
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015
2013

LETTER

A New Connected-Component Labeling Algorithm∗

Xiao ZHAO†, Nonmember, Lifeng HE†,††a), Member, Bin YAO†, and Yuyan CHAO†††, Nonmembers

SUMMARY This paper presents a new connected component labeling
algorithm. The proposed algorithm scans image lines every three lines and
processes pixels three by three. When processing the current three pixels,
we also utilize the information obtained before to reduce the repeated work
for checking pixels in the mask. Experimental results demonstrated that our
method is more efficient than the fastest conventional labeling algorithm.
key words: connected component, labeling, pattern recognition, image
analysis

1. Introduction

Connected-component labeling in a binary image assigns
all pixels belonging to each connected component (each ob-
ject) with a unique label. By connected-component labeling,
we can distinguish the difference objects in the image and
then further extract the features of those objects. Therefore,
connected-component labeling is indispensible for pattern
recognition, pattern analysis, computer (robot) vision, and
machine intelligence [1].

Many algorithms have been proposed for addressing
this problem [2]–[8]. The fast connected-component label-
ing algorithm, FCL algorithm for short, proposed in [4] is a
famous one. This algorithm was improved in [6] by utilizing
the information obtained before for processing the current
pixels. For convenience, we call this algorithm the IFCL
algorithm.

The IFCL algorithm was further improved in [8], which
is a configuration-transition-based one. This algorithm
scans alternate image lines, processes pixels two by two, and
also utilizes the information obtained before for processing
the current pixels. This algorithm is the most efficient la-

Manuscript received June 15, 2015.
Manuscript revised July 24, 2015.
Manuscript publicized August 5, 2015.
†The authors are with Artificial Intelligence Institute, College

of Electrical and Information Engineering, Shaanxi University of
Science and Technology, Xi’an, Shaanxi 710021, China.
††The author is with Graduate School of Information Science

and Technology, Aichi Prefectural University, Nagakute-shi, 480–
1198 Japan.
†††The author is with Graduate School of Environment Manage-

ment, Nagoya Sangyo University, Owariasahi-shi, 488–8711 Japan.
∗This work was supported in part by the Grant-in-Aid for the

National Natural Science Foundation of China under Grant No.
61471227, the Scientific Research (C) of the Ministry of Edu-
cation, Science, Sports and Culture of Japan under Grant No.
26330200, and the Scientific Research of Shaanxi Province of
China under Grant No. 2014K11-02-01-13.

a) E-mail: helifeng@ist.aichi-pu.ac.jp (Corresponding author)
DOI: 10.1587/transinf.2015EDL8135

beling algorithm up to now. For convenience, we call this
algorithm the CTB algorithm.

This paper presents an improvement of the CTB al-
gorithm. The proposed algorithm scans image lines every
three lines, processes pixels three by three, and also utilizes
the information obtained before for processing the current
pixels. In this way, the number of times needed to check
the neighbor pixels for processing a pixel can be further re-
duced; thus, the efficiency of labeling can be improved. Ex-
perimental results demonstrated that the proposed algorithm
is more efficient than the CTB algorithm.

2. Reviews of the CTB Algorithm

The CTB algorithm proposed in [8] is a label-equivalence-
based two-scan algorithm. In the first scan, it assigns each
object pixel a provisional label. At any time, all provisional
labels assigned to each object are recorded as equivalent la-
bels by use of an equivalent label set. For each equivalent
label set, the smallest label in the set is denoted as the rep-
resentative label. For convenience, the representative label
of label s is represented by R[s]; an equivalent label set with
the representative label w is denoted as S (w) (thus, for any
t ∈ S (w), R[t] = w). Whenever two provisional labels u
and v, where u ∈ S (m) and v ∈ S (n) respectively, are found
to be equivalent (i.e., belong to the same connected compo-
nent) in the processing, we know that all labels in S (m) and
S (n) should be equivalent (belong to the same connected
component), thus, the two equivalent label sets should be
combined, i.e., S (r) = S (m) ∪ S (n), where r is the smaller
one of m and n.

After the first scan, all equivalent labels assigned to an
object will be combined in the same equivalent label set with
a unique representative label. Then, in the second scan, by
replacing each label with its representative label, all pixels
of each object will be assigned a unique label.

As introduced above, the CTB algorithm scans image
lines alternate lines, and processes pixels two by two. The
mask used in the CTB algorithm is shown in Fig. 1. For pro-

Fig. 1 Mask used in the CTB algorithm.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



2014
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

Fig. 2 Configurations of the mask and the two current pixels a and b.

