig. 2 (a), in this dataset queries tend to be short and their
length aggregates in the range of 3 to 8. Every query is
composed of several concise keywords, each of which is dis-
pensable in defining the topics. Speaking of questions, it is
found that they are totally different from queries and they are

†http://webscope.sandbox.yahoo.com
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Fig. 2 Comparison of content length in queries, questions, and answers. 2 (a) illustrates the relation-
ship between the number of queries and the length of queries, 2 (b) and 2 (c) are questions and answers,
respectively

Fig. 3 Number of question sentences in queries, questions, and answers

Fig. 4 Number of declarative sentences in queries, questions, and an-
swers.

often in a interrogative mood and contain some meaningless
conjunction words. Shown in Fig. 2 (b), a question is usually
composed of one or more sentences and only the keywords
in question can stand for its topic. The different characteris-
tics of questions and queries make it inappropriate to model
them in the same feature space. In addition, from Fig. 2 (c),
answers are in paragraphs but seem to have a similar pattern
with questions. However, in Figs. 3 and 4, answers are de-
scribed in the form of declarative sentences, denoting that it
is hard to pick up keywords in paragraphs as there too many
of them. Zhou et al. conclude some historical methods in
solving this problem [29]. As a result, answers’ characteris-
tics are also different from the former queries and questions.
Therefore, it might be feasible to assume that queries, ques-
tions, and answers should be represented in three different
feature spaces rather than a single BoW or LSA.

3.2 Tri-Modal Deep Boltzmann Machine

The inspiration to design such a Tri-modal DBN is, as men-

tioned, queries, questions, and answers have quite different
statistical characteristics that make it difficult for a model to
directly capture correlations between different input modali-
ties. Moreover, since there are a lot of structures in different
input channels, it is difficult to capture highly non-linear cor-
relations across different input modals. Consequently, one
more DBN layer is proposed to conduct joint learning of
these three different spaces.

3.2.1 Architecture

Figure 5 (b) depicts the architecture of triDBN. First, three
separate two-hidden layer DBNs are employed to model
correlation within each input mode, as shown in Fig. 5 (b)
(right panel). Each DBN with replicated softmax model as
a building block is assigned a probability to each training
vector:

p(vquery) =
∑

h1h2

p(h1,h2)p(vquery|h1) (11)

p(vquestion) =
∑

h1h2

p(h1,h2)p(vquestion|h1) (12)

p(vanswer) =
∑

h1h2

p(h1,h2)p(vanswer |h1) (13)

Secondly, three DBNs are combined together by
adding an additional layer of DBN to model non-linear
correlation among these three different input modals. The
joint distribution can be calculated according to the graphic
model shown in Fig. 5 (b).

p(vquery, vquestion, vanswer)

=
∑

h2
query,h2

questoin,h
2
answer ,h3

p(h2
query,h

2
questoin,h

2
answer,h

3)

×
∑

h1
query

p(vquery)|h1
query)p(h1

query|h2
query)

×
∑

h1
question

p(vquestoin)|h1
questoin)p(h1

questoin|h2
questoin)

×
∑

h1
answer

p(vanswer)|h1
answer)p(h1

answer |h2
answer) (14)

3.2.2 Learning Procedures

In the learning procedure, the objective is to minimize all
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Fig. 5 Left: Two-hidden layer DBN using Replicated Softmax Model to model the distribution over
sparse word features regarding query, question, and answer in a single feature space. Right: Tri-model
DBN that models joint representation for queries, questions, and answers that have been viewed in the
three feature spaces.

visible units reconstruction error or Kullback-Leibler diver-
gence [30]. First, it is necessary to learn parameters for the
three DBNs separately. Take a DBN model of queries for
example, as Eq. (5) show, the form of parameter updating
equation is quite brief. Simple summation of the data is suf-
ficient to get the expectation of the data distribution. Where
the difficulty lies is in obtaining expectation of the model
distribution. Since this term is intractable, we have to resort
to a sampling method, such as Gibbs-sampling. However,
the above method is time-consuming when sampling data
from distributions. Hinton et al had proposed k-step Con-
trastive Divergence algorithm in a greedy layer-wise train-
ing fashion [31].

