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Automatic Erroneous Data Detection over Type-Annotated Linked
Data

Md-Mizanur RAHOMAN†a), Nonmember and Ryutaro ICHISE†,††b), Member

SUMMARY These days, the Web contains a huge volume of (semi-)
structured data, called Linked Data (LD). However, LD suffer in data qual-
ity, and this poor data quality brings the need to identify erroneous data. Be-
cause manual erroneous data checking is impractical, automatic erroneous
data detection is necessary. According to the data publishing guidelines
of LD, data should use (already defined) ontology which populates type-
annotated LD. Usually, the data type annotation helps in understanding the
data. However, in our observation, the data type annotation could be used
to identify erroneous data. Therefore, to automatically identify possible
erroneous data over the type-annotated LD, we propose a framework that
uses a novel nearest-neighbor based error detection technique. We conduct
experiments of our framework on DBpedia, a type-annotated LD dataset,
and found that our framework shows better performance of error detection
in comparison with state-of-the-art framework.
key words: type-annotated LD, data quality, erroneous data detection

1. Introduction

Linked Data (LD) is a large knowledge base that con-
tains the (semi-)structured data. A significant portion of
these data are built on people’s mass contributions (e.g.,
Wikipedia) or automatic extraction from other data sources
(e.g., DBpedia∗).

However, both types of data are subject to erroneous
data gathering. For the first type of data (mass contribu-
tions), data are contributed by the general public, who might
not always have enough expertise to generate correct data.
For the second type of data (automatic extraction), data can
be automatically extracted from other data sources, but auto-
matic data extractors might extract incorrect data. However,
to use such LD effectively, data consumers commonly ex-
pect to easily retrieve high-quality data. This brings the need
to identify erroneous data in the LD. Usually, manual erro-
neous data checking is impractical. Therefore, automatic
erroneous data detection is necessary.

On the other hand, according to the best-practice data
publishing guidelines [7] of LD, data should use (already de-
fined) ontology which populates type-annotated LD. For ex-
ample, DBpedia is a type-annotated LD dataset. Usually, the
data type annotation helps in understanding the data. How-
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ever, in our observation, the data type annotation could be
used to identify erroneous data. The intuition behind this
assumption is that the same type of LD resources should
share the same kind of values. Therefore, if data values of
some LD go beyond the usual pattern or trend of other same
type of LD, we consider them as erroneous data. However,
the above assumption might not be always true, but it gives
opportunity to check the data to find erroneous data over the
type-annotated LD.

In the past, some studies have dealt with erroneous data
findings in the LD. However, these studies have their own
limitations. For example, some require LD domain-level
expertise [1], [10], [22]. Some require another similar data
source [4], [9], [13], are not suitable for diverse datasets, or
are impractical for large datasets. Other works are for spe-
cific data types and ignore the errors for the remaining data
types [6], [20].

In this study, we focus on these drawbacks. We propose
a framework to identify possible candidate of erroneous
data over the type-annotated LD. The framework is named
ALDErrD (Auto Linked Data Error Detector) which auto-
matically detect potential error patterns and predict possible
candidate of erroneous data. The main features of our pro-
posed framework ALDErrD are the following: i) It is free
from manual intervention. ii) It does not require domain-
level expertise. iii) It does not require other data sources of
the same kind. iv) It is suitable for any type of data.

The remainder of this paper is organized as follows.
Section 2 introduces work related to this study. In Sect. 3 we
describe the basic idea of our research work. In Sect. 4 we
describe the proposed framework in details. In Sect. 5 we
describe experiments implementing the proposal and dis-
cuss our results. Finally, Sect. 6 concludes our study.

2. Related Work

Error detection over various data has been quite extensively
studied. Chandola et al. reviewed some of them [5]. How-
ever, error detection over the LD is relatively new. We can
categorize them into four major groups:

• The manual-intervention based error detection [1],
[10], [22]. This kind of studies look into the LD dataset
and then manually devise some rules to identify the er-
rors. Although the studies generate decent outcomes,

∗http://dbpedia.org/About
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they require domain-level expertise. However, find-
ing of domain-level experts is not easy. Moreover,
when such experts are found, the process is still costly.
Therefore, the manual-intervention based error detec-
tion studies are not easy to adapt for diverse datasets
and impractical for large datasets.
• The particular-data-type based error detection [6], [20].

This kind of studies only check for error detection for
particular data-type LD. Such as, Wienand et al. inves-
tigated to find error for numerical data-type LD [20].
However, the particular-data-type based erroneous data
findings ignore large amounts of (other-data-type) erro-
neous data.
• The similar-data-source based error detection [4], [9],

[13]. This kind of studies try to find two or more data
sources for same LD resource and then compare the
data to identify the error. However, the similar data
sources are not readily available for all kind of LD re-
sources. Moreover, when such data sources are avail-
able, cross checking of them is not easy. Therefore, the
similar-data-source based error detection studies face
adaptation difficulties.
• The ontology-enrichment based error detection [11],

[12], [14], [18]. This kind of studies also need to check
the data manually. In some cases, ontology-enrichment
can be done automatically such as the work done by
Lehmann et al [14]. In this research, authors automati-
cally typified LD resources that do not hold type infor-
mation; however their research focus was not for error
detection. Our proposed framework can be adapted on
the top of their proposal because we utilize type (i.e.,
Class) information as the input.

So, the contemporary works mainly suffer in LD adapta-
tion. In the proposed framework, ALDErrD, we tackled this
adaptation issue.