Fig. 3 Mask used in our algorithm.

cessing the current pixels a and b, the CTB algorithm con-
siders the nine configurations shown in Fig. 2, where mean-
ingless pixels means that they will not be used for process-
ing the current pixels.

For example, for the configuration Cd, where a is an
object pixel, b is either, n4 is an object pixel, n2 and n3
are unknown pixels, and n1 and n5 are meaningless whether
they are, it is processed as follows.

(1) The current pixel a is assigned the label of pixel n4,
and if pixel b is a foreground pixel, it can also be assigned
the same label;

(2) If n2 is an object pixel, nothing else needs to be
done, the configuration will transmit to one of Ca, Cd, and
Cg, according to the next two pixels to be processed;

(3) Else if n3 is an object pixel, then n4 and n3 are
connected by a, it resolves the label equivalence between
the label of n4 and that of n3, and the configuration will
transmit to one of Ca, Ce, and Cg, according to the next two
pixels to be processed;

(4) Else, nothing needs to be done, the configuration
will transmit to one of Ca, Cf, and Cg, according to the next
two pixels to be processed;

Other configurations can be analyzed in a similar way.
Obviously, when a pixel in the mask is checked, the pixel
will not be checked again when processing the next two pix-
els.

3. Our Proposed Algorithm

We extend the CTB algorithm by processing image lines ev-
ery three lines. The mask used in our proposed algorithm is
shown in Fig. 3.

Because any pixel is either a foreground pixel or a
background pixel, there are eight cases for the three current
pixels p1, p2 and p3. Moreover, in the case where p2 is a
foreground pixel, similar in the CTB algorithm, if p3 is a

Fig. 4 Six cases needed to be considered for the three current pixels p1,
p2 and p3.

Fig. 5 Configurations of the mask and the three current pixels p1,
p2 and p3.

foreground pixel, we only need to assign the label of p2 to
it, and otherwise nothing needs to be done. Therefore, we
only need to consider six cases, as shown in Fig. 4.

On the other hand, because the three current pixels p1,
p2 and p3 will become the three pixels l1, l2, and l3 when
processing the next three pixels, the states of l1, l2, and l3
must be one of states shown in Fig. 4. Moreover, (1) when
processing l1, l2, and l3, r3 did not occur in the correspond-
ing mask, therefore, it is an unknown pixel when processing
p1, p2, and p3; (2) if l1 is a foreground pixel, then what r1 is
does not influence the labeling result, thus, r1 is a meaning-
less pixel; (3) if p1 is a background pixel, then we will not
go to check r3, similarly, if l1 is a background pixel, when
processing p1, p2, and p3, r2 will be an unknown pixel;
(4) for other cases, each of r1 and r2 could be an unknown
pixel, a foreground pixel or a background pixel.

According to the above analysis, we can conclude
the 16 configurations for the mask, as shown in Fig. 5
For convenience, hereafter we use a shorthand notation,
{r1, r2, r3, l1, l2, l3}, to denote a configuration of the mask.
Moreover, we use b to denote a background pixel, f for a
foreground pixel, – for a meaningless pixel, and ? for an
uncertain pixel. Thus, for example, the configuration C2 in
Fig. 5 can be represented by {–, ?, ?, f , f , –}.

The processing for the configuration C2, for example,
can be made according to the combination of the three cur-
rent pixels as follows:

(1) For the case K1, nothing needs to be done. The con-



LETTER
2015

figuration will transit to configuration {?, ?, ?, b, b, b}, i.e.,
C1;

(2) For the case K2, where p1 and p2 are connected to
l1 and l2, we assign the label assigned to l1 or l2 to p1 and
p2, and if p3 is an object pixel, we assign the same label to
it. Moreover, if r2 is an object pixel, nothing else needs to be
done. The configuration will transit to either { f , ?, ?, f , f , f }
or { f , ?, ?, f , f , b}, both are an instance of {–, ?, ?, f , f , –}, i.e.,
C2; otherwise, if r2 is a background pixel and r3 is an ob-
ject pixel, then the object pixel l1 is connected to r3 by
p1, thus, the label assigned to l1 and that assigned to r3
are equivalent labels. We resolve the label equivalence be-
tween the two labels. The configuration will transmit to ei-
ther {b, f , ?, f , f , f } or {b, f , ?, f , f , b}, both are an instance
of {–, f , ?, f , f , –}, i.e., C4; lastly, if both r2 and r3 are back-
ground pixels, nothing else needs to be done. The configura-
tion will transmit to either {b, b, ?, f , f , f } or {b, b, ?, f , f , b},
both are an instance of {–, b, ?, f , f , –}, i.e., C3.