The core idea is to train one RBM at a time, then freeze
the parameters and take the activation value of its hidden
unit as the training data to train the next RBM. Stacking
these RBMs gets a DBN. The other two DBNs are con-
structed in a similar manner. Finally, the three models are
combined by adding another DBN above them. The train-
ing procedure is similar to the above described except that
the training data is generated by concatenating the activation
values of these three DBNs.

3.2.3 Inference

After learning the parameters, it is a must to use the
joint representations for classification or retrieval. Here
we use two-layer DBN for clarity. Given an instance,
vquery, vquestion, vanswer, the proposed method will first com-
pute the value of hidden variable h1

query,h
1
question,h

1
answer

according to Eq. (10). Afterwards, it utilizes activation
from the previous hidden layer to compute the next layer,
h2

query,h
2
question,h

2
answer. Finally, joint representation can be

obtained as follows:

p(h3|h2
query,h

2
question,h

2
answer)

= σ(W3
queryh

2
query +W3

questionh2
question

+W3
answerh

2
answer + b3)

(15)

After the above illustrated steps, a tri-model DBN net-
work is built that can generate a joint representation for

queries, questions and answers. This joint representation
that captures correlations across different input modes can
be further used for classification or retrieval tasks. The
whole process is depicted in Algorithm 1.

Algorithm 1 1-step Contrastive Divergence Algorithm
Input: (V1, . . . ,Vm,H1, . . . ,Hn) training batch S
Output: approximate gradient ΔW,Δa,Δb

init ΔW = Δa = Δb = 0
for all v ∈ S do
v(0) ← v
for i = 1, . . . , n do

sample h1
i ∼ p(hi |v0)

end for
for j = 1, . . . ,m do

sample v1j ∼ p(v j |h1)
end for
for i = 1, . . . , n, j = 1, . . . ,m do
Δwi j ← Δwi j + p(Hi = 1|v(0))v(0)

j − p(Hi = 1|v(1))v(1)
j

Δbi ← Δb j + v
(0)
j − v(1)

j

Δa j ← Δai + p(Hi = 1|v(0)) − p(Hi = 1|v(1))
end for

end for

4. Experimental Study

4.1 Dataset and Feature Extraction

For the purpose of figuring out whether joint representa-
tion models extracted by triDBN can capture correlations
across queries, questions, and answers, we apply our pro-
posed method to a well known Yahoo! Answers query to
questions dataset for a discriminative task of judging se-
mantic similarity level. This dataset compromises 12850
< query, question, answer > triples. Each item is manually
labelled 1, 2, 3 indicating the semantic matching level.

Since we put queries, questions, and answers in dif-
ferent feature spaces, we extract three dictionaries to repre-
sent them using a bag-of-words in the visible layer. In or-
der to make the text representation tractable, we only keep
frequent words that occur more than five times. The final
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size of the respective vocabularies are 1320, 3792, 6210 and
these sizes will be used as the size of the visible units.

4.2 Experiment Setting and Evaluation Metric

In the proposed model, the query DBN is composed of an
RSM with 1320 visible units and 500 hidden units, followed
by another layer that comprises 128 hidden units. Ques-
tion DBN consists a RSM with 3792 visible units and 500
hidden units, followed by another layer that is composed of
128 hidden units. The answer DBN consists of 6210 visible
units and 500 hidden units, followed by another layer with
128 hidden units. On the joint representation layer, an RBM
with 384 visible units and 128 hidden units is employed.
Each layer is greedy pre-trained for 300 passes using a 1-
step CD algorithm which is shown in Algorithm 1. Further-
more, weight-decay with coefficient 0.0001 is used during
the training stage in case of over-fitting and the learning rate
for each model is 0.02. We also adopt a momentum of 0.5
to get a more reasonable result. All these hyperparameters
can be tuned freely. Our study indicates that the result is not
sensitive to the number of hidden units but very sensitive to
the learning rate and weight decay rate.