The prime strength of ALDErrD is that it does not re-
quire manual investigation of the LD dataset.

3. Basic Idea

Here we will describe the basic idea of our research frame-
work. To do this, first we will exemplify the type-annotated
LD, then we will share the idea.

As mentioned, the best-practice LD data publishing
recommend to use (already defined) ontology, and it popu-
lates type-annotated LD. For example, if there are two RDF
triples <res:†Michael Jordan, ont:††height, 168.0 >††† and
<res: Michael Jordan, rdf:††††type, ont:BasketballPlayer>,
the latter one typify the res:Michael Jordan LD resource as
“Basketball Player”. Usually, the type annotation general-
izes the LD resources. We use this generalization to find
candidates of erroneous data over the LD.

†http://dbpedia.org/resource/
††http://dbpedia.org/onto/
†††Throughout the paper, examples are shown from DBpedia 3.8.
††††http://www.w3.org/1999/02/22-rdf-syntax-ns#

To identify candidates of erroneous data in the LD,
we assume that the same type of LD resources share com-
monalities. In particular, we assume that the same type of
LD resources share the similar kind of values for the same
Property†††††. For example, in an LD dataset, if there are
good number of LD resources are typified as “Basketball
Player” (i.e., ont:BasketballPlayer), and the resources also
hold “height” (i.e., ont:height) values, we should expect the
height values would be similar kind of values. Therefore, for
resources of a particular type LD, if literal values go beyond
the usual pattern or trend of other resources of the same type
of LD, we consider them as candidates of erroneous data.
This idea is generally rational. For example, we expect in-
dividuals who are Basketball Players to be taller. So, if an
individual Basketball player is not as taller as the most of
the Basketball players, we can predict that the data might be
wrong. However, the above assumption might not always be
true, but it gives the option to check the data.

Technically, the above assumption has also been well
studied in unsupervised error detection and is called nearest-
neighbor based error detection [5]. In such a case, it is
assumed that normal data instances occur in dense neigh-
borhoods, while errors occur far from their closest neigh-
bors [2], [3]. So, error detection requires a similarity/
distance measurement defined between/among the data [21].
In the type-annotated LD, nearest-neighbor based error de-
tection is well suited for the variant called “multivariate
nearest-neighbor based error detection” [17], because such
error detection depends upon the attributes of data and, usu-
ally, the type-annotated LD hold several such attributes (e.g.,
type, domain, range, etc.).

On the other hand, since the LD are generated from var-
ious sources, keeping conformity among the data is a chal-
lenge. The presence or absence of a particular attribute of
data or using data values in different formats might present
the same kind of data in different ways. Usually, the ontol-
ogy of the LD would restrict such varieties. However, in a
real-world scenario, adhering to a strict ontology in the LD
is not feasible. It introduces the requirement of grouping
data instances for the presence or absence of attributes and
the formatting of data values. For grouped data, it is as-
sumed that normal instances lie close to their closest group
centroid, whereas erroneous instances lie far away from
their closest group centroid [8], [15]–[17]. Therefore, we
adapt the nearest-neighbor based error detection for groups.

4. Detailed Description of ALDErrD

In this section, we describe our proposed framework
ALDErrD in detail. We take a Class (such as Person) and
a Property (such as Birth Date)†††††† as input, and detect
whether the LD resources hold erroneous literal values for
the Objects of the given Property. Usually, a Class infor-
mation typify an LD resource. Preferably, to check some
†††††Property can be inter-changed by Predicates in the RDF triple.
††††††In DBpedia, Person is http://dbpedia.org/Ontology/Person
and Birth Date is http://dbpedia.org/property/birthDate
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LD resources for their erroneous literal values of Object, we
should select them for their most specific Class. This is be-
cause, an LD resource can be typified by multiple Classes,
but the most specific Class will define it more precisely. The
rdfs:subClassOf closure is used to determine the most spe-
cific Classes for LD resources. However, whether LD re-
sources belong to the most specific Class or some other su-
per Classes, ALDErrD works for any given Class. But as
mentioned, the most specific Class will identify candidates
of erroneous data more accurately.

In ALDErrD, the detected errors are for erroneous Ob-
ject values. We consider the detected errors as “Type-1 Er-
rors”. Over an LD dataset, the Type-1 Errors appear because
of

• Erroneous Content − data with wrong values (e.g.,
wrong actual values), and
• Erroneous Syntax − data with wrong syntactic patterns

(e.g., wrong value format, wrong string pattern etc).

However, Type-1 Errors can be originated for wrong
LD attributes (e.g., type, domain, ontology etc). We con-
sider such errors as “Type-2 Errors” and classify them into
four kinds:

i. Erroneous Type − data with wrong Type attachment to-
wards the LD resources.

ii. Erroneous Domain − data with wrong Domain attach-
ment towards the LD resources.

iii. Erroneous Range − data with wrong Range attachment
towards the LD resources.

iv. Erroneous Property − data with wrong Property attach-
ment towards the LD resources.

Therefore, if the Type 2 errors are identified, they further
reveal the causes behind the Type 1 errors. By ALDErrD,
we only detect the Type-1 errors, and if we want to clas-
sify them into Type-2 errors, we need to investigate them for
further analysis. Moreover, since Type-1 and Type-2 Errors
may co-exist for same [S-O] pairs, clear distinction between
them is not always possible.