(3) For the case K3, where p1 and p3 are connected
by l2, we assign the label assigned to l2 to p1 and p3. If
r2 is an object pixel, nothing else needs to be done. The
configuration will transit to { f , ?, ?, f , b, f }, an instance of
{–, ?, ?, f , b, f }, i.e., C5; else if r2 is a background pixel and
r3 is an object pixel, then the object pixel l1 is connected to
r3 by p1, thus, the label assigned to l1 and that assigned to
r3 are equivalent labels. We resolve the label equivalence
between the two labels. Then, the configuration will trans-
mit to {b, f , ?, f , b, f }, an instance of {–, f , ?, f , b, f }, i.e.,
C7; lastly, if both r2 and r3 are background pixels, noth-
ing else needs to be done, and the configuration will transit
to {b, b, ?, f , b, f }, an instance of {–, b, ?, f , b, f }, i.e., C6.

(4) For the case K4, we assign the label assigned to l1
to p1. If r2 is an object pixel, nothing else needs to be done.
The configuration will transit to { f , ?, ?, f , b, b}, an instance
of {–, ?, ?, f , b, b}, i.e., C8; else if r2 is a background pixel
and r3 is an object pixel, then the object pixel l1 is connected
to r3 by p1, thus, the label assigned to l1 and that assigned
to r3 are equivalent labels. We resolve the label equivalence
between the two labels. Then, the configuration will trans-
mit to the {b, f , ?, f , b, b}, an instance of {–, f , ?, f , b, b}, i.e.,
C10; lastly, if both r2 and r3 are background pixels, nothing
else needs to be done, and the configuration will transit to
{b, b, ?, f , b, b}, an instance of {–, b, ?, f , b, f }, i.e., C9.

(5) For the case K5, we assign the label assigned to l2
to p2. If p3 is an object pixel, we assign the same label to
it. The configuration will transit to either {?, ?, ?, b, f , f } or
{?, ?, ?, b, f , b}, both are an instance of {?, ?, ?, b, f , –}, i.e.,
C11.

(6) For the case K6, we assign the label assigned to l2
to p3. The configuration will transit to {?, ?, ?, b, b, f }, i.e.,
C14.

According to the above analysis, after processing, the
configuration C2 will transmit to one of the configurations
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, and C14.

Other configurations shown in Fig. 5 can be analyzed
in a similar way. The next configurations to which a config-
uration may transmit are shown in Table 1.

Table 1 Configuration transition relationship.

4. Experimental Results

In this section, we compared our proposed algorithm with
the IFCL algorithm and the CTB algorithm. Our proposed
algorithm was implemented in a similar way as the CTB
algorithm introduced in [8], and the codes of the IFCL al-
gorithm and the CTB algorithm were provided by their au-
thors.

All experiments were performed on a PC-based work-
station (Intel Core i5-3470 CPU@3.20GHz, 4GB Memory,
Ubuntu Linux OS). The three algorithms were implemented
in C language and compiled by the GNU C compiler (ver-
sion 4.2.3) with the option –O3. All experimental results
presented in this section were obtained by averaging of the
execution time for 5000 runs. Moreover, the labeling re-
sults for all image obtained by any algorithm are exactly the
same.

Four types of images are used for testing in our experi-
ment: artificial images, natural images, texture images, and
medical images.

Artificial images contain specialized patterns (stair-
like, spiral-like, saw-tooth-like, checker-board-like, and
honeycomb-like connected components) and noise images.
The dataset of noise images was downloaded from [8]. The
size of the noise images is 1024 × 1024. There are nine dif-
ferent foreground densities (from 0.1 to 0.9), and ten images
for each density (thus, 90 images in total).

Natural images, including landscape, aerial, finger-
print, portrait, still-life, snapshot, and text images, were ob-
tained from the Standard Image Database (SIDBA) devel-
oped by the University of Tokyo [9] and the image database
of the University of Southern California [10], there are 50
images in this type of images were used for realistic test-
ing of labeling algorithms. In addition, seven texture im-
ages downloaded from the Columbia-Utrecht Reflectance
and Texture Database [11], and 25 medical images obtained
from a medical image database of the University of Chicago,
were used for testing. Images in these three types were
512 × 512 pixels in size, and they were transformed into
binary images using Otsu’s threshold selection method in
[12].

