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Object Tracking with Embedded Deformable Parts in Dynamic
Conditional Random Fields∗

Suofei ZHANG†a), Zhixin SUN†, Xu CHENG††, Nonmembers, and Lin ZHOU††, Member

SUMMARY This work presents an object tracking framework which
is based on integration of Deformable Part based Models (DPMs) and Dy-
namic Conditional Random Fields (DCRF). In this framework, we propose
a DCRF based novel way to track an object and its details on multiple res-
olutions simultaneously. Meanwhile, we tackle drastic variations in target
appearance such as pose, view, scale and illumination changes with DPMs.
To embed DPMs into DCRF, we design specific temporal potential func-
tions between vertices by explicitly formulating deformation and partial
occlusion respectively. Furthermore, temporal transition functions between
mixture models bring higher robustness to perspective and pose changes.
To evaluate the efficacy of our proposed method, quantitative tests on six
challenging video sequences are conducted and the results are analyzed.
Experimental results indicate that the method effectively addresses serious
problems in object tracking and performs favorably against state-of-the-art
trackers.
key words: visual tracking, conditional random field, deformable part
based model, graph model

1. Introduction

In recent years, visual tracking algorithms have been exten-
sively deployed in various intelligent video surveillance sys-
tems. Such a system depends on an object tracking method
to trace the position, size and other related values of the tar-
get of interest in an efficient way. The resulting information
plays a critical role for higher level understanding of video
contents like in traffic surveillance, activity analysis, etc. Al-
though many state-of-the-art techniques for visual tracking
have been developed [1], it still remains a challenging task
for many reasons including viewpoint change, deformation,
partial occlusion and cluttered background, etc.

The objective of this study is to build an object track-
ing framework to handle aforementioned problems simulta-
neously. For deformation and viewpoint change, our work
is inspired by an essential intuition that object tracking by
human eyes actually follows the recognition of the target
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at the first glimpse. The leverage of massive experience in
this process brings abundant high-level auxiliary knowledge
to handle various problems in tracking. Thus we introduce
high performance object detection models, DPMs [2], [3],
into our object tracking framework. DPMs exploit His-
togram of Oriented Gradients (HOG) features on multiple
resolutions to describe object and its details. HOG fea-
tures can handle scale and illumination variation in practi-
cal scenes effectively. On top of that, DPMs consist of a
mixture of components to describe different poses and per-
spectives of target. Tracking target by object recognition
and detection methods has been proven as a promising way
by researchers [4], [5]. Differing from previous work, our
work attempts to introduce prior knowledge of target at the
beginning of tracking, while others focus on updating the
target model iteratively by on-line learning methods.

To embed DPMs into our tracking frameworks, we
treat DPMs as a mixture of star-shaped CRFs as components
corresponding to specific poses or views of object. For ev-
ery component, a DCRF [6] over consecutive frames is com-
posed to predict new position given the last tracking result
as prior knowledge. The vertex in this graph model cor-
responds to a deformable part of object. Pre-defined pair-
wise potential functions between vertices formulate spatial
and temporal deformation of object. Instead of calculating
energy of entire graph directly, we successfully restrict the
computation into each vertex separately by evaluating the
lower bound of energy at each site on current frame.

For partial occlusion in cluttered background, a se-
ries of solutions attempt a sparse representation of ob-
jects [7], [8] to track parts of target. Differing from these de-
composition based methods, our method explicitly describes
object as a root part with outline and terminal parts with
specific details. When a part is absent from sight, a logistic
regression based voting method allows other observed parts
still contribute to the final hypothesis as well.

Based on our previous work [9], the main contributions
of this work are threefold: (1) we propose some novel poten-
tial functions to embed high performance DPMs into DCRF
in an efficient way; (2) we propose temporal transition func-
tions between components of DPMs to prompt the robust-
ness and accuracy of our tracker; (3) we implement an un-
parameterized logistic regression based voting mechanism
to handle partial occlusion during tracking. Finally, experi-
ments on challenging video sequences prove the efficacy of
our proposed method.
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2. Proposed Tracking Framework

The main flow of our tracking framework is illustrated in
Fig. 1. Taking current frame as input to our system, HOG
feature over multiple resolutions is extracted from image.
Filtered by DPMs filter, a score of hypothesis that interest-
ing part appears at current location can be obtained on each
scale. Treated as unary vertex potential function in DCRF
framework, the score is regularized by our proposed pair-
wise potential functions, i.e., previous tracking results as
prior knowledge. On top of that, a logistic regression based
voting method is used to handle partial occlusion of object,
resulting the score of each component in DPMs. Finally, to
further prompt the robustness of our system, we propose a
component transition function here to re-score each compo-
nent.

