
1998
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

LETTER

Top (k1, k2) Query in Uncertain Datasets

Fei LIU†a), Member, Jiarun LIN†, Student Member, and Yan JIA†, Nonmember

SUMMARY In this letter, we propose a novel kind of uncertain query,
top (k1, k2) query. The x-tuple model and the possible world semantics are
used to describe data objects in uncertain datasets. The top (k1, k2) query
is going to find k2 x-tuples with largest probabilities to be the result of top
k1 query in a possible world. Firstly, we design a basic algorithm for top
(k1, k2) query based on dynamic programming. And then some pruning
strategies are designed to improve its efficiency. An improved initializa-
tion method is proposed for further acceleration. Experiments in real and
synthetic datasets prove the performance of our methods.
key words: uncertain query, top k, x-tuple, possible world

1. Introduction

Top k query is widely used in data mining, abnormal detec-
tion and many other research fields. At the same time, uncer-
tainty is inherent in many datasets due to various factors like
noise [1], privacy protection strategy [2], incompleteness of
data and delay or loss in data transfer [3]. In this paper, we
connect top k query and uncertain data model, and propose
a novel top (k1, k2) query in uncertain datasets.

In uncertain space, a data object may be represented
by many instances with distinct probabilities. We use the
x-tuple model [4] and the possible world semantics [5] to
describe uncertain data. An uncertain data object (abbre-
viated as object) is considered as an x-tuple, containing sev-
eral tuples. Each tuple belonging to an x-tuple is a possi-
ble instance of the object. Each instance is with an appear-
ance probability. Instances belonging to the same object are
exclusive. Instances belonging to the different objects are
independent. Sum of these instances’ probabilities is no
more than 1. For example in Table 1, t11 and t12 are two
tuples of x-tuple T1. t11 and t12 cannot appear at the same
time. t21 with probability p21 is the unique tuple of x-tuple
T2. If p11 + p12 < 1, T1 would not appear with probability
1 − p11 − p12.

Based on the x-tuple model, a possible world is a set
of tuples from different x-tuples. There would be no more
than one tuple from the same x-tuple appearing in a possible
world. Each possible world is with a probability. Table 2
lists 6 possible worlds produced from x-tuples in Table 1.
For example, {} is a possible world, where no x-tuple ap-
pears. {t11} is a possible world with probability p11(1− p21).

Manuscript received March 31, 2015.
Manuscript revised July 7, 2015.
Manuscript publicized July 22, 2015.
†The authors are with the School of Computer, National Uni-

versity of Defense Technology, 410073, Changsha, P.R. China.
a) E-mail: 1986figo@163.com

DOI: 10.1587/transinf.2015EDL8077

Table 1 x-tuple model.

x-tuple tuple probability

T1
t11 p11

t12 p12

T2 t21 p21

Table 2 Possible worlds.

possible
world

probability

{} (1 − p11 − p12)(1 − p21)
{t11} p11(1 − p21)
{t12} p12(1 − p21)
{t21} (1 − p11 − p12)p21

{t11, t21} p11 p21

{t12, t21} p12 p21

In this letter, we focus on top k x-tuples detection us-
ing possible world semantics. Several queries in uncer-
tain space have been proposed, such as U-topk, U-kRank,
PT -k, Global-topk, Expected rank and so on [6]. In these
queries, every tuple has a score and tuples with largest high-
rank probabilities would be returned. G. Cormode et al. [7]
analysed these models and indicated that most of them do
not satisfy five key properties of uncertain query: Exact-k,
Containment, Unique ranking, Value invariance and Stabil-
ity. Also the Expected rank query satisfy all these proper-
ties [6], the expected value always leads to information loss.
The Global-topk [8] query returns k highest-ranked tuples
according to their probability of being in the top-k answers
in possible worlds. It satisfies all properties except ‘Con-
tainment’. Besides that, some of them would cause high
time cost [6]. In this letter∗, we propose a new top (k1, k2)
query for x-tuples query similar with Global-topk query in
uncertain datasets. It satisfies all these key properties. The
remainder of the letter is organized as follows. In Sect. 2, we
define the top (k1, k2) query. A basic algorithm is described
in Sect. 1. Some pruning strategies are designed in Sect. 4.
An improved initialization strategy is proposed in Sect. 5.
We experimentally evaluate our research in Sect. 6. Finally,
we conclude our work in Sect. 7.