Figure 1 shows the work-flow of ALDErrD. We divide
the proposed framework into two phases: Phase 1 – At-
tribute Based Error Detection and Phase 2 – Value Based Er-
ror Detection. In Attribute Based Error Detection, we group
data for some attribute values. Such groups help in detect-
ing a Phase 1 data error. In Value Based Error Detection,
we take Phase 1 data that are still not considered as errors.
Here we investigate data values and apply various nearest-
neighbor based error detection techniques to identify pos-
sible anomalies. In Phase 1, we introduce a technique to
group LD resources which leads later steps of the frame-
work, therefore we implement Phase 1 before the Phase 2.
It also reduces the execution time of Phase 2 because, in
such a work-flow, the Phase 2 only requires to identify er-
rors over the filtered-out data of Phase 1. Below we describe
both phases in detail.

Fig. 1 Work-flow of Proposed Framework ALDErrD

4.1 Attribute Based Error Detection

The upper half of Fig. 1 shows the work-flow of Attribute
Based Error Detection. For the given input (i.e., a Class
and a Property), first we use a process called Data Collector
and collect Subject-Object ([S-O]) pairs (described below)
along with some attribute values. Then, according to the
attribute values, we use a process called Grouper and find
groups among the [S-O] pairs. Then, for the grouped [S-
O] pairs, we use a process called the P1 Error Detector and
detect possible erroneous [S-O] pairs. Here, an [S-O] pair is
erroneous data, if literal value of O of [S-O] is not correct.

In Phase 1, we utilize attributes as the main indicators
to detect erroneous [S-O] pairs. Below we describe each
process in detail.

4.1.1 Data Collector

We collect LD resources for all RDF triples <Subject,
rdf:type, Class>. Then, for each Subject, we collect [S-O]
pairs for RDF triples <Subject, Property, Object>, where
“S” represents Subject and “O” represents Object. Apart
from [S-O] pairs, we also collect five different attribute val-
ues for each S and each O of [S-O] pairs. The attributes
are i) type of literal value (LVT), ii) associated properties
(PRT), iii) associated classes (CLS), iv) associated domain
(DOM), and v) associated range (RNG). Practically, the lit-
eral value of Object will be used to identify the error. To
do so, the LVT information largely allows us whether lit-
eral values are holding same kind value, so we collect the
LVT. On the other hand, the remaining four attributes (i.e.,
PRT, CLS, DOM and RNG) will be used to check whether
the same type LD resources uses same attributes. We use
the above-mentioned attributes because they possibly can be
found in a type-annotated LD. However, the readers can in-
clude further attributes that might produce better result. But
in current ALDErrD setting, we use the above-mentioned
attributes.

The finding of the LVT requires some processing,
whereas finding the values of the other four attributes (i.e.,
PRT, CLS, DOM and RNG) just require data picking. Be-
low we describe the value collection of these two types of
attributes.

• LVT. We first find the literal value, and then find the
type of literal value (LVT). For S of an [S-O] pair, it
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always holds the URI, while O always holds either the
URI or a literal value. If S or O holds a URI, we extract
its label for treating it as a literal value. However, it is
possible that the LD does not contain the label of O or
the label of S. In such a case, we consider the URI as a
literal value.
If O of an [S-O] pair is a literal value, usually the value
is annotated by the data type. We consider this data
type as a schema-defined type. For [S-O] pairs, we
collect unique schema-defined types (SDTs) for literal
values of O. However, it is not guaranteed that the lit-
eral value will always hold the data type annotation.
In such a case, we need to devise the LVT. For any
literal value that does not hold the data type annota-
tion, we classify their LVTs into four types: STRING,
DATE/TIME, NUMBER or URI. We adapt this classi-
fication from the study [23]. If we find that the literal
value is only a URI, we consider the LVT as a URI.
Otherwise, we execute a language parser over the lit-
eral value and determine the LVT from the named enti-
ties (NEs) of the parsed output. The following equation
gives us the LVT, where “x” is either S or O.

LVT(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

data type (if data type is defined)
URI (if literal value is URI only)
DATE/TIME (if parsed output of literal value

hold DATE/TIME type NE)
NUMBER (if parsed output of literal value

hold NUMBER type NE)
STRING (otherwise)

For example, we might have the [S-O] pair
[rsc:Tom Cruiz −170.18∧∧†centimeter], where 170.18
is the literal value annotated by using symbol (∧∧) cen-
timeter, and it is the LVT(O). Another exemplary [S-
O] pair could be [rsc:Tom Cruiz−1962-07-03], where
1962-07-03 is a literal value, but it does not have the
data type annotation, so the language parser identifies
it as DATE/TIME.

• PRT, CLS, DOM and RNG. We use RDF triple pat-
terns to collect the attribute values. The values of PRT
and CLS can be found if S or O of the [S-O] pair is a
URI. On the other hand, the values of DOM and RNG
can be found when PRT exists. Therefore, if S or O is
not a URI and the required triple pattern does not exist
over the LD, we consider the respective attribute val-
ues as null. The below equations collect the PRT, CLS,
DOM and RNG values, respectively. In these equa-
tions, “x” is either S or O. To extract CLS, DOM and
RNG, we use 3 common properties type, rdfs:††domain
and rdfs:range respectively.

PRT(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{?p|<x,?p,?o>} (if x is URL ∧

∃<x,?p,?o>)
null (otherwise)

†http://dbpedia.org/datatype/
††http://www.w3.org/2000/01/rdf-schema#

Table 1 Examples of attribute values for different Ss (or Os) for the LD
resource res:Tom Cruise.

