
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.12 DECEMBER 2015
2317

LETTER

Application Prefetcher Design Using both I/O Reordering and I/O
Interleaving∗

Yongsoo JOO†, Member, Sangsoo PARK††a), and Hyokyung BAHN††, Nonmembers

SUMMARY Application prefetchers improve application launch per-
formance on HDDs through either I/O reordering or I/O interleaving, but
there has been no proposal to combine the two techniques. We present a
new algorithm to combine both approaches, and demonstrate that it reduces
cold start launch time by 50%.
key words: I/O reordering, I/O interleaving, application prefetching

1. Introduction

Modern operating systems (OSes) use a demand paging sys-
tem to efficiently manage limited main memory shared by
user applications. However, it does not perform well when
launching an application in a “cold start” situation (i.e., none
of its launch data blocks are hit in the OS page cache). In
particular, it typically generates a non-sequential read ac-
cesses from hundreds of files on a hard disk drive (HDD),
leading to poor disk throughput. Furthermore, a CPU is fre-
quently blocked while waiting for disk I/O completion.

This launch inefficiency can be largely mitigated by
adopting solid state drives (SSDs), but there are still many
systems that cannot afford the high cost per bit of SSDs,
such as set-top boxes, video game consoles, and low-cost
laptop or desktop PCs. Hence, optimization techniques that
improve application launch performance on HDDs will re-
main useful until HDDs totally disappear from the market.

Application prefetching is a representative technique
to mitigate the launch inefficiency. Once an application
accesses a set of data blocks in a particular order dur-
ing a launch, it is highly likely to access almost the same
set of data blocks in almost the same order in the next
launches [1]–[3]. Such an I/O sequence is called an applica-
tion launch sequence in recent work [2]. The deterministic
launch behavior of applications allows application prefetch-
ers to predict with high accuracy what data block will be
requested next. I/O Reordering and I/O interleaving are the
two key techniques behind the application prefetchers.

Suppose an application launch sequence consists of 10

Manuscript received June 1, 2015.
Manuscript revised July 27, 2015.
Manuscript publicized August 20, 2015.
†The author is with the School of Computer Science, Kookmin

Univ., Korea.
††The authors are with the Dept. CSE, Ewha Womans Univ.,

Korea.
∗This research was supported by the National Research Foun-

dation of Korea Grant funded by the Korean Government (NRF-
2014S1A5B6037290) and MSIP (2011-0028825).

a) E-mail: sangsoo.park@ewha.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2015EDL8125

I/O requests, and their logical block addresses (LBAs) are
(10, 5, 9, 4, 8, 3, 7, 2, 6, 1) in the order of occurrence. Fig-
ure 1 (a) depicts the activity of a CPU and a HDD under
a cold start scenario with no prefetching, where each data
block is fetched from the HDD on demand, showing the in-
efficiency of the demand paging discussed above.

To mitigate the launch inefficiency, an “I/O reordering”
technique (Fig. 1 (b)) can be used [3]. First, a prefetcher ob-
tains an application launch sequence for each application by
monitoring what data blocks are fetched during launch time.
When the next launch is detected, it pauses the application,
reorders and fetches the launch data blocks specified in the
application launch sequence all at once, and then resumes
the application. In this way, it can effectively reduce disk
seek time as well as allow the application to launch without
experiencing a page fault.

FAST [2]—originally proposed for SSDs—is an alter-
native approach by overlapping CPU computation with I/O
accesses. This sort of “I/O interleaving” technique has been
studied for HDDs as well [4]. Figure 1 (c) shows that the
prefetcher runs in parallel with the application, fetching the
application launch sequence in its original order.

According to our best knowledge, there has been no
proposal to combine the two techniques, and thus we pro-
pose a new application prefetcher to take advantage of the
both. Its key idea is to segment an application launch se-
quence into multiple non-overlapping and contiguous sub-
sequences and reorder each subsequence in LBA order.

Figure 1 (d) shows our approach, where the example
sequence is split and sorted into (4, 5, 9, 10), (3, 7, 8), and
(1, 2, 6). Once (4, 5, 9, 10) has been fetched, the applica-

Fig. 1 CPU and disk usage of different launch methods. The number
in each box denotes an LBA, with the box width representing an average
processing time (not in scale).

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



2318
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.12 DECEMBER 2015

tion uses it to begin the launch process, while the prefetcher
fetches (3, 7, 8) in parallel. Likewise, the CPU computation
for (3, 7, 8) can be performed simultaneously with fetching
(1, 2, 6). Hence, CPU computation can be overlapped with
disk accesses, while still benefiting from I/O reordering.