We evaluate performance by the effectiveness of clas-
sifying the semantic matching degree between query and
question. As such the metrics employ accuracy as the main
measurement.

accuracy =

∑n
i 1{pi == gi}

#test instance
(16)

where gi is the desired value on semantic matching degree
and yi the predicted value. The dataset is randomly split
into training set (70%) and test set (30%). Each experiment
is conducted ten times and the average accuracy is presented
as the final result.

4.3 Supervised Training and Classification

In the experimental study, the problem of query and question
matching is addressed as a classification issue. After getting
joint representation of the queries, questions, and answers,
we feed them to liblinear, a library for large linear regres-
sion [32]. Other classifiers such as support vector machine
(SVM), neural network can also be used.

4.4 Baseline Methods

In order to show the potential of joint representation ex-
tracted by the proposed model on query and question match-
ing, we compared the best version of tri-DBN with three
sets of baseline representation methods that puts them in the
same feature space or in different feature space but utilizing
a shallow model. The first is a simple and widely used BOW
representation, the second is an LSA based representation
approach, and the final one is a DBN based representation
that treats queries, questions, and answers to be in the same
feature space.

Randomly guessing (Row 1) is the overall lower
bound. Since we have three labels altogether, the accuracy
of a random guess is 33.33%.

Bag-of-words (Row 2) is a very traditional representa-
tion approach, which simply represents queries, questions,
and answers as an unstructured bag of words using a vector
whose size is equal to the vocabulary size and puts them in
the same feature space. Formally, suppose x = (q, qu, a) is a
triple of queries q, questions qu, and answers a. Let V =
(wq1 , wq2 , . . . , wqm , wqu1 , wqu2 , . . . , wqum , wa1 , wa2 , . . . , wam ) be
the set of words. To make the experimental results com-
parable, the vocabulary size is kept the same. When judging
the matching degree, it is possible to simply feed this rep-
resentation to the classifier and conduct supervised training,
we use the liblinear toolkit to implement this method.

uniLSA (Row 3) puts queries, questions, and answers
into the same feature space. First, based on a BoW repre-
sentation, this method conducts LSA, mapping them into a
low-dimensional concept vector L. Second, it uses vector L
to train the classifier.

triLSA without joint representation layer (Row 4)
represents a method regarding queries, questions, and an-
swers to be in different feature spaces. Furthermore, it
executes LSA to extract low-dimensional representation
Lquery, Lquestion, Lanswer, respectively. Finally this method
concatenates them into a long vector Lall and feeds this to
liblinear to train the classifier.

triLSA (Row 5) puts queries, questions, and answers
into different feature spaces. But the difference to the above
mentioned method is that after concatenating them into a
long vector Lall, we further execute LSA to map this repre-
sentation into a lower one, intending to infer the joint repre-
sentation using LSA. Furthermore, we utilize this joint rep-
resentation to train the classifier.

uniDBN (Row 6) uses a single DBN to model corre-
lations between queries, questions, and answers by putting
them into the same feature space. Its architectures are de-
picted in Fig. 5 (a). Visible units are extracted as in the BoW
approach. After getting the low-dimensional representation,
we also feed them to the liblinear toolkit to see the classifi-
cation effect.

triDBN without joint representation layer (Row 7)
regards queries, questions, and answers to lie in different
feature spaces. However, we use three deep models rather
than LSA to capture correlations. After getting representa-
tions, we concatenate them into a long vector to train the
classifier.

triDBN (Row 8) is our proposed model. The differ-
ence from above mentioned method is that after concatenat-
ing them into a long vector Lall, we add a further DBN to
model correlations between different input modes and get
a joint representation. After getting the representation, we
also feed them to liblinear toolkits to see the classification
effect.

The architecture of all the baseline models are de-
scribed in Table 1 where #dict is the size of vocabulary.
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Fig. 6 6 (a) illustrates questions and answers 6 (b) in 2-dimensional representation produced by LSA;
6 (c) depict questions and answers 6 (d) in a 2-dimensional representation introduced by tri-DBN without
joint representation layer.

