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Supervised Denoising Pre-Training for Robust ASR with
DNN-HMM
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SUMMARY In this letter, we propose a novel supervised pre-training
technique for deep neural network (DNN)-hidden Markov model systems
to achieve robust speech recognition in adverse environments. In the pro-
posed approach, our aim is to initialize the DNN parameters such that they
yield abstract features robust to acoustic environment variations. In order
to achieve this, we first derive the abstract features from an early fine-tuned
DNN model which is trained based on a clean speech database. By using
the derived abstract features as the target values, the standard error back-
propagation algorithm with the stochastic gradient descent method is per-
formed to estimate the initial parameters of the DNN. The performance of
the proposed algorithm was evaluated on Aurora-4 DB, and better results
were observed compared to a number of conventional pre-training methods.
key words: deep neural networks (DNNs), pre-training, denoising, back-
propagation, robust speech recognition

1. Introduction

Recently, deep neural networks (DNNs) have become one
of the most popular techniques in the vast field of machine
learning. Due to their powerful capability in nonlinear de-
scription between the input and the target values, the DNNs
have outperformed many other conventional techniques in
various tasks. This DNN’s capability has also been ap-
plied to the environment-robust techniques for automatic
speech recognition (ASR). Particularly, in the robust ASR
area, conventional environment-robust techniques usually
necessitate some specific models or formulations to account
for the nonlinear relationship between the clean and noisy
speech processes in an appropriate signal domain [1]–[3].
In constrast, the DNNs have the advantage that they can di-
rectly learn an arbitrary unknown relationship between the
input and the target values without any specific assump-
tion. Consequently, they have brought a better performance
gain than the conventional approaches [4]. A more compli-
cated input-target relationship can be easily learned by using
wider and deeper neural network architectures with a suffi-
cient amount of training data.

Since DNN is a highly nonlinear and non-convex
model, its performance usually depends on the initial pa-
rameter setting for training. This issue has been possibly
resolved through a number of unsupervised or supervised
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pre-training methods. For the unsupervised methods, gen-
erative pre-training algorithm for the restricted Boltzmann
machines (GEPT) [5], greedy layer-wise unsupervised pre-
training using autoencoder [6] and stacked denoising au-
toencoder (SDAE) [7] were proposed. A core idea of these
algorithms is to learn a nonlinear representation of the input
data one level at a time using unsupervised feature learn-
ing. In the case of SDAE, the pre-training module takes
the noisy features as an input and then tries to recover the
original clean features by minimizing the cross-entropy loss
or the squared error loss between the reconstructed features
and the original clean features.

In the class of the supervised methods, greedy layer-
wise supervised pre-training (GLPT) [6] and discriminative
pre-training (DPT) [8] methods were proposed. These meth-
ods first train the DNN with one hidden layer using the target
labels discriminatively, then insert another hidden layer be-
tween the trained hidden layer and the output layer and again
discriminatively train the network to convergence. This pro-
cedure is repeated until the desired number of hidden lay-
ers are all trained. A hybrid pre-training algorithm combin-
ing GEPT and GLPT was also introduced [9]. These pre-
training techniques can potentially bring the DNN weights
to a relatively good initial point for converging to a better
local optimum.

The above mentioned pre-training techniques can be
also applied to robust ASR. In order to initialize the DNN in
adverse environments, not only the clean features but also
the corrupted features are used as an input of the DNN,
which is common in the robust ASR area. In a sense, this
approach can be regarded as a multi-condition training tech-
nique. The parameters of the DNN are learned to describe
the hidden representation of the multi-condition data set. As
the depth of the DNN gets deeper, more abstract features can
appear at higher layers. More abstract concepts are gener-
ally considered more robust to most local variations of the
inputs. Learning these invariant features has been a long-
standing goal in pattern recognition [10].