2. Top (k1, k2) Uncertain Query

We use the x-tuple model and the possible world semantic to
∗This research is supported the National Natural Science Foun-

dation of China (No. 61202362) and the State Key Development
Program of Basic Research of China (No. 2013CB329601)

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

LETTER
1999

describe an uncertain dataset. An uncertain dataset is consti-
tuted by many x-tuples. A large number of possible worlds
would be produced as instances of the uncertain dataset. Let
D be the dataset. T ∈ D is an x-tuple in D. t ∈ T is a tuple
belonging to T . T can also be noted as T (t). s(t) is the score
of t, P(t) is t’s appearance probability and P(T) is T ’s ap-
pearance probability, where P(T) =

∑
t∈T P(t). Let W be the

set of all possible worlds produced from D. For a possible
world w ∈ W, t ∈ w means tuple t appears in w, and T ∈ w
means there is a tuple of T appearing in w. Let P(w) be
the probability of w, and P(w) =

∏
t∈w P(t)

∏
T�w(1 − P(T)).

Based on above assumptions, we propose following defini-
tions.

Definition 1: Top k1 tuple in a possible world: In a possi-
ble world w, a tuple t ∈ w is a top k1 tuple, if t is ranked no
less than k1 according to its score in descending order.

Definition 2: Pk1 probability of an x-tuple: For an x-tuple
T , its Pk1 probability, Pk1 (T), is the probability sum of all
possible worlds where one of T ’s tuple is a top k1 tuple.
Formally, Pk1 (T) =

∑
w∈W(T) P(w). W(T) is the set of pos-

sible worlds, where there is a tuple t ∈ T and t is a top k1

tuple.

Definition 3: Top (k1, k2) query in an uncertain dataset: In
an uncertain dataset D, the top (k1, k2) query returns k2 x-
tuples with highest Pk1 probabilities.

It can be easily proved that top (k1, k2) query satis-
fies five key properties [7]. Compared with the Global-topk
query, the result set of the top (k1, k2) query with k′2 < k2 is
contained by the result set with k2 (Containment).

3. Basic Algorithm for Top (k1, k2) Query

We propose a basic algorithm similar with M. Hua et al.’s
research [3], which is used for top k uncertain tuples query.
We modify it for uncertain x-tuples query. For an x-tuple T ,
it can be proved that, Pk1 (T) can be calculated as:

Pk1 (T) =
∑

t∈T
Pk1 (t)P(t) (1)

Pk1 (t) is the probability than no more than k1 − 1 tuples
with higher scores than t appear. The proof of the Eq. (1) is
given in [3]. k2 x-tuples with largest probability Pk1 (T) are
returned as top (k1, k2) uncertain query result. Pk1 (t) can be
calculated using a Dynamic Programming algorithm. Let
L = <t1, t2, . . .> be the sorted tuple list in D according to
their scores in descending order. Pk1 (t j) is equal to the prob-
ability that more than k1 − 1 x-tuples appear in front of t j.
Let L(t j) = <t1, t2, . . . , t j−1> be t j’s prefix tuple list in L. Let
L′(t j) be t j’s prefix x-tuple list in L. An x-tuple in L′(t j) con-
tains at least one tuple in L(t j). Let L′(t j) = <T1,T2, . . .>
without loss of generality. X-tuples in L′(t j) are in order.
Suppose tx ∈ L(t j), and for any tuple tx′ ∈ T (tx) satisfy-
ing tx′ ∈ L(t j) ∧ x′ � x, we can get x′ > x. We call tx

the first tuple of T (tx) in L(t j). Let ty be the first tuple of
T (ty) in L(t j). If x < y, T (tx) is in front of T (ty) in L′(t j).

Algorithm 1: Basic algorithm
Data: D, k1, k2.
Result: k2 x-tuples
begin

LP ← ∅;
sort all tuples in D in descending order and construct list L;
for each x-tuple T ∈ D, do Pk1 (T)← 0, P′′(T)← 0;
for each tuple t j ∈ L do

L′′(t j)← LP − T (t j) and calculate Pk1 (t j);
Pk1 (T (t j))← Pk1 (T (t j)) + Pk1 (t j) · P(t j);
if T (t j) � LP then

LP ← LP ∪ T (t j) and P′′(T (t j))← P(t j);

else
P′′(T (t j))← P′′(T (t j)) + P(t j);

output k2 x-tuples in D with largest Pk1 probabilities.

