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LETTER

Measuring Collectiveness in Crowded Scenes via Link Prediction

Jun JIANG†,††a), Di WU†, Members, Qizhi TENG†b), Xiaohai HE†, and Mingliang GAO†††, Nonmembers

SUMMARY Collective motion stems from the coordinated behaviors
among individuals of crowds, and has attracted growing interest from the
physics and computer vision communities. Collectiveness is a metric of
the degree to which the state of crowd motion is ordered or synchronized.
In this letter, we present a scheme to measure collectiveness via link pre-
diction. Toward this aim, we propose a similarity index called superposed
random walk with restarts (SRWR) and construct a novel collectiveness de-
scriptor using the SRWR index and the Laplacian spectrum of a network.
Experiments show that our approach gives promising results in real-world
crowd scenes, and performs better than the state-of-the-art methods.
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1. Introduction

In recent years, crowd analysis has garnered growing in-
terest from the physics and computer vision communities,
coupled with many potential applications such as intelligent
video surveillance, crowd management, and smart virtual
environments. Collective motion is one of the most common
and fascinating phenomena in a large number of crowd sys-
tems [1]. Figure 1 gives some examples of this type of mo-
tion. Very recently, Zhou et al. [2] introduced the concept
of collectiveness to describe the degree to which individu-
als act as one in realizing collective motion. In their work,
crowd motion is modeled as a network, where the nodes rep-
resent the individuals, and each edge represents the correla-
tion between two nodes. Then a collectiveness descriptor,
denoted as Φ, is developed to compute the degree of the col-
lective motion by utilizing the path similarities of the crowd
motion network. The higher the value of Φ is, the more
collective the crowd tends to be. Essentially, the notion of
descriptor Φ is to recover all potential connections between
the nodes of a network. Motivated by this, we regard mea-
suring collectiveness as a link prediction problem [3].

Link prediction generally aims at estimating the pres-
ence probability of a link between the nodes of a network.
In broad terms, the algorithms of link prediction fall into
three categories: local similarity indices, global similarity
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Fig. 1 Examples of collective motion in crowds.

indices, and quasi-local similarity indices [3]. The local in-
dices predict a link score for a pair of nodes using only infor-
mation regarding the immediate neighborhood of the node
pair. The global indices compute a link score by taking into
account the whole topological structure of the network. Ac-
tually, Zhou et al.’s method is equivalent to the KATZ in-
dex [4], which belongs to the global category. In contrast to
the local indices, the global ones can provide more accurate
prediction results. However, this type of index has two main
drawbacks: 1) they depend heavily on the global topology of
a network which is not easily obtained in many situations;
2) they incur high computational costs. To alleviate these
problems and to achieve a good balance between accuracy
and complexity, the quasi-local indices employ more infor-
mation than local ones while dispensing with global topo-
logical knowledge.

In this letter, we propose a scheme for measuring col-
lectiveness in crowded scenes via link prediction. First, the
crowd collective motion is modeled as a network. In con-
trast to [2], our method tries to find latent links in the net-
work more accurately while reducing the time complexity.
To this end, a novel quasi-local index called superposed ran-
dom walk with restarts (SRWR) is constructed, and then ap-
plied to the network to uncover the individuals’ connections.
Finally, since the Laplacian spectrum encodes the structure
and dynamics information about the network, it is incorpo-
rated to build a new collectiveness descriptor. Experiments
validate the effectiveness and efficiency of the proposed ap-
proach, and demonstrate that it can achieve a better perfor-
mance compared with the state-of-the-art methods [2], [5].

2. Measuring Crowd Collectiveness Based on Link
Prediction

Let G = (V, E, f ) be an undirected simple weighted net-
work, where V denotes a set of nodes, |V | = N, E denotes a
set of links, and f is a weight function, f : E → R, where
R denotes real numbers. Here we merely consider nonnega-
tive weights, namely, f

(
ei j

)
≥ 0 for all ei j ∈ E. Generally, G
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can be represented by an N×N adjacency matrix W =
[
wi j

]
,

whose entry wi j = f
(
ei j

)
if there exists a link between node i

and node j, and wi j = 0 otherwise. In link prediction, a sim-
ilarity score si j, i, j ∈ V , is assigned to every pair of nodes.
In general, si j indicates the probability of a link between i
and j, that is, the high score implies the link is more likely
to exist.