In this letter, we propose a novel supervised denoising
pre-training technique for the DNN-hidden Markov model
(HMM) systems for robust speech recognition in adverse
environments. In the proposed approach, our aim is to ini-
tialize the DNN parameters such that they yield abstract
features robust to acoustic environment variations. In or-
der to achieve this, we first derive the abstract features
from an early fine-tuned DNN model which is trained based
on a clean speech database. By using the derived ab-
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stract features as the target values, the standard error back-
propagation (BP) algorithm with the stochastic gradient de-
scent method is performed to estimate the initial parameters
of the DNN. The performance of the proposed algorithm
was evaluated on Aurora-4 DB, and better results were ob-
served compared to a number of conventional pre-training
methods.

2. Supervised Denoising Pre-Training

The proposed approach is called a supervised denoising pre-
training technique. In the proposed technique, the initial pa-
rameters of the DNN for noisy inputs are learned so as to
describe the most abstract features obtained when the corre-
sponding clean features are applied. If this is achieved, the
DNN is capable of extracting abstract representations, i.e.,
hidden node values robust against the interfering noises.

For this approach, we need an auxiliary DNN with the
same structure, which is fully-trained based solely on a clean
speech database. It can be obtained using a set of clean train-
ing data and the corresponding target labels which are the
posterior probabilities of the tied-state triphones (senones)
of the HMM [11]. The hidden nodes of this auxiliary DNN
are considered to form abstract representations of the clean
speech features which are not affected by interfering noises.
Since the nodes of the top hidden layer are considered to
possess the most abstract characteristics of the clean speech
features, we only focus on the top hidden layer of the aux-
iliary DNN when creating the target abstract representation
in this work.

Let {Wl
c,b

l
c|(oc,d), 0 < l ≤ L} denote the parameters of

the auxiliary DNN estimated from a clean training data oc

with the corresponding target labels d. Here {Wl
c} represent

the weights connecting the l-th layer with the (l−1)-th layer
and {bl

c} are the biases of the nodes at the l-th layer. For more
detail on the basic structures and operations at each node of
the DNNs, please refer to [11]. For simplicity, we denote the
input layer as layer 0 and the output layer as layer L for an
(L + 1)-layer DNN. Also let {Wl

m,b
l
m|(om,d), 0 < l ≤ L} be

the parameters of the main DNN which will be trained based
on a multi-condition data om with the target labels d. Note
that oc and om form a stereo database, i.e., simultaneous
recordings obtained in both the clean and corrupted condi-
tions, and the desired target labels are the same in both data.
In our approach to pre-training, the parameters {Wl

m,b
l
m} are

initialized such that they yield the abstract representation at
the (L − 1)-th hidden layer as close as possible to those ob-
tained at the same layer of the auxiliary DNN which was fed
with clean speech feature. Providing the last hidden layer
values of the auxiliary DNN as the target enables to esti-
mate {Wl

m,b
l
m} with the use of the BP algorithm. For back-

propagating the errors between the activated values obtained
from the main DNN and the target abstract features derived
from the auxiliary DNN, we employ the mean square error
(MSE) as the objective function. If the number of training
samples is T , the objective function JMS E is given by

JMS E =
1
T

T∑
t=1

[
1
2
||vL−1

m,t − vL−1
c,t ||2

]
(1)

where vL−1
m,t and vL−1

c,t respectively indicate the t-th activa-
tion vectors obtained from the main and auxiliary DNN at
the (L − 1)-th layer, and || · || means Euclidean norm. It
is very important to note that vL−1

m,t in (1) is derived from
om while vL−1

c,t is derived from the auxiliary DNN when the
clean speech feature oc is applied. The proposed method can
be modified to reproduce all the hidden node activations of
the auxiliary DNN by treating each hidden activation as the
target value. From a number of preliminary experiments,
we have found that using only the last hidden layer as the
target values shows a slightly better performance than us-
ing all the hidden layers. After {Wl

m,b
l
m} are initialized as

above, a usual discriminative fine-tuning algorithm is per-
formed [11].

3. Experiments

The performance of the proposed method was evaluated on
Aurora-4 DB which is widely used in the robust speech
recognition area. The proposed method was compared
with the following conventional pre-training approaches:
GEPT [5], GLPT [6], DPT [8] and SDAE [7]. Furthermore,
the performance evaluation with the dropout technique [12]
which is widely used in the DNN training was also investi-
gated.