Let L′′(t j) = L′(t j) − T (t j), then Pk1 (t j) = P(L′′(t j), k1 − 1),
which is the probability that no more than k1 − 1 x-tuples in
L′′(t j) appear. Let L′′(t j)[k] be the kth x-tuple in L′′(t j). We
set

P′′(L′′(t j)[k]) =
∑

1≤x≤ j−1∧T (tx)=L′′(t j)[k]

P(tx). (2)

Let L′′(t j)[1, k] be the list of first k x-tuples in L′′(t j).
P(L′′(t j)[1, k], i) is the probability the no more than i x-
tuples in L′′(t j)[1, k] appear. Then P(L′′(t j), k1 − 1) can be
calculated as follows:

P(L′′(t j)[1, 1], 0) = 1 − P′′(L′′(t j)[1]);
P(L′′(t j)[1, k], 0) = P(L′′(t j)[1, k − 1], 0) · (1 −

P′′(L′′(t j)[k]));
P(L′′(t j)[1, k], i) = 1, if 1 < k ≤ i;
P(L′′(t j)[1, k], i)=P(L′′(t j)[1, k−1], i−1)·P′′(L′′(t j)[k])

+ P(L′′(t j)[1, k − 1], i) · (1 − P′′(L′′(t j)[k])), if 1 ≤ i < k.

Then we can get:
Pk1 (t j) = P(L′′(t j), k1−1) = P(L′′(t j)[1, |L′′(t j)|], k1−1),

j > 1 and Pk1 (t1) = P(L′′(t1), k1 − 1) = 1

For example in Tables 1 and 2, suppose Lt = <t11, t21, t12>,
k1 = 1, P(t11) = 0.3, P(t12) = 0.5, P(t21) = 0.7 and t �
T1 ∧ t � T2, then L′′(t)[1] = T1 and L′′(t)[2] = T2. We can
get:

P′′(L′′(t)[1]) = P(t12) + P(t21) = 0.3 + 0.5 = 0.8.
P′′(L′′(t)[2]) = P(t21) = 0.7.
P(L′′(t)[1, 1], 0) = 1 − P′′(L′′(t)[1]) = 1 − 0.8 = 0.2.
P(L′′(t)[1, 1], 1) = 1.
P1(t)=P(L′′(t), 1)=P(L′′(t)[1, 2], 1)=P(L′′(t)[1, 1], 0)

· P′′(L′′(t)[2]) + P(L′′(t)[1, 1], 1) · (1 − P′′(L′′(t)[2])) = 0.2 ·
0.7 + (1 − 0.7) = 0.44.

The basic algorithm is shown in Algorithm 1. Lp is the pre-
fix x-tuples list and initialized to be an empty set. All tu-
ples in the dataset D are sorted in list L in descending order
according to their scores. For each x-tuple T , Pk1 (T) and
P′′(T) are initialized as 0. For each x-tuple in Lp, at least

2000
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

Algorithm 2: Improved algorithm with pruning
Data: D, k1, k2.
Result: k2 x-tuples
begin

H ← 0, LP ← ∅, LO ← ∅;
sort all tuples in D in descending order and construct list L;
initialize H(t), H1(T), H2(T) and H(T) for each tuple t and
each x-tuple T ;
for each tuple ti ∈ L do

if T (ti) has been pruned, then update LP, continue;
if H(T (ti)) < H, then prune T (ti), update LP, continue;
calculate Pk1 (ti) and add ti to LP;
for each tuple t j in L, i < j do

update H(t j) and H(T (t j));
if H(T (t j)) < H, then prune T (t j);

update H1(T (ti)), H2(T (ti)) and H(T (ti));
if H(T (ti)) < H, then prune T (ti), continue;
if T (ti) � LO, then insert T (ti) into LO in order and
remove the additional x-tuple if |LO | > k2;
else, resort x-tuples in LO;
H = H2(LO[k2]);

output k2 x-tuples in LO.

one of its tuples has been processed. Tuples in L are pro-
cessed one by one in the second for loop to calculate Pk1 (t j)
and update Pk1 (T (t j)). If t j is the first tuple of T (t j) to be pro-
cessed, then T (t j) is added to the end of Lp. P′′(T (t j)) is set
to be P(t j). Else, P′′(T (t j)) is updated as P′′(T (t j)) + P(t j).
k2 x-tuples with largest Pk1 probabilities are output as final
results.

