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Target Source Separation Based on Discriminative Nonnegative
Matrix Factorization Incorporating Cross-Reconstruction Error
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SUMMARY  Nonnegative matrix factorization (NMF) is an unsuper-
vised technique to represent nonnegative data as linear combinations of
nonnegative bases, which has shown impressive performance for source
separation. However, its source separation performance degrades when one
signal can also be described well with the bases for the interfering source
signals. In this paper, we propose a discriminative NMF (DNMF) algorithm
which exploits the reconstruction error for the interfering signals as well as
the target signal based on target bases. The objective function for training
the bases is constructed so as to yield high reconstruction error for the in-
terfering source signals while guaranteeing low reconstruction error for the
target source signals. Experiments show that the proposed method outper-
formed the standard NMF and another DNMF method in terms of both the
perceptual evaluation of speech quality score and signal-to-distortion ratio
in various noisy environments.

key words: nonnegative matrix factorization, discriminative basis, cross-
reconstruction error

1. Introduction

Over the last few years, audio source separation has been
one of the interesting topics in audio signal processing such
as speech enhancement, speech recognition, music signal
processing, and so on [1]-[9]. Data-representation methods
and template-based approaches have been widely applied to
audio source separation. They make the representation mod-
els or statistics from a priori information possibly available
from a training database (DB)[1]-[9]. One notably suc-
cessful techniques is based on nonnegative matrix factoriza-
tion (NMF) [10]. NMF is a dimensionality reduction tech-
nique that usually leads to a part-based representation and
has been shown to be effective for audio signals.

After being proposed by Lee and Seung [10], NMF was
successfully applied to audio magnitude or power spectra
analysis and has shown certain benefits over similar fac-
torization schemes such as independent component analysis
(ICA) and principal component analysis (PCA)[10], [11].
One of the possible reasons for these benefits is that NMF
provides a framework for learning parts of dataset, and audio
signal is suitable for a part-based representation in certain
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domains [12]. In NMF analysis, the input vector is repre-
sented by a linear combination of nonnegative basis vectors
with nonnegative weights. After [10] was published, a num-
ber of attempts have been made to improve NMF in various
conditions, which include sparse NMF [13], Itakura Saito-
NMEF [11], and convolutive NMF [14].

In the source separation task, the performance of the
NMF-based techniques is limited when the subspaces that
the bases for different sources span overlap. One possi-
ble interpretation for this is that the bases for each source
are trained separately to reconstruct the individual signal
faithfully without considering the source separation capa-
bility. To alleviate this problem, previous works tried
to either modify the criterion of the NMF algorithm [6]-
[8], [15], [16] or estimate the weights in such a way to con-
sider the effect of mixed sources [17].

The former approaches are often called discriminative
NMF (DNMF) [6]-[8], [15], [16]. Though sophisticatedly
different from each other, these approaches generally aim to
construct the basis vectors of a target source such that they
can reconstruct the target signal even when the target source
is mixed with interfering signals. In [6], the basis vectors of
the target source are obtained with the constraint that they
should be orthogonal to the basis vectors of the interfering
sources. However, this orthogonality constraint may result
in a high reconstruction error for the target source signals. In
[7], the basis vectors of each source are separately updated
by respective reconstruction error, while the encoding vec-
tors are updated by the whole reconstruction error. In [8],
the clean target source signal and the signal mixed with the
other source signal are used during the training phase.

In this paper, we propose a novel approach to DNMF
for which the criterion function for NMF training includes
a term rewarding high reconstruction error for the interfer-
ing source signals in conjunction with a term for low recon-
struction error for the target source signal. The proposed
DNMF algorithm with cross-reconstruction error was ap-
plied to speech enhancement and showed improved perfor-
mance in terms of both the ITU-T Recommendation P.§62
perceptual evaluation of speech quality (PESQ)[18] and
signal-to-distortion ratio (SDR) [19].

