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LETTER

Discriminative Semantic Parts Learning for Object Detection

Yurui XIE†a), Nonmember, Qingbo WU†, Student Member, and Bing LUO†, Nonmember

SUMMARY In this letter, we propose a new semantic parts learning
approach to address the object detection problem with only the bound-
ing boxes of object category labels. Our main observation is that even
though the appearance and arrangement of object parts might have varia-
tions across the instances of different object categories, the constituent parts
still maintain geometric consistency. Specifically, we propose a discrimi-
native clustering method with sparse representation refinement to discover
the mid-level semantic part set automatically. Then each semantic part de-
tector is learned by the linear SVM in a one-vs-all manner. Finally, we
utilize the learned part detectors to score the test image and integrate all the
response maps of part detectors to obtain the detection result. The learned
class-generic part detectors have the ability to capture the objects across
different categories. Experimental results show that the performance of our
approach can outperform some recent competing methods.
key words: object detection, sparse representation

1. Introduction

Object detection is one of the most challenging problem due
to the variations in object appearance, pose, illumination and
viewpoint, etc. Recently, the part-based models have re-
ceived increasing research attention in computer vision [1]–
[4]. They model an object as a set of important parts and
achieve good performances for the object-detection prob-
lem. The deformable part-based model (DPM) method [1]–
[3] represents an object using the deformable parts, and each
part of the object describes the local appearance properties
of an object. In order to further improve the performance,
the strongly supervised information [2], [4] provided by the
human-annotated is also incorporated into the learning pro-
cessing of part detectors. Another direction aims to gener-
alize the deformable part model from image to spatiotem-
poral data [3]. However, the main limitation for the above
class-specific object detection approaches is that the learned
model can only be applied to one specific object class, which
is insufficient to model a new object category. In order to
overcome the limitation, some other works [5]–[9] have at-
tempted to measure the objectness of image patch with the
help of saliency-based and segmentation-based cues. They
can also achieve good performances for the class-generic
object detection.

Inspired by these part-based methods for object detec-
tion, we propose a new detection framework by learning
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Fig. 1 The procedures of proposed object detection method.

the object semantic parts with only the bounding box la-
bels. The key observation is that even though the parts of
different object categories might have variations in terms of
the appearance and arrangement, the constituent parts still
maintain the consistency in geometric properties. Compared
with some existing part-based detection methods, the pro-
posed approach has the following distinctive characteristics:
First, the discriminative semantic part detectors can be auto-
matically learned from bounding box labels by the proposed
approach, without requiring heavy supervision or detailed
label information. Second, different from some established
part-based methods that can only detect the object of spe-
cific category using the trained object model, the learned
class-generic part detectors have the ability to capture the
objects across different categories. Figure 1 illustrates the
flowchart of proposed approach for object detection.

2. Learning Discriminative Semantic Part Detectors

In this section, we introduce the details that how to gen-
erate these discriminative semantic part set of objects with
only bounding box labels. In particular, the object parts
should meet the following two main requirements: 1) Dis-
criminability: the semantic parts should capture the local
appearance properties of objects, which are helpful for de-
tecting the object categories. 2) Repeatability: these learned
parts should be repeated in the object classes constantly.

Given a large set of training images with only the object
category labels T = {(Ii, Bi)}Ni=1, where Ii is the i-th training
image and Bi denotes the set of bounding boxes that describe
the location of each object, N is the number of training im-
ages, our goal is to discover a set of discriminative semantic
parts S from the training set T . Then these obtained part set
S can be used to learn the object part detectors.
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2.1 Discovering Semantic Parts

In order to obtain a set of initial object parts, we first regu-
larly partition each object region by the bounding box from
all the training images. Then we perform the unsupervised
clustering to obtain the initial object part set Φ = {Cq}Qq=1,
where Cq denotes the q-th initial part cluster and Q is the
number of initial part clusters. Specifically, the affinity prop-
agation(AP) clustering [10] is applied on all the partitioned
object parts. Unlike the traditional clustering method such
as k-means, the procedure of affinity propagation clustering
is done automatically, without requiring the parameter that
specifies the desired number of clusters. This characteristic
ensures that the number of part clusters is determined by the
appearance properties of object parts, rather than the value
is to be set manually.

In our method, each element of adjacent matrix in the
AP clustering is measured by: A(i, j) = d( fi, f j), where
A(i, j) denotes the similarity between the partitioned parts
i and j, d(·) denotes the χ2 distance metric function, fi and
f j are the HOG descriptors [11] for the parts i and j, re-
spectively. Then the similarities of all the pair of parts are
computed accordingly and we can obtain the whole adjacent
matrix A. This adjacent matrix is further fed into the AP
clustering to obtain the initial object part set. To enforce the
repeatability of object parts, the candidate part clusters are
generated by removing these initial clusters with less than L
members. In practice, we set this parameter L = 10. For the
discriminability, we propose a refinement approach to rank
all the candidate part clusters and select these discriminative
part clusters in the following step.

