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Blind Image Deblurring Using Weighted Sum of Gaussian Kernels
for Point Spread Function Estimation

Hong LIU†, Student Member and BenYong LIU†a), Nonmember

SUMMARY Point spread function (PSF) estimation plays a paramount
role in image deblurring processing, and traditionally it is solved by param-
eter estimation of a certain preassumed PSF shape model. In real life, the
PSF shape is generally arbitrary and complicated, and thus it is assumed
in this manuscript that a PSF may be decomposed as a weighted sum of a
certain number of Gaussian kernels, with weight coefficients estimated in
an alternating manner, and an l1 norm-based total variation (TVl1) algo-
rithm is adopted to recover the latent image. Experiments show that the
proposed method can achieve satisfactory performance on synthetic and
realistic blurred images.
key words: point spread function, blind deblurring, Gaussian kernel, total
variation

1. Introduction

The relative motion between a camera and an original scene
would lead to a blurred image. If the blurring process is sim-
plified to be shift-invariant, the degraded procedure may be
represented by convolution as B(x, y) = L(x, y) ⊗ k(x, y) +
ε(x, y), where B(x, y) is the blurred image, L(x, y) is the la-
tent image, k(x, y) is the point spread function (PSF) (also
called blurring kernel), ε(x, y) is the additive noise, and ⊗
denotes two dimensional convolution. The main purpose of
image deblurring is to restore the latent image L(x, y) from
the blurred version B(x, y).

As an ill-posed problem, image deblurring may be cat-
egorized to non-blind and blind cases. In non-blind deblur-
ring (NBD), the PSF is assumed to be known or computed in
a certain manner. On the contrary, in blind deblurring (BD)
the PSF is unknown and thus it is a much more challeng-
ing problem. In early work, many researchers focused on
some special types of blurring process such as defocus pro-
cess and linear motion process, wherein the PSF is generally
approximated through a simple parametric model which is
characterized by one or a few parameters. However, in prac-
tical applications, the PSF of a blurring process is generally
arbitrary and complicated, and thus it is necessary to de-
velop some more practical approaches to solve this prob-
lem. Fergus et al. [1] exploited a Gaussian mixture model to
fit the heavy-tailed natural image gradients prior, which is
solved by a variational Bayesian framework. Shan et al. [2]
introduced a new smoothness constraint on the latent im-
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age, which is very effective in suppressing ringing artefacts.
Xu and Jia [3] proposed a novel two-phase kernel estima-
tion algorithm, and exploited an l1 norm-based total varia-
tion (TVl1) algorithm to recover a latent image.

In this letter, a weighted sum of Gaussian kernels is
proposed to represent a PSF which holds an arbitrary shape,
with the weighted coefficient set estimated in an alternating
manner, and a TVl1 algorithm is adopted to restore the latent
image.

The framework of the blind deblurring algorithm in this
letter is similar to that in [3]. However, in [3], the blurring
process was represented as a traditional convolution model,
in which the PSF was a general two dimensional function. In
our proposed method, the PSF is represented as a weighted
sum of Gaussian kernels, and thus as a result, the blurred
image is regarded as a weighted sum of Gaussian blurred
images, which can more accurately approximate the really
blurring process. For this reason, the proposed deblurring
algorithm provides more satisfactory performance based on
the new model.

2. Weighted Gaussian Kernel Model

In the view of function approximation, an unknown PSF
could be represented by k(x, y) =

∑N
j=1 λ jh j(x, y), where

{h j(x, y)}Nj=1 is a certain family of known functions and

{λ j}Nj=1 is an approximation coefficient set which needs to
be estimated.

In our study, we adopt the Gaussian kernel function to
approximate the PSF since, in one reason, in most optical
imaging systems there always exists diffraction-limited blur-
ring effect, which is a fundamental resolution limitation due
to diffraction. In addition, in most commonly used cameras,
an anti-aliasing filter is adopted in the lens system to re-
move the high-frequency components which are beyond the
Nyquist limit of the digital camera sensors, wherein the anti-
aliasing blurring effect is generally embedded. Therefore,
generally there exists blurring effect in the imaging process,
even though any other effects, such as relative motion be-
tween the camera and the scene and incorrect lens setting,
are absent. Furthermore, the Gaussian kernel is a lowpass
filter and generally so is a PSF, any shape of a PSF may be
approximated by a suitable linear combination of Gaussian
kernels. Finally, the Gaussian kernel hosts most of other
properties of a PSF, for examples, the value of the Gaussian
kernel is non-negative and the integral of the Gaussian ker-
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nel equals to 1. Based on the above reasons, the degraded
procedure may be represented as follows:

B(x, y) = L(x, y) ⊗
N∑

j=1

λ jh j(x, y) + ε(x, y) (1)

where {hj(x, y)}Nj=1 is a two-dimensional Gaussian kernel
function set. Using the properties of the convolution, this
leads to the following form:

B(x, y) =
N∑

j=1

λ j{L(x, y) ⊗ h j(x, y)} + ε(x, y) (2)

In (2), the blurred image is regarded as a weighted sum of
Gaussian blurred images. However, in [3], the blurring pro-
cess was represented as a traditional convolution model:

B(x, y) = L(x, y) ⊗ k(x, y) + ε(x, y) (3)

As mentioned above, generally there exists blurring effect
in the imaging process, even though under the ideal imaging
condition. Therefore, the new model (1) can more accu-
rately approximate the really blurring process.