Table 1 Architectures of different methods

# Method Architecture
1 Random None
2 Bag-of-Words None
3 uniLSA 6520 - 128
4 triLSA without JRL #dict - 128
5 triLSA #dict - 128, 384 - 128

6 uniDBN 6520 - 500 - 128
7 triDBN without JRL #dict - 500 - 128
8 triDBN #dict - 500 - 128, 384 - 128

4.5 Result Analysis and Discussion

To clearly illustrate what DBN has modelled, we further
project question and answer representations into a two-
dimensional space, as shown in Fig. 6, where each blue cir-
cle represents a question or answer in the two-dimensional
space.

Figures 6 (a) and 6 (b) show the respective questions
and answers as generated by LSA based on representation
in Row 4. Figures 6 (c) and 6 (d) show the respective ques-
tions and answers as generated by adding another RBM with
size of hidden units being 2 based on representation in Row
7. As depicted in Fig. 6, we can see that DBN effectively
captures semantic meaning for each instance; In Figs. 6 (d)
and 6 (c), questions and answers are grouped into clusters
wherein each question or answer has similar meaning. How-
ever, in Figs. 6 (a) and 6 (b) and, most of the questions and
answers are gathered in a single large indistinguishable blob.
This indicates that DBN can outperform LSA in capturing
semantic meaning between questions and answers. How-
ever, when we plot queries onto a two-dimensional space,
we find that neither LSA nor DBN work well: this issue
deserves further effort in the future.

Table 2 summarizes the experimental results of our pro-
posed method against the baseline algorithms. Row 1 is the
method with randomly assigned similarity values. Row 2 is
the term vectors based method. Rows 3 to 5 present results
of LSA representation. uniLSA indicates mapping Row 2
representation into a lower dimension and then using it for
classification. Row 4 indicates mapping queries, questions,
and answers into three separate lower dimensions and con-

Table 2 Accuracy Summary over different methods

# Method Accuracy (%)
1 Random 33.33
2 Bag-of-Words 51.22
3 uniLSA 50.44
4 triLSA without JRL 52.85
5 triLSA 43.90

6 uniDBN 45.53
7 triDBN without JRL 44.72
8 triDBN 64.23

catenating them for classification. Row 5 expresses further
mapping the above concatenated representation into a lower
dimension to model correlation between input modes. Rows
6 to 8 show the results with DBNs approaches.

From Rows 3 and 4 we can see that putting queries,
questions, and answers in different feature spaces can work
well, indeed much better than simply putting them in the
same feature space. One reason that uniDBN or triDBN
without joint representation layer (JRL) lags behind LSAs
may be that LSAs can maintain the original information to
some degree since it is a shallow model and can only cap-
ture pairwise semantic similarity whereas DBN can model
highly non-linear correlation. However, simply concatenat-
ing their lower dimension representation can hurt perfor-
mance. But, as row 8 shows, when adding another layer to
capture correlations between these separate representations,
triDBN can significantly boost the overall performance.

5. Conclusions and Future Work

In this paper, we have investigated the relationship between
queries, questions, and answers and found different presen-
tation patterns among them. Inspired by this, we have hy-
pothesized that they locate in different feature spaces. Con-
sequently, we have proposed a tri-modal DBN to extract a
unified representation between queries, questions, and an-
swers into a joint feature space. Our experimental study
has been conducted on the Yahoo! Answers dataset to com-
pare the unified representations against baselines that uti-
lize BoW or LSA representation as features, both regarding
them in the same feature space and distinct feature spaces,
in a discriminative task judging query to question seman-
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tic matching level. The experimental results reveal that
tri-modal DBN can capture semantic relationships between
queries, questions, and answers. Taking this unified repre-
sentation as a feature can significantly improve the overall
performance.

In future work, we intend to investigate how this joint
representation works in a retrieval task and whether joint
representation can help in question recommendation sys-
tems that are designed to improve the answer rate in cQA.
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