Attribute Attribute Value
Name

PRT(x) ont:placeOfBirth,
ont:dateOfBirth, . . . , etc

CLS(x) ont:Artist, ont:Actor,. . . , etc.
DOM(x) ont:Person, . . . , etc.
RNG(x) ont:Place,rdfs:date. . . , etc

Table 2 Exemplary [S-O] pair groups divided by the horizontal double
lines in the table.

[S-O] Pair LV(O) LVT(O)

[rsc:Gabriella Hall−–09-05] –09-05 MonthDay

[rsc:Armand Dorian−6.0] 6.0 foot

[rsc:Nora Danish−160.0] 160.0 centimeter
[rsc:Belinda Hamnett−165.1] 165.1 centimeter

[rsc:Tom Cruise−170.18] 170.18 centimeter
[rsc:MC Jin−168.0] 168.0 centimeter

[rsc:Tsuchida Bakusen−217.7] 217.7 centimeter
[. . . ] . . . centimeter

CLS(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{?c|<x,type,?c>} (if x is URL ∧

∃<x,type,?c>)
null (otherwise)

DOM(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{?d|∀p∈<x,p,?o>, (if ∃p∈PRT(x)∧
<p,rdfs:domain, ∃<p,rdfs:domain,
?d>} ?d>)
null (otherwise)

RNG(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{?r|∀p∈<x,p,?o>, (if ∃p∈PRT(x)∧
<p,rdfs:range,?r>} ∃<p,rdfs:range,?r>)
null (otherwise)

Table 1 shows examples of the four attributes for differ-
ent Ss (or Os). Here, the 1st column shows the attribute
name, the 2nd column shows the attribute value.

All the collected information is further used to identify
the possible erroneous [S-O] pairs.

4.1.2 Grouper

We group [S-O] pairs by the LVT(O). These groups help in
predicting a data error.

We apply all grouping options for the LVT(O). For
example, we group [S-O] pairs for the LVT(O) either as
STRING, DATE/TIME, or data type. Table 2 shows exam-
ples of three such groups. Here [S-O] pairs are considered
for Class “Artist” and Property “height”. The columns show
the [S-O] pair, the literal value of O (LV(O)), and LVT(O).

By the group-based erroneous [S-O] pairs identifica-
tion approach, we try to understand semantic values among
the groups. Understanding the semantic values is required
to reduce identifying false positive errors. This is because,
in LD dataset some values could be syntactically very dif-
ferent but still they could be semantically similar. For exam-
ple, in a LD dataset, some person’s “height” can be stored
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in centimeter and some are in inch, but there will be huge
difference if we directly compare both group values. If the
error detection framework identify errors for all [S-O] pairs
together, it can identify false positive errors. Therefore, we
individually treat each group and compare values for their
semantics and identify erroneous [S-O] pairs.

Next, within the groups, we detect the possible erro-
neous [S-O] pairs.

4.1.3 P1 Error Detector

The Property Range and the attribute values from the previ-
ous process are used in detecting Phase 1 error candidates.
The P1 Error Detector detects those error candidates. It uses
three types of methods − (1) Property Range validation, (2)
Group-wise [S-O] pair observation, and (3) [S-O] pair simi-
larity score calculation. Below we describe them in details.

1. Usually, the Object of an RDF triple follows a con-
straint that the Object follows the Property Range. So,
the Property Range helps in detecting erroneous [S-O]
pairs. We collect it from the range value of an RDF
triple pattern as <Property, rdfs:range, ?r>. In any
case, if ?r is not found, we assign it. To do this, if
a Property holds a token word “DATE”, we assign it
as DATE/TIME. For example, for prp:†birthDate, the
Property Range would be DATE/TIME, because it in-
cludes the token word “Date”. Otherwise, we consider
the Property Range can hold any literal value types
such as NUMBER, STRING, URI, SDTs. So, we de-
tect potential erroneous [S-O] pairs by observing the
Property Range and LVT(O). If LVT(O) does not be-
long to the Property Range, we consider such [S-O]
pairs as potential candidate of erroneous [S-O] pairs.

2. After detecting the above candidates, we detect further
candidates of erroneous [S-O] pairs by the number of
pairs each group holds. Here, we check an [S-O] pair
group to determine whether it could entirely or partially
holds erroneous pairs. For a group, if the ratio between
its number of [S-O] pairs in the group and the total [S-
O] pairs of all groups is less than a threshold α, we con-
sider the group as an erroneous group and detect its [S-
O] pairs as error candidates. Table 2 shows three such
groups among which the first two groups (i.e., rows) as
error candidate examples.

3. Next, we try to find possible erroneous [S-O] pairs for
groups that do not entirely hold erroneous [S-O] pairs.
In such a case, we try to find possible erroneous [S-O]
pairs for one group at a time. In a group G, we cal-
culate each [S-O] pair’s similarity score (simScore([S-
O])) towards the other [S-O] pairs of G.

To do this, we calculate similarity for each attribute
of x, where x is either S or O. They are simPRT (x),

†http://dbpedia.org/property/

simCLS (x), simDOM(x), and simRNG(x). We do not cal-
culate similarity for LVT(x), because it was already
considered when we made the groups.