As finding an optimal segmentation is the key for
our approach, we made the followiing contributions in this
work. First, we expressed the problem of finding an opti-
mal prefetching schedule as a sequence segmentation prob-
lem, and suggested its suboptimal version to make it more
tractable. Second, we proposed a novel algorithm that can
quickly find a solution to the suboptimal problem. Fi-
nally, we demonstrated that our method could increase both
CPU and disk utilization while effectively optimizing disk
access order, outperforming the state-of-the-art application
prefetching techniques.

2. Finding Optimal Segmentation

If we try a brute-force search to find the optimal segmenta-
tion for an application launch sequence consisting of n I/O
requests, we need to investigate 2(n−1) cases, as there are
n−1 possible breakpoints between the I/O requests. Since n
ranges from hundreds to thousands for typical applications,
it is not possible to examine all cases, and thus we decide to
take a heuristic approach.

To begin with, we make a set of observations. First, a
CPU should remain idle until fetching the first subsequence,
as shown in Fig. 1 (d), which may be regarded as a pre-
buffering phase. Likewise, a HDD is idle while the CPU
computation is in progress for the last subsequence, as there
is no more data block to be fetched. Second, an application
launch process is typically I/O bound on HDDs, meaning
that the time to fetch launch data from the HDD is greater
than the total CPU time. This implies that if the pre-buffer
size is too small, CPU usage will drop significantly due to
excessive page faults. On the other hand, if it is too large,
disk usage will drop to 0% before launch completion (e.g.,
Fig. 1 (b) shows an extreme case).

These observations lead us to speculate that a desir-
able segmentation would have a balanced pre-buffer size
such that: (1) the CPU will maintain 100% utilization ex-
cept for the pre-buffering phase; (2) the HDD will maintain
100% utilization except for the CPU time for the last subse-
quence; and (3) the size of the last subsequence would de-
sirably be as small as possible to maximize disk utilization
during launch time. Based on the speculation, we formulate
a suboptimal version of the original problem, expecting that
it could significantly reduce a solution space without much
loss of optimality.

Problem 1: Given an application launch sequence P =
(p1, . . . , pn), find a segmentation that splits P into multi-
ple non-overlapping and continuous subsequences such that
after fetching the first subsequence, CPU and HDD usage
stays at 100% except for the computation of pn.

Here pi is a three-tuple of values (starting LBA ai, size si,

CPU time ci).

3. Proposed Segmentation Method

We propose a novel method that can quickly find the solu-
tion to Problem 1 while not degrading the solution quality.
The key idea is to traverse an application launch sequence
in a reverse direction, taking subsequences one by one from
the tail while satisfying the CPU and disk usage constraints
of Problem 1.

Algorithm 1 describes how P is segmented into m sub-
sequences Q = (qm, qm−1, . . . , q1). A subsequence qi is ex-
pressed as qi = (pki+1, . . . , pki−1 ), where ki < ki−1, km = 0,
and k0 = n. We use Figs. 2 (a)–(e) to explain how Algo-
rithm 1 splits (p1, . . . , p24) into five subsequences. First,
in Fig. 2 (a), a seed subsequence q1 is set to (p24) accord-
ing to the constraint of Problem 1. Next, in Fig. 2 (b),
DISK ACCESS() is called to measure the time t1 to fetch p24

from a HDD. The CPU time is then accumulated from c23

to c21 until it equals or exceeds t1, and thereby the next sub-
sequence q2 is determined to be (p21, p22, p23). In Fig. 2 (c),
q̂2 = (p21, p23, p22), which is the sorted version of q2, is fed
into DISK ACCESS() to obtain t2, which is used again to deter-
mine q3 = (p15, . . . , p20). The same procedure is repeated to
obtain q4 = (p5, . . . , p14), and q5 = (p1, . . . , p4), as shown in
Figs. 2 (d) and (e). Note that in Fig. 2 (d), the value of

∑14
i=5 ci

does not exactly match t3, causing a disk usage drop. Other
than the drop, the CPU and disk utilization are maintained
100% in the time periods t1, t2, and t3, but not for t4, which
is unavoidable because there is no more I/O request to fill t4.

Line 12 of Algorithm 1 calculates the expected launch
time texp with the obtained subsequences. The first two
terms are the time to fetch the first two subsequences, and
the third term is the accumulated CPU time except for the
first subsequence (e.g., t5 + t4 +

∑24
i=5 ci in Fig. 2 (f)).