4.1 Execution Time versus the Densities of Images

Noise images with a size of 1024 × 1024 pixels were used
for testing the execution time versus the density of the fore-
ground pixels in an image. The results are shown in Fig. 6,



2016
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

Fig. 6 Execution time (ms) versus the density of foreground pixels in
noise images.

Table 2 Various execution times (ms) for various types of images.

where the value for each density is the average execution
time on the ten images with the density. For all density im-
ages, the CTB algorithm is faster than the IFCL algorithm,
and our proposed algorithm is fastest.

4.2 Comparisons in Terms of the Maximum, Average, and
Minimum Execution Times

Natural images, medical images, texture images, and arti-
ficial images with specialized shape patterns were used for
this test. The results of the comparisons are shown in Ta-
ble 2. From Table 2, we find that, for all types of images,
the CTB algorithm is faster than the IFCL algorithm, and
our proposed algorithm is still fastest.

5. Conclusion

In this paper, we extended the CTB algorithm by scanning
images lines every three lines and processing pixels three by
three. In our proposed algorithm, the information obtained
during processing the current three pixels will be used to
process the next three pixels. Thus, it can reduce the re-
peated work for checking pixels in the mask. Experimen-
tal results demonstrated that our algorithm outperformed the
CTB algorithm.

However, in comparison to the length of the code of
the IFCL algorithm, which is about 50 lines, and the CTB
algorithm, which is about 250 lines, the length of the code
of our proposed algorithm is about 1300 lines.

Our proposed algorithm can be further extended by
scanning image lines every four lines, and processing pix-
els four by four. However, because the cases that should
be considered will also greatly increase, the length of the
code for the algorithm might exceed 5000 lines. We can see
from Fig. 6 and Table 2 that the CTB algorithm improves the
IFCL algorithm a lot, but our proposed algorithm does not
improve the CTB algorithm so much. Therefore, it might
not be possible, in practice, to further improve our proposed
algorithm.

Acknowledgements

We thank the anonymous referee for his/her valuable com-
ments that improved this paper greatly. We are grateful to
the associate editor, Prof. Hirano, for his kind cooperation.

References

[1] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison-
Wesley, Reading, MA, 1992.

[2] J. Trein, A.T. Schwarzbacher, and B. Hoppe, “FPGA implemen-
tation of a single pass real-time blob analysis using run length
encoding,” MPC-Workshop, pp.71–77, Ravensburg-Weingarten,
Germany, 2008.

[3] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling al-
gorithm,” IEEE Trans. Image Process., vol.17, no.5, pp.749–756,
2008.

[4] L. He, Y. Chao, K. Suzuki, and K. Wu “Fast connected-component
labeling,” Pattern Recognit., vol.42, no.9, pp.1977–1987, 2009.

[5] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Anal. Appl., vol.12, no.2,
pp.117–135, 2009.

[6] L. He, Y. Chao, and K. Suzuki, “An efficient first-scan method for
label-equivalence-based labeling algorithms,” Pattern Recognit.
Lett., vol.31, no.1, pp.28–35, 2010.

[7] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-based
connected components labeling with decision trees,” IEEE Trans.
Image Process., vol.19, no.6, pp.1596–1609, 2010.

[8] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-
transition-based connected-component labeling,” IEEE Trans. Im-
age Process., vol.23, no.2, pp.943–951, 2014.

[9] The Standard Image Database [Online]. Available: http://sampl.ece.
ohio-state.edu/data/stills/sidba/index.htm

[10] The Image Database of the University of Southern California [On-
line]. Available: http://sipi.usc.edu/database/

[11] The Columbia-Utrecht Reflectance and Texture Database [Online].
Available: http://www1.cs.columbia.edu/CAVE/software/curet/
index.php

[12] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst. Man Cybern., vol.9, no.1, pp.62–66, Jan. 1979.

http://dx.doi.org/10.1109/tip.2008.919369
http://dx.doi.org/10.1016/j.patcog.2008.10.013
http://dx.doi.org/10.1007/s10044-008-0109-y
http://dx.doi.org/10.1016/j.patrec.2009.08.012
http://dx.doi.org/10.1109/tip.2010.2044963
http://dx.doi.org/10.1109/tip.2013.2289968
http://dx.doi.org/10.1109/tsmc.1979.4310076