2.1 Superposed Random Walk with Restarts

Inspired by the superposed random walk in [6] and random
walk with restarts in [7], we derive a new index, i.e., SRWR.
The strategy of this index is to use the random walk process
in a quasi-local manner to estimate the similarity of node i
with respect to node j.

First, the SRWR index normalizes the adjacency matrix
W by column, that is, each of the columns of W adds up to 1.
Clearly, wi j represents the probability that a random walker
staying at node j presently will move to node i in the next
step. Given a random walker starting from node j, let x j (t)
be the N × 1 state probability vector of this walker at step t,
then we have

x j (t) = (1 − c) y j + cWx j (t − 1) , (1)

where c is the probability of node j moving to a neighbor
node, 1−c is the probability of restarting random walk from
node j, and y j is an N×1 vector with all elements equal to 0
other than the j-th element equals to 1. Initially, x j (0) = y j.
Using the same policy in [6], we only take a few steps of
random walk into account rather than the stationary state.

When a single random walker is released, the similarity
between node i and node j is defined as

S RWR
i j (t) = xi j (t) + x ji (t) , (2)

where xi j (t) denotes the i-th element of x j (t), and x ji (t) has
a similar meaning. After releasing multiple random walkers,
we superpose the impacts of each random walker and get the
similarity index

S S RWR
i j (t) =

∑t

m=1
S RWR

i j (m) . (3)

2.2 Crowd Collectiveness Descriptor

The individuals’ motion information is extracted from the
tracklets [8] obtained by the KLT tracker [9], and then the
fixed number of neighbors mechanism, that is, an individual
interacts with K nearest neighbors [10], is employed to build
a weighted network G′ for modeling the crowd collective
motion. The weight of each edge, wi j, is determined by the
velocity correlation between nodes i and j, namely,

wi j = max

⎛⎜⎜⎜⎜⎜⎝
vi · v j

‖vi‖
∥∥∥v j

∥∥∥ , 0
⎞⎟⎟⎟⎟⎟⎠ , (4)

where vi, v j are the velocities of nodes i and j, respectively.

Then we apply the SRWR index to the network G′ and ob-
tain a similarity matrix S which reveals all pairs of individ-
uals’ motion consistency. Indeed, S can be viewed as the
adjacency matrix of a new collective network G′′ evolved
from G′.

To measure the global crowd collectiveness, we cal-
culate the Laplacian eigenvalues of G′′ since the Laplacian
spectrum can distill the structural and dynamical properties
of a network. The Laplacian L on G′′ is defined as

Li j =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

S i j

⎞⎟⎟⎟⎟⎟⎟⎠ δi j − S i j, (5)

where δi j is the Kronecker delta function [11]. After obtain-
ing the eigenvalues of L: λ1, λ2, · · · , λN , the collectiveness
descriptor, denoted as Ψ, is defined as

Ψ =
∑N

i=1
λi/N. (6)

The framework of our crowd collectiveness descriptor algo-
rithm is listed as follows.

Algorithm 1 Crowd collectiveness descriptor
Input: The adjacency matrix W of the network G′
Output: The crowd collectiveness Ψ
1. Apply the SRWR index to W, and get the network G′′.
2. Compute the Laplacian spectrum of G′′.
3. Ψ is the mean of the Laplacian eigenvalues.