4. Pruning Strategy

In the basic algorithm, all tuples and x-tuples have to be
processed, which causes considerable time cost. However,
query result often occupies a small part of the entire data
set. Some x-tuples with negligible Pk1 probabilities can be
pruned early. In this section, we estimate an upper bound of
Pk1 (T), H(T), for each x-tuple T . If H(T) is smaller than a
threshold H. T could be pruned in advance.

In order to calculate H(T) and H, we define two val-
ues H1(T) and H2(T) for each x-tuple T . We set H1(T) =∑

t∈D1(T) H(t)P(t), H2(T) =
∑

t∈D2(T) Pk1 (t)P(t) and H(T) =
H1(T)+H2(T). D1(T) is the subset of tuples in T , where for
each tuple t ∈ D1(T), Pk1 (t) has not be calculated yet. D2(T)
is the subset of tuples in T , where for each tuple t ∈ D2(T),
Pk1 (t) has been calculated. H(t) is an upper bound of Pk1 (t).
For each x-tuple T , H2(T) ≤ Pk1 (T). The k2th largest H2

value all over the dataset can be the threshold H. For an
x-tuple T ′ with H(T ′) < H, there must been at least k2 x-
tuples, whose Pk1 probabilities are larger than Pk1 (T ′). For a
tuple t ∈ T , if Pk1 (t) has been calculated, then H1(T) would
be updated by H1(T)−H(t)P(t) and H2(T) would be updated
by H2(T) + Pk1 (t)P(t). H(T) is then updated by new values
of H1(T) and H2(T).

Algorithm 2 describes the improved algorithm with the
pruning strategy. In initialization stage, H is 0. As in
the basic algorithm Lp is an empty set. LO, the list of x-

tuples sorted in descending order according to H2 values,
is also initialized to be an empty set. For each x-tuple T
and t ∈ T , H(t), H1(T), H2(T) and H(T) are initialized.
Details of initialization method are given in Sect. 5. All tu-
ples are sorted in list L in descending order according to
their scores. Suppose L = <t1, t2, . . .>. Tuples in L are pro-
cessed sequentially in the outside for loop. If T (ti) has been
pruned, following tuples of T (ti) would not be processed.
If H(T (ti)) < H, T (ti) would be pruned. Lp is updated as
in the basic algorithm. In the inside for loop, for a tuple
t j ∈ L, where i < j and T (t j) has not been pruned, H(t j)
can be updated according to Theorem 1. If tuple t j does not
satisfy Theorem 1, then we don’t update H(tk) for the fol-
lowing tuples, j < k, because tk would always not satisfy
Theorem 1 too. And then, H1(T (ti)), H2(T (ti)), H(T (ti)) and
H are updated. X-tuples in LO are kept in descending order
according to their H2 values. The length of LO is kept as k2.
If |LO| > k2, remove the last x-tuple from LO. Finally, k2

x-tuples in LO are output as the result.

Theorem 1: L = <t1, t2, . . . > is a sorted tuple list. Tuples
in L are processed in order. When Pk1 (ti) has been calcu-
lated, H(t j), j > i, can be updated by min{H(t j), Pk1 (ti)},
if T (t j) = T (ti) or P′ti (T (t j)) ≤ P′ti (T (ti)). P′ti (T (t j)) (or
P′ti (T (ti))) is the probability sum of all tuples of T (t j) (or
T (ti)), who are in front of ti.

In order to prove Theorem 1, some lemmas are proposed.

Lemma 1: P(L′(t j)−T (t j), k1−1) ≤ P(L′(ti)−T (t j), k1−1),
i ≤ j

Proof : This lemma can be proved according to the definition
of P(L′′(t j), k) and we ignore details for space limitation.

Lemma 2: P(L′′(t j), k1 − 1) ≤ P(L′′(ti), k1 − 1), if
P′ti (T (t j)) ≤ P′ti (T (ti)), i ≤ j, T (i) � T (j).