To calculate similarity for an attribute ATT (= PRT,
CLS, DOM or RNG) of x (simATT (x)), we first accu-
mulate the group attribute values GAVATT (x) as

GAVATT (x) =

{ {ATT(S)|∀[S-O]∈G,[x-O]∈G} (if x is S)
{ATT(O)|∀[S-O]∈G,[S-x]∈G} (if x is O)

Then, simATT (x) is measured by |ATT(x)|/|GAVATT (x)|.
So, for group G, we calculate each [S-O] pair’s simi-
larity score as

simScore([S-O]) =∑
ATT∈{PRT,CLS ,DOM,RNG},x∈{S ,O} simATT (x).

In this way, we find similarity scores for all [S-O] pairs
of group G. We detect possible erroneous [S-O] pairs
of group G by finding the Outlier simScore([S-O]).

We calculate the Outlier based on the Interquartile
Range (IQR) [19]. In the data error detection, an Out-
lier is a data value that resides far from other values,
and the IQR is simple but effective way to identify such
an Outlier. Here, for a rank-ordered data value set,
quartiles divide them into four equal parts. The values
that divide each part are called the first (Q1), second
(Q2), and third (Q3) quartiles respectively. The Outlier
point is below Q1 or above Q3 due to the consideration
that it is measured by a factor of the IQR, and where
the IQR itself is IQR = Q3 − Q1.

In our case, we consider the factor of IQR is 1.5.
We adapt this factor from the research of Kontokostas
et al [20]. Data value smaller than Q1 − 1.5*IQR
and larger than Q3 + 1.5*IQR is considered Outlier.
The factor of the IQR could be varied. So, Outlier
simScore([S-O]) holding the [S-O] pair is considered
as a candidate of erroneous [S-O] pair.

The above described error candidate identification pro-
cedure is quite different from the basic technique. Over
the LD, the basic error candidate identification relies
on property Range and other LD Attribute values [13].
Usually, such property Range checking depends on a
one particular Range value for an input property. How-
ever, in real-world scenario data are stored for differ-
ent Ranges e.g., “height” of person could be stored as
meter, inches etc. Moreover, the Range values are not
always present in the data. Furthermore, we can not
assume that if LD resources do not store some attribute
values, they are erroneous. Therefore relying on a sin-
gle Range value for a property does not work in reality
because the basic technique is too strict. On the other
hand, in our proposal we divide LD resources in groups
and handle each group differently. It increases error
data identification efficiency.
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In Fig. 1, the Phase 1 erroneous [S-O] pairs are shown
in the shaded boxes.

4.2 Value Pattern Based Error Detection

The lower half of Fig. 1 shows the work-flow of the value
pattern based error detection. Here, we take groupwise [S-
O] pairs that Phase 1 does not consider as candidates of erro-
neous [S-O] pairs. We considered such [S-O] pairs as mixed
[S-O] pairs, because they still might hold some erroneous
pairs. In this phase, we utilize the LV(O) to detect the error
candidates. The 2nd column of Table 2 shows literal values
for some Os. First, we use the process called Value Pattern
Collector, which stores the Groupwise Value and the Group-
wise Dependency. This information helps the next process,
called P2 Error Detector, to detect candidates of erroneous
[S-O] pairs.

4.2.1 Value Pattern Collector

Value Pattern Collector has two sub-processes: Value Col-
lector and Dependency Collector. With the Value Collector,
we store the LV(O) of the [S-O] pairs of a group and decide
their Outlier. With the Dependency Collector, we devise De-
pendency patterns between the Properties of S of the [S-O]
pairs of a group and decide which [S-O] pairs violate the
usual pattern and then predict the potential error. For exam-
ple, the Dependency pattern helps to identify the error that
the “death date” should not be later than the “birth date”.

We already discussed the LV(O) (see Sect. 4.1.1). Be-
low we describe the extraction of Dependency patterns. The
Dependency pattern is measured by the literal values that
each two frequent Properties hold.

First, we discuss frequent Properties, then frequent
Property related literal values (PrLV) and then the De-
pendency pattern calculation. A frequent Property is p ∈
PRT(S), which is at least common for the β% of S of the
[S-O] pairs of G. Then, to find the Dependency pattern, we
check Property related literal values for each frequent Prop-
erty pi,p j. So, we calculate

PrLV(S,pi,G) = {LV(?oi) | [S-?oi]∈G, <S,pi,?oi>}
PrLV(S,p j,G) = {LV(?o j) | [S-?o j]∈G, <S,p j,?o j>}

Then, for PrLV(S,pi,G) and PrLV(S,p j,G), we check three
different trends: “>”, “=”, and “<” as

TRN(S,pi,p j,G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> (if PrLV(S,pi,G) > PrLV(S,p j,G))
< (if PrLV(S,pi,G) < PrLV(S,p j,G))
= (otherwise)

Then, for each trend (“>” or “=” or “<”), we calculate the
Groupwise trend

GTRN(G,pi,p j,“>”) = | {TRN(S,pi,p j,G) | ∀ [S-O] ∈ G,
TRN(S,pi,p j,G)=“>”}|/|G|

GTRN(G,pi,p j,“<”) = | {TRN(S,pi,p j,G) | ∀ [S-O] ∈ G,
TRN(S,pi,p j,G)=“<”}|/|G|

GTRN(G,pi,p j,“=”) = | {TRN(S,pi,p j,G) | ∀ [S-O] ∈ G,
TRN(S,pi,p j,G)=“=”}|/|G|

If any of them is larger than a threshold γ, we consider that
the particular trend holds the Dependency pattern for pi and
p j. Therefore, after establishing such a Dependency pattern,
if any [S-O] pair violates the trend for pi and p j, we con-
sider it as a candidate of erroneous [S-O] pair. We check
the Dependency pattern for each two frequent Properties.
Therefore, the Dependency pattern-based errors can be only
found when two frequent Properties are present for an LD
resource. Currently, we devise the Dependency pattern for
the frequent Property that generates the values NUMBER
and DATE/TIME.