The computational cost of Algorithm 1 consists mainly
of two parts: the SRWR index and calculating eigenvalues
of a matrix. The time complexity of SRWR with n steps is
O (N 〈k〉n), where 〈k〉 is the average node degree of the net-
work. Generally, the running time of eigenvalues algorithms
is O
(
N3
)

[12]. In most cases, 〈k〉 
 N, thus the time com-

plexity of our descriptor Ψ is approximately O
(
N3
)
. For the

descriptor Φ, the time complexity is the same as that of ma-
trix inversion, which is O

(
N3
)
. The method of [5] involves

norm calculation and hence its time complexity is O
(
N2
)
.

3. Experimental Results

We evaluate our method on the Collective Motion
Database [2], which is composed of 413 video clips in
crowed scenes. The ground truth is formed by asking ten
persons to give a rate of the collective motion level, i.e.,
high, medium, and low, on each video clip. Furthermore,
the high rate, the medium rate, and the low rate are mapped
to numerical values 2, 1, and 0, respectively. Hence, the
range of human-evaluated scores is [0, 20] when tallying up
ten persons’ votes. We use two metrics, classification ac-
curacy and correlation, to quantify the performance of the
proposed algorithm. More detailed descriptions about the
database and the metrics can be found in [2]. The evalua-
tion methodology on the Collective database is as follows:
For a video clip, the collectiveness value is computed at each
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Fig. 2 Some typical examples of crowd collectiveness with their human-
evaluated scores, Φ, V and Ψ in (a) low, (b) medium and (c) high category.

Fig. 3 ROC curves of three descriptors on various classification tasks:
(a) high-low, (b) high-medium, and (c) medium-low.

frame, and the final collective score is determined by aver-
aging over the total number of frames in the clip. The pa-
rameter c is empirically set to 0.85, and K is set to 20. The
step t can be determined by the average shortest distance of
a network. For simplicity, it is set to 3 in most of our exper-
iments. We compare the performance of our descriptor with
the state-of-the-art descriptors Φ [2] and V [5]. All descrip-
tors are implemented in Matlab 2011 on a PC with a single
Intel Core2 2.3 GHz processor and 2 GB RAM.

Some representative examples of the human-evaluated
scores, Φ, V and Ψ for three collective motion levels are
shown in Fig. 2. Clearly, Φ and Ψ can provide satisfactory
collectiveness values for the low and medium categories,
while V is prone to being unstable. For high category, Φ
and V give relatively low values for some clips, whereas our
Ψ can still offer reasonable values in these cases.

The ROC curves in Fig. 3 correspond to three bi-
nary classification tasks, i.e., high-low, high-medium, and
medium-low, respectively. Table 1 lists the best accuracies.
Obviously, Ψ achieves the highest accuracy, which is sig-
nificantly better than Φ and V. The average computational
time costs for a video clip of three algorithms are listed in

Table 1 The best accuracy comparisons of three descriptors

Table 2 Computational time costs of three descriptors

Fig. 4 Scatters of human-evaluated scores with respect to (a) Φ, (b) V
and (c) Ψ.

Table 2, in which we compare only the collectiveness cal-
culation phase of all descriptors while ignoring the motion
feature extraction phase because its running time is the same
for them. As can be seen, Ψ has the second fastest speed.
Although both descriptorsΦ andΨ have the same time com-
plexity, Ψ consumes less computational time compared to Φ
because Ψ produces a symmetric and sparse similarity ma-
trix which in turn reduces the running cost [13].

Figure 4 illustrates the correlations between the
human-evaluated scores and Φ, V, and Ψ, respectively. In
comparison with Φ and V, the proposed Ψ exhibits higher
positive correlation which indicates it matches better with
human perception.

4. Conclusion

In this letter, we have presented a link-prediction-based
scheme for measuring collectiveness quantitatively in
crowded scenes. We proposed a quasi-local SRWR index
to predict missing links in a network and hence to uncover
the correlations among individuals in the crowd. Further-
more, a novel collectiveness descriptor was constructed us-
ing the SRWR index and the Laplacian spectrum of the net-
work. Experimental results verified the effectiveness and
efficiency of the proposed method and demonstrated that it
provided superior performance compared with the state-of-
the-art methods.
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