Proof : P(L′′(t j), k1 − 1) = P(L′(t j) − T (t j), k1 − 1)
≤ P(L′(ti) − T (t j), k1 − 1), according to Lemma 1
= P(L′(ti) − T (t j) − T (ti), k1 − 2) · P′ti (T (ti))
+ P(L′(ti) − T (t j) − T (ti), k1 − 1) · (1 − P′ti (T (ti)))(noted

as F1)

P(L′′(ti), k1 − 1) = P(L′(ti) − T (ti), k1 − 1)
= P(L′(ti) − T (ti) − T (t j), k1 − 2) · P′ti (T (t j))
+ P(L′(ti) − T (ti) − T (t j), k1 − 1) · (1 − P′ti (T (t j)))(noted

as F2)

We can prove that F1 − F2 ≤ 0 (details are not shown for
space limitation), that is P(L′′(t j), k1−1) ≤ P(L′′(ti), k1−1).

Then we prove Theorem 1:
In case of T (t j) = T (ti), based on the definition,

Pk1 (t j) = P(L′′(t j), k1 − 1) = P(L′(t j) − T (t j), k1 − 1)
Pk1 (ti) = P(L′′(ti), k1 − 1) = P(L′(ti) − T (t j), k1 − 1)

So that, Pk1 (t j) ≤ Pk1 (ti) according to Lemma 1.
In case of T (t j) � T (ti) but P′ti (T (t j)) ≤ P′ti (T (ti)), we
can get P(L′′(t j), k1 − 1) ≤ P(L′′(ti), k1 − 1) according to

LETTER
2001

Lemma 2, that is Pk1 (t j) ≤ Pk1 (ti). In summary, Pk1 (t j) ≤
min{H(t j), Pk1 (ti)}.

5. Upper Bound Initialization

For any x-tuple T , H2(T) can be initialized according to its
definition. H1(T)’s initialization is based on that of H(t),
t ∈ T . It is obvious that Pk1 (t) ≤ 1. So that, H(t) can be
initialized as 1.

In order to improve the pruning effect, the smaller H(t)
the better. Theorem 2 can be used to initialize H(t) as a
small value. In real applications, we can set ε → 0.

Theorem 2: For any tuple t j in L = <t1, t2, . . .>, Pk1 (t j) can
be upper bounded by H(t j) = exp{−v2/2(v + k1)} + ε, where
v =
∑

1≤i< j P(t j) − 1 − k1, ε > 0.

Proof : We use existing work of [3], [9]. If μ ≥ F(p) =
1 + k1 + ln(1/p) + [ln2(1/p) + 2k ln(1/p)]1/2, Pk1 (t j) ≤ p,
where μ =

∑
1≤i< j P(ti). Let μ = F(p′), we can get p′ =

exp{−v2/2(v + k1)}. Because F(p) is monotone decreasing
with p, we can get F(p′ + ε) ≤ F(p′) = μ. According to
Theorem 2 in [9], Pk1 (t j) ≤ p′ + ε = exp{−v2/2(v + k1)} + ε.

6. Experiments

In this section, we conduct experiments using a real
dataset (the International Ice Patrol (IIP) Iceberg Sightings
Dataset†) and a synthetic dataset on a PC with 2.5 GHz intel
Core i5 CPUs, 8.0 GB main memory, running Microsoft
Windows 8 OS. The IIP dataset collects information on ice-
berg activities in the North Atlantic, which is also used in
[3] for uncertain top-k query. We consider each sighting
record of iceberg in the dataset as a tuple. Tuples with sim-
ilar time stamp and location construct an x-tuple. Each x-
tuple contains as many as 30 tuples. We allocate each tu-
ple an appearance probability as in [3]. The probability de-
pends on the source of sighting, including: R/V (radar and
visual), VIS (visual only), RAD (radar only) and so on. We
also construct a synthetic dataset for our experiments. In
the synthetic dataset, every object contains no more than 10
instances. The value of an instance satisfies normal distri-
bution in every attribute. The probability is assigned to each
tuple randomly.