3.1 Aurora-4 DB

Aurora-4 DB [13] was made using 5k-word vocabulary
based on the Wall Street Journal (WSJ) DB. The WSJ data
were recorded with a primary Sennheiser microphone and
with a secondary microphone in parallel. The corpus has
two training sets: clean- and multi-condition. Both clean-
and multi-condition sets consist of the same 7138 utter-
ances from 83 speakers. The clean-condition set consists
of only the primary Sennheiser microphone data. One half
of the utterances in the multi-condition set were recorded
by the primary Sennheiser microphone and the other half
were recorded using one of 18 different secondary micro-
phones. Both halves include a combination of clean speech
and speech corrupted by one of six different types of noises
(car, babble, restaurant, street, airport and train station) at
a range of signal-to-noise ratios (SNRs) between 10 and 20
dB.

The evaluation was conducted on the test set consisting
of 330 utterances from 8 speakers. This test set was recorded
by the primary microphone and a number of secondary mi-
crophones. These two sets were then each corrupted by the
same six noises used in the training set at SNRs between 5
and 15 dB, creating a total of 14 test sets. These 14 sets were
then grouped into 4 subsets based on the type of distortions:
none (clean speech), additive noise only, channel distortion
only and noise + channel distortion. For convenience, we
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denote these subsets by Set A, Set B, Set C and Set D, re-
spectively. Note that the types of noises are common across
training and test sets but the SNRs of the data are not.

For the validation test, we used the development set in
Aurora-4 DB consisting of 330 utterances from 10 speakers
not included in the training and test set speakers. A total of
14 sets with the same conditions as the test set were config-
ured.

3.2 Feature Extraction and GMM-HMM System

We used the Kaldi speech recognition toolkit [14] for feature
extraction, acoustic modeling of ASR, DNN training and
ASR decoding. The feature was extracted with the default
configuration of Kaldi. According to that configuration, 23-
dimensional log mel filterbank (LMFB) features were cal-
culated and 13-dimensional mel-frequency cepstral coeffi-
cients (including C0) with their first and second derivatives
were extracted for the Gaussian mixture model (GMM)-
HMM recognizer. The cepstral mean normalization algo-
rithm was applied for each speaker.

In order to provide the target alignment information for
the discriminative DNN training, we built a clean-condition
GMM-HMM system with 2009 senones and 15028 Gaus-
sian mixtures in total. The target senone labels of the DNN-
HMM system were obtained over the clean-condition train-
ing data. As for the language model, we applied the standard
5k open bi-gram model for decoding.

3.3 DNN Structures

For the auxiliary and main DNN training, we applied five
hidden layers with 2048 nodes. As for the input features of
the DNNs, we used the LMFB features due to their good
performance demonstrated in the previous studies. The in-
put features consisted of 11 frames (5 frames on each side of
the current frame) context window of 23 dimensional LMFB
features with their first and second order derivatives, which
resulted in the input dimension of 759. The input features
of the DNNs were normalized to have zero mean and unit
variance.

For training the auxiliary DNN using the clean-
condition training data, GEPT was carried out to initialize
the DNN parameters as described in [15]. For the super-
vised fine-tuning, the initial learning rate of 0.008 with the
same 256 minibatch size as the pre-training was used for the
DNN training. The errors between the DNN outputs and the
target senone labels were calculated according to the cross-
entropy criterion [11].

For initializing the main DNN parameters using the
proposed method, GEPT was first conducted using the
multi-condition training data for the main DNN and then
supervised fine-tuning was performed using the abstract fea-
tures derived from the auxiliary DNN as the target values
with the initial learning rate of 0.0005. The errors between
the last hidden node activations of the main DNN and the
target abstract features derived from the auxiliary DNN were

Table 1 WERs (%) on the auxiliary DNN-HMM system.