3. Coefficient Set Estimation

The coefficient set {λ j}Nj=1 is estimated using a two-step man-
ner similar to the method in [3].

3.1 Step One

In the first step, like other BD methods, {λ j}Nj=1 is alternately

estimated in a multi-scale framework as follows.
First, in order to reconstruct the salient sharp edges,

which can guide the kernel initialization, we use Gaussian
filter to pre-smooth the image and then enhance the edges
using a shock filter.

Next, we choose useful edges for coefficient estima-
tion using the criterion in [3]. Let N(x) be a neighborhood
of pixel x. A metric to measure the usefulness of gradient
information, is defined as:

r(x) =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

y∈N(x)

∇B(y)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
/ ⎛⎜⎜⎜⎜⎜⎜⎝
∑

y∈N(x)

||∇B(y)|| + 0.5

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

We then select pixels belonging to big r-values using a mask
M = S(r − τr), where S(·) is the Heaviside step function,
τr is a threshold. The final selected edges for coefficients
estimation are determined by

∇Ls = ∇L̃ ◦ S(M ◦ ||∇L̃||2 − τs) (5)

where ◦ denotes element-wise multiplication, L̃ is the shock
filtered image and τs is a threshold of the gradient magni-
tude. In order to include more and more edges, the values
of τr and τs are decreased iteratively (say, divided by 1.1 in
each iteration).

Finally, we estimate the coefficient set {λ j}Nj=1 in gra-

dient domain. Let l and b be the vector form of the latent
image and the blurred image, respectively, and bh and bv are
differences of B in horizontal and vertical directions respec-
tively (and similarly for lh, lv, lsh, lsv). By writing convolution
as matrix multiplication, the coefficients estimation problem
is written as:

min
λ

{
||Dλ − bd||22 + γ||λ||22

}
(6)

where λ = [λ1, . . . , λN], bd = [bh; bv], γ is parameter for
balancing the regularization term and the fidelity term. Let
col j(D) = [Hj 0; 0 Hj][lsh; lsv], where col j(·) fetches the j-th
column of matrix D, Hj is a block circulant matrix repre-
senting a Gaussian kernel function, and 0 is an all-zero ma-
trix with the same size of Hj. Taking derivative of (6) and
setting it to zero yields:

λ = (DTbd)/(DTD + γ) (7)

Then we use the predicted sharp edge gradient lsd = [lsh; lsv]
to guide the recovery of a coarse version of the latent image.
Therefore, the objective function is defined as:

min
l

{
||Kl − b||22 + η||Gl − lsd||22

}
(8)

where K =
∑N

j=1 λ jH j, G = [G(1); G(2)], with G(1) and G(2)

the first-order forward finite difference matrices in the hori-
zontal and vertical directions, respectively. In addition, the
normal equations of (8) can be written as:(

KTK + ηGTG
)

l = KTb + η
[
(G(1))Tlsh + (G(2))Tlsv

]
(9)

Using the convolution theorem of Fourier transforms, the
solution to (8) can be obtained as following:

l = F−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(K) ◦ F(b) + η

[
F(G(1)) ◦ F(lsh) + F(G(2)) ◦ F(lsv)

]
F(K) ◦ F(K) + η

[
F(G(1)) ◦ F(G(1)) + F(G(2)) ◦ F(G(2))

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(10)

With a slight abuse of notation, we have used F(K) for the
2D FFT of the function represented by K in the convolution
Kl, and similarly for G(1) and G(2). In the above representa-
tion, F−1(·) denotes the inverse FFT, and (·) is the complex
conjugate operator. The division is performed element-wise.

3.2 Step Two

In the second step, to refine the PSF estimate, the iterative
support detection (ISD) method in [4] is adopted to apply
only on the highest resolution, instead of in a multi-scale
framework used in step one. ISD is an iterative method,
whose idea is to iteratively retain the large value elements
in the PSF by relaxing the regularization penalty. In each it-
eration, previously estimated PSF elements are divided two
sets: elements that are greater than one threshold εi are put
into a set S i+1 and all other belong to the set S i+1. The
εi is determined by applying the “first significant jump”
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rule. We sort all elements of PSF in an ascending order to
form a vector ko (ko[ j] denotes the jth largest component
of ko). εi = koi

[s j], where s j = min j{koi
[ j+1] − koi

[ j] > τ
i},

τi = ||koi||∞/(2p · i), p is the PSF width. A refined PSF is
gotten by solving

min
k

1
2
||Ak − bd ||2 +

∑
j∈S i+1

|k j| (11)

where A is gotten by writing convolution as matrix. The
solution of (11) could be gotten by solving[

ATA + diag(vSΨ
−1)
]

kt = ATbd (12)

where vS is the vector form of S , Ψ is defined as Ψ =

max(|kt−1|, 1e−5), which is the weight related to the PSF es-
timate from the previous iteration. diag(·) produces a diago-
nal matrix from the input vector.