4.2.2 P2 Error Detector

We detect groupwise potential erroneous [S-O] pairs for the
LV(O) (i.e., literal value of Object) and their Dependencies.
We first describe how we detect erroneous the [S-O] pairs
for the LV(O). Then we describe the same for their Depen-
dency patterns.

For the literal values, we can have groups where the
LVTs are either STRING, NUMBER, DATE/TIME, URI,
or a data type. Below we describe finding the candidates of
erroneous [S-O] pairs for each of them.

• LVT(O) is a STRING, so we consider the LV(O) could
follow some patterns (such as patterns of Zip Codes),
or could follow a syntactic similarity. When values
follow some patterns, we check the common patterns
among most of the values and violating [S-O] pairs are
considered as erroneous. Currently, we adapt very ba-
sic common pattern checking, such as whether literal
values hold some special characters after certain inter-
vals, etc. When values follow syntactic similarity, we
check the number of characters each LV(O) holds. We
find the Outlier number based on the IQR (described in
the P1 Error Detector). However, as an Outlier factor,
we consider 0.25 instead of 1.5 because we assume that
the number of characters for the LV(O) will not vary a
lot. Outliers holding [S-O] pairs are considered as error
candidates.
• LVT(O) is NUMBER, DATE/TIME, or a data type, so

we find erroneous [S-O] pairs for their redundancy and
their Outlier values.

– If [S-O] pairs hold duplicate Os (i.e., Subject), we
consider duplicate Os in the [S-O] pairs as erro-
neous. The rationale behind this is that we assume
the same Property (e.g., ont:birthDate) would not
hold different O values.

– For the remaining [S-O] pairs, we follow Outlier
based error founding. Again we use the IQR to
calculate the Outlier. For example, in Table 2, the
[S-O] pair [rsc:Tsuchida Bakusen−217.7] is con-
sidered as an erroneous [S-O] pair.

• LVT is a URI, so currently we do not do anything for
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such [S-O] pairs; however, they also could hold errors.

Considering all the above methods for different LVTs,
we try to find possible candidate of erroneous [S-O] pairs
for values.

On the other hand, for Groupwise Dependency pat-
terns, we check which [S-O] pairs violate the Dependency
and consider them as erroneous.

5. Experiment

We performed experiments on DBpedia v3.8. DBpedia is
a type-annotated LD that covers various literal value type
[S-O] pairs.

We did not find already defined Classes and Proper-
ties that can directly be used in the experiment. There-
fore, we derived Classes and Properties from the erroneous
DBpedia RDF triples <Subject, Property, Object> (or <S,
P, O>) that Acosta et al. manually assessed by employ-
ing crowds in their study [1]. In our experiments, we con-
sider the erroneous RDF triples of Acosta et al. study as
baseline triples. By executing ALDErrD, our observation
was whether ALDErrD could identify the RDF triples that
Acosta et al. marked as incorrect.

We collected Property by the P of RDF triple <S,
P, O> and Class by C = { c | <S, rdf:type, c> ∈
DBpedia RDF triples }†. As mentioned in the Sect. 4,
the framework works better, when we input it with the
most specific Class. We consider the most specific
Class that does not hold rdfs:subClassOf closure and
holds fewer RDF triples. For example, the RDF triple
<res:Rodrigo Salinas, prp:birthPlace, res:Puebla F.C.> has
four Classes, ont:Person, ont:Agent, ont:Athlete, and
ont:Soccer Player. But we consider the most specific
Class for res:Rodrigo Salinas as ont:SoccerPlayer because
ont:SoccerPlayer does not have rdfs:subClassOf closure at-
tachment and has fewer RDF triples than the other three
Classes.

We used the Stanford Parser†† to parse literal values of
S and O of the [S-O] pairs. As the threshold, we set α =
0.05, β = 80, and γ = 0.8. The ALDErrD hardware spec-
ifications were as follows: Intel R©CoreTMi7-4770K central
processing unit (CPU) 3.50 GHz based system with 16 GB
memory. We loaded DBpedia dataset in Virtuoso (version
06.01.3127) triple-store, which was maintained in a network
server. The execution time was depended on number of LD
resources hold by the input Class and Property. In Phase 1,
the NE (Named Entity) finding for the literal value of Object
(for details, see Sect. 4.1.1) required large amount of time.
For each LD resource, on an average (calculated by execut-
ing 3 times) the NE finding required 6.4 seconds, and the
rest of part of Phase 1 required 1.7 seconds. On the other
hand, in Phase 2, the value pattern collection and the syn-
tactic pattern checking required large amount of time. The
value pattern collection was depended on other properties of

†We discarded the “yago” ontology.
††http://nlp.stanford.edu/software/corenlp.shtml

LD resources (see Sect. 4.2.1), therefore the execution time
got increased when LD resources held large amount of prop-
erties. For example, to identify error candidates for Univer-
sity and their address, it required almost one day for some
1800 LD resources.

In experiments, we acknowledge that errors can be
judgmental and purpose driven. Therefore, evaluating an
error detection framework is not easy. Moreover, calculat-
ing recall values for errors over a large dataset might not be
plausible.