2. NMF-Based Audio Source Separation
When NMF is applied to audio source separation, it approx-

imates the magnitude or power spectra of a given mixture
V € RM™*N as the product of a basis matrix W € RM*" and
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an encoding matrix H € R™N (V ~ WH) where M, N, and
r denote the number of frequency bins, short-time frames,
and the number of basis vectors, respectively. In this paper,
we consider a simple speech enhancement scenario where
the target source signal is speech and the interfering signal
is the background noise. In this case, the basis matrix W is
considered as a concatenation of the speech and noise basis
matrices, Wy € R®*"s and Wy € R™*"» where r, and r,, in-
dicate the number of speech and noise basis vectors, respec-
tively. Wy and Wy are usually trained separately with clean
speech and noise DBs, respectively. If the Kullback-Leibler
divergence (KL-divergence) and multiplicative update rules
are used as a distance measure and an optimization method,
the update rules for the encoding and basis matrices during
the training phase are given as [10]

T Vi

H — H;® W—Twl“ (1)
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W, « W;® WlHT 2)
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where 7 denotes matrix transposition, and subscript i de-
notes either speech or noise signal, V; € RM*N: is the magni-
tude spectrogram of the training signal where N; is the total
number of short-time frames in the training data for source
i, & and ¢ denote the element-wise multiplication and di-
vision of matrices, and 1 is a matrix of a proper size with all
elements equal to one. H; and W; are obtained by iterative
application of the update rules (1) and (2) for a fixed number
of iterations.

In the separation phase, a noisy magnitude spectrum
|Y ()| is approximated as |Y(f)| * WH(¢) for each frame with
the fixed basis matrix W = [Wg Wy] obtained during the
training phase where H(f) = [Hs ()T Hy()T]T € RUs*tmxl
denotes the encoding vector of the mixed signal in the 7-th
frame, Y () is the short-time Fourier transform (STFT) coef-
ficients of the noisy input, and | - | denotes taking element-
wise magnitude. Keeping W fixed, H(f) is computed by
iterating (1) for a fixed number of times, in which Hy () and
Hy(?) are initialized to nonnegative random numbers. After
a fixed number of iterations, the magnitude spectra of the
speech and noise signals are estimated as follows:

ISl = WsHs (1),  IN@®| = WyHy(®). 3)

Instead of directly using the estimated magnitude spectra in
(3), a spectral gain function similar to the Wiener filter is
adopted in [12] and [9]. In this scheme, the gain function is
given by

S (2
G = IS @)l

- T A -~ A . 4
ISP + IN®P @

Finally, the STFT coefficients of the speech signal at the #-th
frame are obtained according to S/™(t) = G(t) X) Y ().
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3. Discriminative NMF Incorporating Cross-
Reconstruction Error

When the bases for each source are trained separately, the
subspaces spanned by the bases for individual sources are
not guaranteed to be disjoint. It implies that some data vec-
tors from one source can be possibly well reconstructed by
the bases for interfering sources. This may result in a de-
graded performance in the source separation.

One way to alleviate this issue is to modify the cost
function of the NMF training. Although the modification
may result in increased reconstruction error for each source,
the source separation performance can be enhanced espe-
cially when there exists severe overlap between the sub-
spaces spanned by different source bases.

In order to obtain discriminative bases, we propose an
objective function for basis estimation in such a way that
the reconstruction error of the target source computed from
the interfering bases is also incorporated in conjunction with
the conventional reconstruction error derived from the target
bases. The reconstruction error of noise (interfering) signal
based on the speech (target) bases may be considered as a
measure for residual noise in speech enhancement. On the
other hand, if the noise (interfering source) basis matrix is
trained using the cross-reconstruction error along with the
conventional reconstruction error, it can reduce the speech
distortion caused by active noise bases. The objective func-
tion of the proposed method to train the basis matrix W;
where i indicates either speech or noise is given by

FW;,H;,C)) =
D(V; || WH;) —;D(V; || W;C))
IVl
i = A )
AT

where V; € RN W, and H; are the magnitude spectra of
N; frames, basis, and encoding matrix for the source signal
for which we want to train a basis matrix, and V; € RM*V;
and C; are the magnitude spectrogram and encoding matrix
for the other source signal of N; frames. D(a || b) denotes
the distance function between a and b, for which the KL-
divergence is chosen, and || - ||; is an /I-norm of the vec-
tor constructed by concatenating the rows of the matrix. In
the (5), y; makes a tradeoff between the self-reconstruction
and cross-reconstruction errors after balancing the amount
of each data set. It is noted that As = Ay = 0 corresponds to
the standard NMF while A > 0 and Ay > 0 may enhance
the source separation performance. The bases obtained with
As > 0 will cause less residual noise while the bases ob-
tained with Ay > 0 will result in less speech distortion than
the standard NMF.