4. Non-Blind Deblurring

Finally, one NBD algorithm based on TVl1 model is em-
ployed to recover the latent image. Given the finally esti-
mated PSF and blurred image, the latent image can be com-
puted from the following model:

min
l

⎧⎪⎪⎨⎪⎪⎩||Kl − b||1 + ξ
∑

i

||Gil||1
⎫⎪⎪⎬⎪⎪⎭ (13)

The efficient alternating minimization method in [5] is used
to solve (13) as follows. Two auxiliary variables v and wi

are introduced for each pixel, which are approximations of
(Kl−b) and Gil, respectively. Then the approximation model
to (13) is modified as

min
w,v,l

⎧⎪⎪⎨⎪⎪⎩
α

2
||Kl − b − v||22 + ||v||1 +

∑
i

ξ||wi||1 + β2 ||wi −Gil||22
⎫⎪⎪⎬⎪⎪⎭

(14)

As α → ∞, β → ∞ the solution to (14) converges to that
to (13). In the following experiments, the values of α0, β0

are set to 1, and αmax = βmax = 100. For a fixed l, wi =

max{||Gil||2 − ξ/α, 0}(Gil/||Gil||2), where the convention 0 ·
(0/0) = 0 is followed, and the minimization with respect to
v is given by v = max{|Kl − b| − β−1, 0} ◦ sgn(Kl − b). All
operations are done element-wise. On the other hand, for
fixed w and v, the minimization with respect to l is a least
squared problem, which can be solved in spectral domain
similar to (8).

5. Experiment

In our experiments, the initial values of τr and τs are adap-
tively set like the manner in [3]. In coefficient set estimation,
the value of γ is set to 2e−4, and that of η is set to 2e−3. The
number of Gaussian kernels is decided by the size of the
PSF in each scale, and the variance of each Gaussian ker-
nel is set to 0.9. In the final Non-blind image deblurring, ξ

Fig. 1 Set of images (Fig. 1 a) and PSFs (Fig. 1 b) used for synthetic ex-
periment.

Table 1 PSNR comparison.

Fig. 2 Visual comparison on synthetic image (Fig. 2 a: Blurred image
and ground truth PSF. Fig. 2 b–e: Deblurred results and estimated PSFs of
methods in [1]–[3] and proposed method).

is set to 2e−2. The proposed method is compared to other
state-of-the-art methods in [1], [2] and [3], wherein the au-
thors’ implementations are adopted. For fairness, we make
our best to adjust the parameter of the above three methods,
but run all test images with equal parameters. In synthetic
experiment, 48 synthetic blurred images are obtained using
the 6 original images and the 8 PSFs provided in [6], as
shown in Fig. 1.

The average peak signal-to-noise ratios (PSNRs) of the
deblurred images obtained by different methods are shown
in Table 1. The best results for each PSF are shown in
bold. Table 1 clearly indicates that the proposed method
outperforms the methods of [1] and [2]. The method in [3]
only outperforms ours in the images produced with PSF #4
and #7. Figure 2 a shows one sample from the 48 blurred
images used in this experiment, and the experimental re-
sults are compared in Fig. 2 b–e. The deblurred result of the
proposed, as shown in Fig. 2 e, has more details and sharp
edges.

We also compare the proposed method to the three
methods mentioned above on real-life photograph provided
in [7], as shown in Fig. 3 a. Figure 3 b is the close-up of a
region marked as a red rectangle in Fig. 3 a. The close-ups
in Fig. 3 c–f illustrate that the proposed method preserves
more image details, meanwhile produces less ringing arte-
facts near edges in comparison to others. In Fig. 3 c–f, the
estimated PSFs are depicted in the top left corners. It shows
that PSF estimation plays a vital role in deblurring perfor-
mance.

Once again, experimental results on synthetic and real-
life blurred images validate that the proposed model can
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Fig. 3 Visual comparison on real-life photograph (Fig. 3 a: Real-life
photograph. Fig. 3 b: Close-up of a region marked as red rectangle in
Fig. 3 a. Fig. 3 c–f: Close-ups and estimated PSFs of methods in [1]–[3]
and proposed method).

more accurately approximate the really blurring process, as
analyzed previously.

6. Conclusion

A blind image deblurring method is proposed, wherein the
PSF is represented using weighted sum of Gaussian ker-
nels, and the coefficient set is estimated in the space domain,
which can improve the accuracy of the PSF estimation. De-
blurring results on some synthetic and real-life blurred im-
ages show satisfactory performance of the proposed method.
However, deblurring experiments with very large blurring
kernels is not performed since the coefficient set’s estima-
tion process in space domain is computationally intensive,
whereas the method in [3] could deal with very large blur-
ring kernels since the estimation of the PSF was performed

in frequency domain, and extending our deblurring method
in similar manner to surmount the above limitation will be
part of our future work.
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