We firstly test the effectiveness of the pruning strat-
egy and the improved initialization strategy of H(t). Ex-
periments are processed in two datasets. We compare the
basic algorithm without pruning (noted as basic), the al-
gorithm using pruning strategy (noted as pruned) and the
algorithm using the pruning strategy and the improved ini-
tialization strategy (noted as improved). Figure 1 shows the
results of experiments with different values of parameter k1.
The horizontal axis shows the value of k1 and the vertical
axis shows the time cost (millisecond). It is obvious that,
in two datasets, the pruning strategy and the improved ini-
tialization strategy can improve outlier detection efficiency

†http://nsidc.org/data/g00807.html

Fig. 1 Effectiveness of pruning and initialization strategies with different
k1 in the IIP (left) and the synthetic (right) datasets.

Fig. 2 Effectiveness of pruning and initialization strategies with different
k2 in the IIP (left) and the synthetic (right) datasets.

Fig. 3 Scalability of algorithms in the IIP (left) and the synthetic (right)
datasets.

significantly. Figure 2 shows the results of experiments with
different values of parameter k2. The horizontal axis shows
the value of k2 and the vertical axis is the time cost. The
basic algorithm without pruning is hardly affected by k2, be-
cause it has to calculate Pk1 (t) for every tuple t, and k2 is
much smaller than the dataset size. With different values
of k2, the pruning strategy and the improved initialization
strategy can accelerate query clearly.

We then show the scalability of our algorithms in
Fig. 3. The horizontal axis shows datasets’ size, and the ver-
tical axis shows the time cost (millisecond). We find that
the basic algorithm costs much more time than others with
various dataset size.

7. Conclusion

In this letter, we propose the top (k1, k2) query in uncertain
datasets. It is more suitable for uncertain query compared
with existing research. The x-tuple model and the possible
world semantics are used to describe uncertain datasets. We
propose a basic algorithm for the top (k1, k2) query. Then a
pruning strategy and an improved initialization method are
designed for acceleration. Experiments in real and synthetic
datasets prove the performance of our method.

References

[1] J. Li, B. Saha, and A. Deshpande, “A unified approach to rank-
ing in probabilistic databases,” The VLDB Journal, vol.20, no.2,

http://dx.doi.org/10.1007/s00778-011-0220-3

2002
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

pp.249–275, 2011.
[2] T. Bernecker, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Zuefle,

“Scalable probabilistic similarity ranking in uncertain databases,”
IEEE Trans. Knowl. Data Eng., vol.22, no.9, pp.1234–1246, 2010.

[3] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on un-
certain data: A probabilistic threshold approach,” Proc. 2008 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’08, pp.673–686, 2008.

[4] A. Parag, B. Omar, D.S. Anish, H. Chris, N. Shubha, S. Tomoe,
and W. Jennifer, “Trio: A system for data, uncertainty, and lineage,”
VLDB, 2006.

[5] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” The VLDB Journal, vol.16, no.4, pp.523–544, 2007.

[6] G. Cormode, F. Li, and K. Yi, “Semantics of ranking queries for prob-
abilistic data and expected ranks,” 2009 IEEE 25th International Con-
ference on Data Engineering, pp.305–316, 2009.

[7] K. Yi, F. Li, G. Kollios, and D. Srivastava, “Efficient processing of
top-k queries in uncertain databases with x-relations,” IEEE Trans.
Knowl. Data Eng., vol.20, no.12, pp.1669–1682, 2008.

[8] X. Zhang and J. Chomicki, “Semantics and evaluation of top-k queries
in probabilistic databases,” Distributed and Parallel Databases, vol.26,
no.1, pp.67–126, 2009.

[9] T. Ge, S. Zdonik, and S. Madden, “Top-k queries on uncertain data:
On score distribution and typical answers,” Proc. 35th SIGMOD
International Conference on Management of Data, SIGMOD ’09,
pp.375–388, 2009.

http://dx.doi.org/10.1007/s00778-011-0220-3
http://dx.doi.org/10.1109/tkde.2010.78
http://dx.doi.org/10.1145/1376616.1376685
http://dx.doi.org/10.1007/s00778-006-0004-3
http://dx.doi.org/10.1109/icde.2009.75
http://dx.doi.org/10.1109/tkde.2008.90
http://dx.doi.org/10.1007/s10619-009-7050-y
http://dx.doi.org/10.1145/1559845.1559886