5.1 Experiment 1

The purpose of this experiment is to investigate whether
both phases (Phase 1 and Phase 2) of ALDErrD can detect
candidates of erroneous [S-O] pairs and whether those can-
didates were correct.

We describe the experimental result for four different
Classes and Properties that were present in the baseline RDF
triples. We picked them by considering them to be i). the
most specific Class, ii). representative for many types of
literal values and iii.) will not generate [S-O] pairs more
than 2000 so that we can manually evaluate their qualities.
We report the erroneous [S-O] pair finding investigations for
the Phase 1 errors and the Phase 2 errors.

When we executed ALDErrD for a most specific Class
c and a Property P, it collected [S-O] pairs from {<S, P, O> |
<S, rdf:type, c>}. We considered an [S-O] pair is erroneous
if literal value of O is not correct, which were generated for
either types of errors: Type-1 and Type-2 Errors.

While the baseline RDF triples provided one [S-O] pair
for each such triple, we identified more number of erroneous
[S-O] pairs for the same one RDF triple-driven Class and
Property. This is because, the ALDErrD identified errors
are for all instances of a Class for a particular Property. The
[S-0] pairs that belong to baseline triples, we evaluated them
directly. However, for the newly identified [S-O] pairs that
were not identified by Acosta et al. employed crowds, we
evaluated them by engaging three linked data experts who
have knowledge about DBpedia, DBpedia ontology. The en-
gagement of linked data experts is only for evaluation pur-
pose and they remain outside of the proposed framework.
We considered each [S-O] pair’s evaluation on the basis of
“majority voting”.

For the derived Classes and Properties, Table 3 shows
error candidate detection at Phases 1 and 2 with their pre-
cisions and recalls. It also shows error classifications into
Type-1 and Type-2 Errors. In the table, the 1st column shows
the input Class and Property, the 2nd column shows the num-
ber of [S-O] pairs are found for the corresponding Class and
Property. The 3rd column shows the total number of errors
existence among the [S-O] pairs. The total number of errors
existence were measured by the linked data experts. These
are the gold standard errors. The 4th and the 5th columns
show the detected errors in number. The results are di-
vided into Phase 1 and Phase 2. As mentioned in Sect. 4,
ALDErrD only identifies Type-1 Errors. We show them by
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Table 3 Error candidate detection at Phase 1 and 2 and their detection classification, precision and
recall

# of Total # of Detected Error Candidates Precision
[S-O] # of @ Phase 1 @ Phase 2 Recall
pairs Errors Type-1 Errors Type-1 Errors @ Phase 1 @ Phase 2

Exist [Identified Correctly] [Identified Correctly]
Type-2 Errors Type-2 Errors

ont:School 334 67 Detected: 9 Detected: 41 0.889 0.268 0.269
prp:campusSize [Correct: 7] [Correct: 11]

Erroneous Type : 4 Erroneous Type : 7
Erroneous Domain : 4 Erroneous Domain : 7
Erroneous Range : 7 Erroneous Range : 7
Erroneous Property : 4 Erroneous Property : 7

ont:University 1731 620 Detected: 17 Detected: 55 0.294 1.000 0.097
prp:address [Correct: 5] [Correct: 55]

Type Error : 1 Erroneous Type : 10
Erroneous Domain : 1 Erroneous Domain : 9
Erroneous Range : 5 Erroneous Range : 55
Erroneous Property: 1 Erroneous Property : 9

ont:Holiday 700 19 Detected: 19 Detected: 0 1.000 − 1.000
prp:date [Correct: 19] [Correct: −]

Erroneous Type : − Erroneous Type : −
Erroneous Domain : − Erroneous Domain : −
Erroneous Range : 19 Erroneous Range : −
Property Error: − Erroneous Property : −

ont:County 1261 23 Detected: 27 Detected: 0 0.851 − 1.000
ont:currency [Correct: 23] [Correct: −]

Erroneous Type : 4 Erroneous Type : −
Erroneous Domain : − Erroneous Domain : −
Erroneous Range : 23 Erroneous Range : −
Erroneous Property: − Erroneous Property : −

their number for each phase. We show correctly identified
errors just below the detected numbers in square brackets
(i.e., []). After detecting the Type-1 errors, we also inves-
tigated them for Type-2 errors. The investigation revealed
some reason behind the Type-1 Errors. The investigation
results are shown just below horizontal bars. The Types-2
errors were shown for Erroneous Type, Erroneous Domain,
Erroneous Range and Erroneous Property for each phase.
We investigated the Type-2 Errors and those were verified
by the linked data experts. The 6th and the 7th columns show
the error detection precision for Phase 1 and Phase 2. The
8th column shows the error detection recall.

The investigation showed that the erroneous [S-O]
pairs were found more in Phase 1 than Phase 2 (although for
last two cases, Phase 2 did not have any error candidates).
Moreover, Phase 1 achieved higher precision than those in
Phase 2. In the experiment, Phase 1 was more effective in
identifying Type-2 Errors, while Phase 2 was more effec-
tive in identifying Type-1 Errors. However, as mentioned in
Sect. 4 that both types of error may co-exist for same [S-O]
pairs, we also found them in the experiment. As an example,
for input ont:University and prp:address, Phase 2 identified
good number of (i.e., 55) errors which belong to both Type-2
Errors and Type-1 Errors.