2.2 Ranking Part Clusters By Sparse Representation

Given the set of candidate object parts that can be described
as Ψ = {C j}Mj=1, where C j denotes the j-th candidate part
cluster and M(< Q) is the size of candidate part set, we
propose a refinement approach based on sparse representa-
tion to select these discriminative part clusters. Recently,
the sparse representation [12] has attracted much attentions
in computer vision, which has the ability to approximate the
target signal as a linear combinations of a small number of
atoms by a given dictionary. In our approach, each candidate
part cluster is taken as the target data and is reconstructed by
the rest of candidate part clusters. Mathematically, the rep-
resentation coefficients for one part cluster C j are computed
by minimizing the following objective function:

min
Aj

‖ Xj − Dj̄ · Aj ‖22 + λ ‖ Aj ‖1 (1)

where Xj = [x1
j , x

2
j , . . . , x

n
j ] denotes the target part data and

each column xt
j, (t = 1, 2, . . . , n) of matrix Xj is the HOG

feature vector associated with one of the object part within
the cluster C j, n is the number of object parts in this cluster.
Dj̄ is the reconstruction dictionary that is built by all the
feature vectors of the rest of candidate part clusters, Aj is

Fig. 2 Semantic part clusters: some examples within the clusters after re-
finement. The discovered object parts have the similarity appearance prop-
erties in each cluster and are inconsistent with the parts of other clusters in
appearance space.

the sparse representation coefficients of the j-th cluster over
Dj̄. The parameter λ is used to balance the different terms
in the objective function. In our method, the algorithm [13]
is adopted to solve the above optimization formulation.

For each candidate part cluster, the construction resid-
ual is computed by ‖ Xj−Dj̄ ·Aj ‖22. Since the reconstruction
residual measures the similarity between the current clus-
ter C j and the rest of candidate part clusters, we can use it
to evaluate the discriminative power of current part cluster.
The higher value of reconstruction residual, the more dis-
criminative power of the current part cluster C j. Finally, we
can rank all the candidate part clusters by the values of con-
struction residuals and the discriminative part clusters are
selected to further train the part detectors. In the experi-
ment, we select the top K(< M) candidate part clusters that
have the highest residual values to learn the discriminative
detectors. Figure 2 shows some instances of visualization,
each row contains two selected clusters and we demonstrate
five object part instances within each cluster. Due to our
discriminative clustering with sparse representation refine-
ment, it can be observed that object parts within each cluster
have the similarity appearance properties and are inconsis-
tent with the parts of other clusters in appearance space.

2.3 Learning Discriminative Part Detectors

Once the K discriminative part clusters are obtained, we
can use them to learn the semantic part detectors that have
the ability to capture the local object regions in appearance
space. For each discriminative part cluster, we train a lin-
ear SVM classifier in the one-vs-all manner. Specifically,
we treat the object parts in current part cluster as the posi-
tive samples, and all the object parts from the rest of K − 1
part clusters as the negative samples to train SVM classi-
fier corresponding to the current part cluster. Finally, the
learned classifier is used as a part detector to capture these
patches within an image that are similar to the parts of dis-
criminative cluster. The learned semantic part detectors can
be described as: S = {(Cn,Vn)}Kn=1, where Cn is the n-th
discriminative part cluster and Vn denotes the trained part
detector associated with the n-th cluster, K is the number of
learned part detectors. The whole approach of semantic part
detectors learning is summarized in Algorithm 1.

3. Detecting Algorithm

In the test stage, we first partition the image into regular
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Algorithm 1 Learning discriminative part detectors
Input: Training set T = {(Ii, Bi)}Ni=1, parameters L, K and λ.
Output: Discriminative part detectors S = {(Cn,Vn)}Kn=1

1: Φ = {Cq}Qq=1 ⇐= Construct (T ) � Construct the initial part set Φ with the affinity propagation clustering [10]
2: Ψ = {C j}Mj=1 ⇐= Remove (Φ) � Generate the candidate part clusters Ψ by removing these clusters with less than L members
3: for j = 1 to M do
4: Xj ⇐= ExtractHOG (C j) � Extract the HOG descriptors for all the members within the j-th candidate part cluster
5: Dj̄ ⇐= BulidDictoinary ({Ct}Mt=1,t� j) � Build the Dictionary using the rest of candidate part clusters.
6: Optimize sparse representation coefficients:

minA j ‖ Xj − Dj̄ · Aj ‖22 + λ ‖ Aj ‖1 � Compute the reconstruction coefficients Aj

7: C j ⇐= S core (‖ Xj − Dj̄ · Aj ‖22) � Compute the reconstruction residual for the j-th candidate part cluster
8: end for
9: Rank all the candidate part clusters using the obtained residual values.

10: Select the top K discriminative part clusters.
11: for n = 1 to K do
12: Vn ⇐= LinearS V M (Cn) � Learning the discriminative part detector
13: end for

Fig. 3 The top row shows some sample images. The bottom row demon-
strates the corresponding probability maps.

patches. For all the patchs of image, the patch descriptors
(HOG [11]) are extracted and we use the set of learned dis-
criminative part detectors to score them. Then all the scores
obtained by the part detectors are accumulated to generate
the probability map. This probability map is further refined
by the constraint of local regions. In our approach, we use
the over-segmentation method [14] to generate these local
superpixel regions and all the pixels have the same probabil-
ity value within each superpixel (we use the average proba-
bility value in a local superpixel region). The higher proba-
bility value of a region, the more possibility that this region
covers an object of interest. Figure 3 shows some instances
and the corresponding probability maps. Notice that the ob-
tained probability map can highlight the object of interest in
an image and provide an important cue to detect the object.