Algorithm 1 Sequence segmentation algorithm
1: procedure Segment(P = (p1, . . . , pn))
2: i = 0; k1 = n − 1; q1 = (pn)
3: repeat
4: i = i + 1
5: q̂i = SORT(qi) // sort qi in LBA order
6: ti = DISK ACCESS(q̂i) // ti: the measured time to fetch q̂i

from a disk
7: ki+1 = GET NEXT SUBSEQENCE(ki, ti)
8: qi+1 = (pki+1+1, . . . , pki )
9: until ki+1 = 0 // i.e., qi+1 = (p1, . . . , pki )

10: m = i + 1 // m: the total number of subsequences
11: q̂m = SORT(qm); tm = DISK ACCESS(q̂m)
12: texp = tm + tm−1 +

∑n
j=(km−1+1) c j

13: return Q = (qm, . . . , q1) and texp

14: end procedure
15: function get next subsequence(ki, ti)
16: ki+1 = ki

17: repeat
18: ki+1 = ki+1 − 1
19: until

∑ki
j=ki+1+1 c j ≥ ti or ki+1 = 0

20: return ki+1

21: end function



LETTER
2319

Fig. 2 Segmenting P = (p1, . . . , p24) into Q = (q5, . . . , q1). (a) A seed subsequence q1 is taken from
P. (b)–(e) Algorithm 1 takes four iterations to obtain q2, q3, q4, and q5. (f) Calculation of texp.

The running time of Algorithm 1 is mostly determined
by SORT(), GET NEXT SUBSEQUENCE(), and DISK ACCESS().
The complexity of the first two functions are O(n log n)
and O(n), respectively, and their input size n typically does
not exceed 2000 for most applications. Their execution
time is thus negligible compared to that of DISK ACCESS()
that makes access to a HDD. When running Algorithm 1,
DISK ACCESS() is called m times, once for each of m sub-
sequences with each subsequence sorted by LBA. Conse-
quently, the execution time of Algorithm 1 becomes close to
texp.

4. Performance Evaluation

Emulation platform. For rapid prototyping of application
prefetchers, we developed an emulation platform running on
the Linux OS. The platform supports flexible priority adjust-
ment between applications and prefetchers, enabling conve-
nient switching between prefetching methods. It allows ap-
plication prefetchers to bypass the file system and the block
layer of the host OS, having a full control of issuing block
I/O requests as they intend. To support this, a target HDD
is opened as a block device using open() with “O DIRECT”
flag. It emulates all kernel-level I/O optimizations such as
buffered I/O, I/O merging, and I/O reordering that are per-
formed by the Linux block layer functions, which is achiev-
able by profiling application launch sequences between the
Linux block layer and the device driver.

The platform runs on a real HDD to provide accurate
and realistic measurements of I/O latency, which is in con-
trast to disk simulation tools [5] that rely on an analytic per-
formance model of HDDs. It reports application launch time
by monitoring when the CPU computation for cn is finished.
Although the platform does not support NCQ (native com-
mand queueing), it does not degrade much the accuracy of
evaluating application launch performance where blocking
read requests dominate (i.e., effective queue depth seldom
exceeds 2 or more).

Experimental setup. We installed Ubuntu 12.04.2 LTS
with an EXT4 file system on a clean Intel machine equipped
with i5-3470 CPU, 16 GB of main memory, and a 2 TB 7200
RPM HDD (WD2002FAEX). We then installed 12 Linux
applications, and captured their I/O sequences during launch
time using blktracewhen the machine is idle (i.e., not run-
ning other user applications). We trimmed the trace assum-
ing a launch process completes if the HDD is idle for 1.0s
or more. We then post-processed the obtained traces as ex-
plained in Sect. 3 to get application launch sequences.
Launch time measurement. We captured 11 different ap-
plication launch sequences for each test application, using
one for the prefetcher input and the others for emulating its
10 different launches. We measured application launch time
for four different launch methods: (1) a cold start, (2) I/O in-
terleaving, (3) I/O reordering, and (4) the proposed method.
Figure 3 shows the average launch time of the ten indi-
vidual launches for each application, together with the av-
erage prefetcher miss rate. The proposed method reduces
launch time by 39% to 66%, outperforming the I/O reorder-
ing method for every application. In particular, it takes 63.5s
to launch all applications, corresponding to a 22% improve-
ment from the I/O reordering method.
CPU and disk usage profiling. To observe how the base-
line methods and the proposed prefetcher behave differ-
ently during launch time, we monitored CPU and disk us-
age along with LBAs. Figure 4 (a) shows the typical behav-
ior of the demand paging system mentioned in Sect. 1: (1) a
non-sequential disk access pattern is observed for the entire
launch time period; and (2) when the disk usage is high, the
CPU usage becomes low. Figures 4 (b) and (c) also show
that the two conventional prefetching techniques perform as
expected in accordance with Fig 1.