Method Set A Set B Set C Set D Average

GEPT 7.12 47.55 42.91 65.98 52.23

calculated as in (1). After initializing the parameters of the
main DNN and adding an output layer on the top of the
network, the discriminative fine-tuning with the senone tar-
gets was performed with the initial learning rate of 0.008.
In order to speed up training, we applied the learning rate
scheduling scheme and stop criteria presented in [15].

GLPT, DPT and SDAE methods used the same multi-
condition training data as the proposed pre-training tech-
niques. GLPT and DPT were implemented using the senone
target labels in a layer-wise manner until the desired num-
ber of hidden layers was reached with initial learning rate of
0.008 and 0.001, respectively. DPT is similar to GLPT but
differs in that the latter only updates the newly added hidden
layer while in the former all layers are jointly updated each
time when a new hidden layer is added. For SDAE, the ini-
tial parameters of the DNN were obtained by minimizing
the squared error loss between the reconstructed features
from the multi-condition training data and those from the
clean-condition training data, which was performed in the
layer-wise greedy training mode with initial learning rate of
0.0001 [7]. After initializing the parameters of each DNN
using GLPT, DPT and SDAE, the usual discriminative fine-
tuning algorithm was performed with initial learning rate of
0.008. The same learning rate scheduling scheme and stop
criteria mentioned above were applied.

As one of the well-known regularization techniques,
dropout was also applied. Dropout is a method that im-
proves the generalization ability of the DNNs. It can eas-
ily be implemented by randomly dropping the input and
hidden neuron units. As pointed out by Hinton et al. [12],
dropout can be considered as a bagging technique that aver-
ages over a large amount of models with shared parameters
of the DNN. Dropout was applied to the fine-tuning stages.
In all the experiments, we used the dropout retention rate of
0.95 at both the input and hidden layers, which showed the
best performance in our experiments.

3.4 Performance Evaluation

We compared our proposed method with the conventional
pre-training approaches on Aurora-4 DB. For convenience,
the proposed method is denoted by SDPT when demonstrat-
ing the experimental results. Table 1 shows the word er-
ror rates (WERs) obtained with the auxiliary DNN-HMM
system which was used to generate the target abstract fea-
tures. Table 2 shows the WERs of the main DNN-HMM
system built with various pre-training techniques. In Ta-
ble 2, ‘Random’ denotes no pre-training with which the pa-
rameters were randomly drawn from a GaussianN(0, 0.01).
Furthermore, WERs obtained with the use of the dropout
are shown in Table 3. In our experiments, random initializa-
tion showed lower performance than any other pre-training
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Table 2 WERs (%) on the main DNN-HMM system according to several
pre-training methods.

Method Set A Set B Set C Set D Average

Random 8.82 14.09 14.81 26.91 19.26
SDAE 7.77 11.88 12.42 23.72 16.70
DPT 8.00 11.92 12.68 23.29 16.57

GLPT 7.83 11.73 11.97 23.02 16.31
GEPT 7.81 11.71 12.27 22.71 16.18
SDPT 7.42 10.82 11.69 22.49 15.64

Table 3 WERs (%) on the main DNN-HMM system according to several
pre-training methods with dropout.

Method Set A Set B Set C Set D Average

Random+dropout 8.28 12.89 13.08 25.02 17.77
SDAE+dropout 7.96 11.81 11.71 22.84 16.45
DPT+dropout 7.83 11.88 11.92 23.18 16.43

GLPT+dropout 7.60 11.63 11.58 22.33 15.98
GEPT+dropout 7.75 11.59 11.34 22.47 15.96
SDPT+dropout 7.19 10.89 10.89 21.74 15.27

methods. After applying the dropout, the performance of
all the pre-training techniques was improved consistently.
From the results, we can see that SDPT outperformed all
the other pre-training techniques in all the tested conditions
and the dropout gave additional gains.

4. Conclusion

In this letter, we have proposed a novel supervised denois-
ing pre-training technique for the DNN robust to noisy input
variations. From the experimental results, we have found
that the proposed method was effective for enhancing the
recognition performance in adverse conditions. Future study
may focus on reducing the training time of the proposed
method.
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