The update rules for W;, H; and C; can be derived in a
similar way to (1) and (2) as follows:
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A prominent difference of this training algorithm from the
conventional NMF training is that both the speech and noise
DBs are used to train the speech bases and vice versa.

In the separation phase, the speech and noise basis
matrices obtained from the proposed method are used, and
STFT coefficients of the speech source are finally estimated
in the same way as in Sect.2.

4. Experiments

To evaluate the performance of the proposed algorithm,
speech enhancement was performed in a variety of noisy
conditions. Speech and noise samples were selected from
TIMIT and NOISEX-92 DBs, respectively, with a sampling
rate of 16 kHz. A 512-point discrete Fourier transform
with 75% overlap was used to form the spectrogram. The
basis matrix for each noise type was obtained from about
120-second long noise waveforms which was not included
in the test data, and the speech DB for training was 130-
second long, which was spoken by 56 different speakers.
The speech test data set consisted of 32 sentences from 32
different speakers. We tested 4 different types of noises in-
cluding F-16, factoryl, babble and machinegun noises. The
number of bases r for each source was set to 128, which pro-
vided a good trade-off between the reconstruction error and
the computational complexity.

The performance of the proposed method was evalu-
ated in terms of PESQ[18] and SDR [19]. To demonstrate
the performance improvement achieved by the proposed
objective function, three speech enhancement systems for
which only the basis matrices were trained in different ways
were compared:

o Standard: the standard NMF training with KL-
divergence and a multiplicative update rule without any
additional penalty term [10]

e Ortho: the DNMF in [6] which tries to make bases for
different sources orthogonal.

o CRE: the proposed method using the cross-
reconstruction error.

To find proper values of Ag and Ay in (5), 4 speech utter-
ances and noise signals which were not included in the test
and training data were used for the validation process in
which the performances were compared in terms of PESQ
scores and SDRs. The optimal values of A; through this
validation process were different depending on the types of
sources. The parameter used for the constraint of Ortho was
also experimentally chosen to get the best performance. Fig-
ure 1 shows the PESQ scores and SDRs for which the input
signal-to-noise ratio (SNR) was 0 dB. For all of the four
noises, the proposed algorithm outperformed other methods
in terms of both the PESQ score and SDR. On average, the
PESQ score improvements over the standard NMF and Or-
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Fig.1 The PESQ scores and SDRs for various noises at 0 dB SNR.

tho [6] were 0.25 and 0.19, respectively, and the SDR im-
provements over the competitors were 2.17 dB and 1.63 dB,
respectively.

The experimental results for the input SNR of 5 dB
are illustrated in Fig.2. The proposed algorithm outper-
formed other algorithms for all noise types at 5 dB SNR,
too. The performance improvements were 0.24 and 0.18
in terms of the PESQ score and 1.19 dB and 0.88 dB in
terms of SDR over the standard NMF and Ortho, respec-
tively. These experimental results confirm that the proposed
objective function incorporating cross-reconstruction error
can enhance the performance of source separation not only
in terms of an objective distortion measure but also in terms
of subjective quality. This may lead us to the conclusion that
the cross-reconstruction error term helps to reduce both the
speech distortion and the residual noise.

5. Conclusions

This paper proposed a discriminative NMF algorithm incor-
porating using the cross-reconstruction error. The objective
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Fig.2  The PESQ scores and SDRs for various noises at 5 dB SNR.

function to train a basis matrix for a source is constructed to
show high reconstruction error for the interfering source sig-
nals in addition to low self-reconstruction error, which may
reduce the residual interference and the target source dis-
tortion. Experiments demonstrated that the proposed algo-
rithm outperformed the standard NMF and the DNMF using
orthogonality.
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