Figure 4 (d) shows the behavior of the proposed
prefetcher, where the application launch sequence is split
into 6 subsequences, of which the sizes are 672, 1919, 550,
463, 30, and 1. The CPU and disk usage remains high dur-
ing the time interval of 3.3s to 5.6s (i.e., fetching the third to



2320
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.12 DECEMBER 2015

Fig. 3 Launch performance of different prefetching methods (the left y-axis is normalized to cold
start time, and the error bars represent the minimum and maximum values).

Fig. 4 CPU and disk usage with normalized LBAs (application: Xilinx ISE, sampling period: 1 ms).
(a) Cold start. (b) I/O interleaving. (c) I/O reordering. (d) Proposed.

the last subsequences), but there appear a small amount of
disk idle periods.
Estimation accuracy. We obtained application launch se-
quences, one for each of 12 applications, and ran Algo-
rithm 1 to get segmented launch sequences with their ex-
pected launch time texp. We then ran the proposed prefetcher
with the segmented sequences to compare the resulting
launch time with texp. The reported estimation error of Al-
gorithm 1 ranges from −3% to 29% (7% on average).
Time and space overhead. The total execution time of Al-
gorithm 1 for all 12 applications was 50.7s, while the sum of
texp values calculated by Algorithm 1 was 54.0s, which co-
incides with the discussion of Sect. 3. When the algorithm
is deployed in a real system, this overhead can be effectively
hidden by running it when the system is idle. The total size
of the application launch sequences and their segmented ver-
sions for 12 applications were 1.9 MB, which can be further
reduced by using a binary format instead of a text format.

5. Conclusion and Future Work

We presented a novel application prefetching technique that
can exploit both I/O reordering and I/O interleaving, and
demonstrated that it outperforms the state-of-the-art applica-
tion prefetchers. As our method performs analysis on the fly
on a real disk rather than relying on a pre-analyzed disk per-
formance model, it is immediately applicable to any model

of HDD. Our future work includes the following. First, we
will combine our approach with disk layout modification
methods [1], [6], which can effectively overcome the poor
I/O performance due to a non-sequential disk access pat-
tern. Second, although we used LBA as the sort key for
the I/O reordering method, which is shown to be effective
in many literatures [7], [8], we may further optimize appli-
cation launch performance by using more sophisticated disk
scheduling policies, such as SSTF [8].

References

[1] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R.
Rangaswami, and V. Hristidis, “BORG: Block-reORGanization for
self-optimizing storage systems,” Proc. FAST, pp.183–196, 2009.

[2] Y. Joo, J. Ryu, S. Park, and K.G. Shin, “FAST: Quick application
launch on solid-state drives,” Proc. FAST, pp.259–272, 2011.

[3] M.E. Russinovich and D. Solomon, Microsoft Windows Internals, 4th
ed., pp.458–462, Microsoft Press, 2004.

[4] Z. Li, Z. Chen, S.M. Srinivasan, and Y. Zhou, “C-Miner: Min-
ing block correlations in storage systems,” Proc. FAST, pp.173–186,
2004.

[5] J.S. Bucy and G.R. Ganger, “The DiskSim simulation environment
version 3.0 reference manual,” Tech. Rep. CMU-CS-03-102, Depart-
ment of Computer Science, Carnegie-Mellon University, Jan. 2003.

[6] H. Huang, W. Hung, and K.G. Shin, “FS2: Dynamic data replication
in free disk space for improving disk performance and energy con-
sumption,” Proc. Twentieth ACM Symposium on Operating Systems
Principles, SOSP ’05, pp.263–276, 2005.

[7] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “DiskSeen: Ex-

http://dx.doi.org/10.1145/1095810.1095836


LETTER
2321

ploiting disk layout and access history to enhance I/O prefetch,” Proc.
USENIX ATC, pp.261–274, 2007.

[8] B.L. Worthington, G.R. Ganger, and Y.N. Patt, “Scheduling algo-
rithms for modern disk drives,” Proc. ACM SIGMETRICS Perfor-
mance Evaluation Review, vol.22, no.1, pp.241–251, 1994.

http://dx.doi.org/10.1145/183019.183045