In Phase 2, we mainly try to find erroneous pairs by
their values. We found that Phase 2 correctly identified
erroneous data. As an example, for input ont:School and
prp:campusSize, Phase 2 identified at least 4 erroneous LD
resources that hold string pattern anomalies for their Object

values. However, the values were sometimes very much di-
verse e.g., campus sizes are written in various ways such
as with number of students (in text), area in square kilo-
meter (in text), etc., therefore automatic identification of
such errors require human judgments. However, for input
ont:University and prp:address, Phase 2 achieved good pre-
cision value but they are only for tiny portion of the erro-
neous data (recall value is 0.097).

In all of the cases, the Object values were quite ex-
pressive by the Range values, therefore when Range val-
ues existed, it was easy to find errors. Moreover, we found
that large number of LD resources do not keep LD attributes
(Domain, Range, Type etc). But such attribute attached LD
resources would help maintaining better quality data. Over
such attribute attached LD, it would be easy to identify error
candidates.

While Acosta et al. engaged crowds to identify each
single error manually, ALDErrD detects errors in bulk au-
tomatically − which is an advantage over the Acosta et al.
strategy. Moreover, the identification of errors for differ-
ent types of literal value data can be considered as sup-
portive argument that ALDErrD will be scalable over dif-
ferent datasets because datasets are mainly varied for their
datatypes.

5.2 Experiment 2

The purpose of this experiment is to compare the error de-
tection performance between ALDErrD and a state-of-the-
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Table 4 Erroneous RDF triple finding performance comparison between
ALDErrD and the ruled based system.

# of ALDErrD Rule Based
Type Erroneous # of Error # of Error

Triples Errors Found Errors Found
Found % Found %

DATE 151 100 66 95 63
STRING 134 39 29 10 7

NUMBER 76 32 42 24 32
URL 3 1 33 1 33

364 172 47 130 36

art Linked Data error detection system [10]. The state-of-
the-art system (i.e., we call as rule based system) devised
17 rules which can be adapted for different Properties and
Classes. For example, one rule states that for a Property
(say, ont:isbn), if the Object value does not match “∧[0-
9]5$”, the Property and Object values of the RDF triple are
erroneous. However, adapting those rules needs explicit in-
vestigation of the Property and Object values and then se-
lection of the appropriate rule and possible value matching
constraints. This rule based system has been the subject of
experiments for various types of literal value of DBpedia
data, so we used it in the performance comparison.

In the rule based system, authors did not provide ex-
act erroneous RDF triples that they identified. Therefore, to
compare both systems with the same data, we used the RDF
triples that hold Object value related errors in the Acosta
et al. study. Acosta et al. provided 364 erroneous RDF
triples that have wrong Object values in their RDF triples.
We check whether both systems can capture the erroneous
triples.

We executed ALDErrD for the most specific Class and
Property and checked for erroneous [S-O] pairs. If the [S-
O] pairs hold the Subject and Object element of RDF triples
that Acosta et al. predicted as erroneous, we considered the
pairs as “Found”; otherwise we considered them as “Not
Found”.

Table 4 shows the performance comparison between
ALDErrD and the rule based system. According to the Gold
standard Object values that Acosta et al. provided, we cat-
egorized Object values into four types: DATE, STRING,
NUMBER, and URI (shown in the 1st column). The type
calculation was done by the NE (named entity) of the parsed
output of the Object value (for details, see Sect. 4.1.1). The
2nd column shows the number of erroneous RDF triples held
by each type. The 3rd and 4th columns show the number
of erroneous triples found and the errors found % by the
proposed framework, respectively. The 5th and 6th columns
show the same result for the rule based framework.

The bottom row shows total number of erroneous
triples used in the test and their identification, by the sys-
tems.

Both systems worked comparatively well on the DATE
type erroneous RDF triples. Most of the cases of date prob-
lems were due to their duplicate values. For other types of
erroneous RDF triples, ALDErrD worked well. For exam-

ple, for STRING type, ALDErrD identified three times more
erroneous data than the rule based system. Phase 2 identi-
fied those errors. In overall comparison between the two
systems, ALDErrD performs 10% better.

In ALDErrD,the nearest-neighbor based attribute value
checking and the nearest-neighbor based literal value check-
ing effectively identify erroneous [S-O] pairs. Moreover,
while the proposed framework automatically finds candi-
dates of erroneous RDF triples, the rule based system al-
ways requires rule adaptation. In ALDErrD, the use of the
parser for the Object value and the heuristic on devising the
LVT (literal value type) minimizes the adaptation overhead.

6. Conclusion

The LD is a large knowledge base. However, such data hold
the possibility of erroneous data gathering. To use the LD
effectively, error detection is a requirement. On the other
hand, a significant portion of these LD keep the type infor-
mation which populates type-annotated LD. The type anno-
tated RDF triples gives the opportunity to identify erroneous
data. In this study, we identify possible candidates of er-
roneous data over the type-annotated LD. Our framework
automatically detects possible error patterns and predicts
possible error candidates. Our proposed framework is free
from manual intervention, does not require domain-level ex-
pertise or the same kind of data sources, and is suitable
for any type of data. We experimented with our proposed
framework over DBpedia erroneous RDF triple benchmark
data and found the framework effectively predicts erroneous
triples. We also compared our system with a state-of-the-art
system and found that our system works better. Although
we got some promising results, we still have space for our
future work. In current setting, we mainly detected error
candidates by observing outlier inside the data. In such a
setting, we can not detect error candidates if all data hold
same kind of errors which we want to investigate in future.
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