Once we obtain the probability map, we use the
method [7] to generate these candidate windows in an im-
age, then each candidate window can be evaluated by the
map. Specifically, the score for a window is measured by

F(W) =
N+p (W)

N−p (W)
− N+p (WS )

N−p (WS )
(2)

where F(W) denotes the score for the current window W,
N+p (·) is the number of pixels that the probability value is
larger than p, N−p (·) counts the pixels that the probability
value is less than p. The WS denotes the surrounding re-
gion for the current window W, which is defined by the ex-
tended rectangular ring with respect to W in four directions.
In the experiment, the value of p is computed by the average
of probability map and the extended range of each window

boundary is set to 30 pixel width. The higher score of a
window indicates that this window is more likely to contain
an object of interest. Then all the candidate windows are
ranked by the window scores and the non-maxima suppres-
sion (NMS) is applied to generate the final object windows.

4. Experiments

We evaluate the proposed object detection approach on the
PASCAL VOC 08 [15] standard benchmarks, and compare
it to other recent competing methods. The approaches we
compare against include the deformable part-based model
(DPM) [1], Objectness [5] and Selective search [7]. The per-
formances of different methods are reported using the stan-
dard Average Precision (AP) measure.

Since the objects have a large variety of categories, ap-
pearances, deformations and viewpoints in the challenging
PASCAL VOC dataset, we partition the total object cate-
gories into several super-classes to verify the effectiveness
of proposed method. The object categories within each
super-class may share the potential consistent parts in terms
of geometric properties. In particular, we divide all the 20
object categories into four super-classes (e.g. <cow, horse,
sheep>; <bus, train, plane, car, boat, bicycle, motor>; <dog,
cat, bird, person>; <table, sofa, tv, chair, bottle, plant>),
then the semantic part detectors are learned from each super-
class automatically. In the test, the learned semantic part
detectors are used to capture the objects of corresponding
categories in each super-class. We use the dataset splits
from [15] for training and testing in the experiment.

For our discriminative semantic parts learning, each
object region by the bounding box is regularly divided by
the fixed 3 × 3 grid size. Then we extract the dense HOG
features for all the pixels within an object part region. The
visualizations of HOG features for object parts are shown
in Fig. 1. Finally, the part descriptor is constructed by the
max-pooling technology. In the experiment, the number of
discriminative part clusters K is set by τ× the number of
candidate part clusters M, where τ ∈ (0, 1) is a constant that
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Fig. 4 Average Precision (AP) for all the 20 classes in PASCAL VOC 2008 dataset. The highest
performance among the proposed approach and some representative methods are displayed in bold.

Fig. 5 First row: sample images in the PASCAL VOC 08 dataset. Mid-
dle row: probability map for each sample image. Third row: detection
results by our method (blue) and the ground truth (magenta).

Fig. 6 The performance of proposed method with varying number of dis-
criminative part clusters on the PASCAL VOC 08 dataset.

controls the number of discriminative part clusters. The pa-
rameter τ is set to 0.6 in the proposed method. In addition,
the regularization parameter of Eq. (1) is set as λ = 0.1.

Note that the DPM [1] is one of the most success-
ful class-specific object detection methods. It achieves the
state-of-the-art performance and is hard to be further pro-
moted. Similar to the recently proposed Objectness [5] and
Selective search [7] algorithms, our approach is essentially a
class-generic object detection method. Following the same
settings in Objectness [5], we linearly combine the score
F(W) of our class-generic object detector with the DPM
score D(W) for each candidate window W: D(W)+α ·F(W),
where the weighting parameter α is set to 0.2. Different from
the Objectness [5], the method of [7] uses the trained clas-
sification model per class to score each candidate window
for addressing the object recognition task. The detection re-
sults of different methods for all the 20 categories on PAS-
CAL VOC 08 dataset are listed in Fig. 4. It shows that our
method improves the AP and obtains the best performances
for 15 out of 20 object classes, such as plane, bicycle, bird,
boat, bottle, bus, and etc. Compared with the DPM, it is no-
ticed that the proposed method increases the mean Average
Precision (mAP) by more than one percent. Moreover, our
approach outperforms other competing methods and gains
the highest mAP across all the classes. Figure 5 illustrates
some examples of visual results by the proposed method on
VOC 08 dataset. The number of discriminative part clusters

can influence the performance of our method. Therefore,
we also evaluate the mAP of proposed method with differ-
ent number of discriminative part clusters in Fig. 6.

5. Conclusion

In this letter, we propose a new discriminative parts learn-
ing approach to tackle the object detection problem with
only the bounding boxes of object category labels. The pro-
posed approach has the ability to discover the mid-level se-
mantic part set and learn object part detectors automatically.
Experimental results verify that the proposed approach can
achieve superior performance to recent competing methods.
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