2.1 Embedded DPMs in DCRF

DPMs have been proven as quite effective model to han-
dle challenging object detection tasks. Each component of
DPMs can be considered as a star-shaped CRF [10] with dy-
namic programming based deformation penalty as spatial
potential function on current frame. To utilize prior knowl-
edge from previous frames in predicting the status st(x) of
part x at t-th frame, we propose a novel temporal potential
function Vx(st+1(x)|st(y)) between corresponding parts over
frames to model the consistency between them.

Vx(st+1(x)|st(y)) = G(x − y;Σ) · δ(st+1(x), st(y))

+
1

1 + e−||vx−vy ||2 (1 − δ(st+1(x), st(y))). (1)

Here part x, y are connected parts on different frames,
δ(·) is the Kronecker delta function and || · || is the Euclid-
ian distance. If the part x is assumed to be observed at
last frame, a three-dimensional normalized Gaussian kernel
G(x−y;Σ) is adopted to measure the motions of object. Oth-
erwise if the part is assumed to be occluded, which means
the direct prior knowledge about current part from last frame
is absent, we keep the temporal connectivity with the differ-
ence between part deformation vx and vy instead.

Given spatial and temporal pairwise potential func-
tions, we can embed DPMs into DCRF and trace CRFs over
consecutive frames. Given observation o1:t+1, we can ap-
proximate the probability that component st+1 presents by
the lower bound of graph energy as

Fig. 1 The workflow of our proposed tracking framework.

∏
x∈X

exp

{[
Vx(ot+1(x)|st+1(x)) +

∑
y∈Nx

Vx,y(st+1(x), st+1(y))
]

·
∑
y∈Mx

∑
st(y)

Vx(st+1(x)|st(y)p(st(y)|o1:t(y)))

}
. (2)

Here Vx,y(·) is the spatial pairwise potential function
corresponding to deformation in DPMs, Nx means spatial
neighbors of x and Mx means temporal neighbors of x. Note
that the summation of unary potential Vx(ot+1(x)|st+1(x)) and
pairwise spatial potential Vx,y(·) in Eq. (2) corresponds to the
output of DPMs score on each vertex. Thus the approxi-
mation restricts the computation of p(st+1|o1:t+1) into each
vertex separately and implements a quite efficient tracking
framework based on outputs of DPMs.

2.2 Occlusion Handling

For partial occlusion problem, as shown in Fig. 1, a voting
method is implemented based on the vertex result in Eq. (2).
Assuming an object is partially occluded, instead of aggre-
gating the scores of all parts X = x0, . . . , xn as in Eq. (2), we
attempt to select an optimal subset X∗c = {xk, . . . , xl} from X
to maximize the mean of normalized scores of vertices as

ψ(X∗c ) = max
Xc

1
|Xc|
∑
j∈Xc

p′(s(x j)). (3)

where p′(s(x j)) is unparameterized logistic regression result
of vertex score in Eq. (2), |Xc| means the number of vertices
in set Xc. For generic object tracking tasks, a simple greedy
search strategy can be employed to add parts into Xc sequen-
tially. The voting method has also been proven empirically
as an efficient mechanism with acceptable results as in [11].

2.3 Component Transition

In our experiments we notice that simply taking position
of optimal component with highest score as tracking result
leads to frequent jitters among components. To prompt the
robustness of our system, we propose a component transi-
tion function to re-weight the score ψ(X∗ct+1

) of each compo-
nent and impose the consistency of component over frames.

φ(ct+1) = ψ(X∗ct+1
)
∑

ct

φ(ct)[α1δ(ct+1, ct)

+α2(1 − δ(ct+1, ct))] (4)

Here parameters α1, α2 are tuned according to specific
scene. This simple transition mechanism yields small but
noticeable improvement to the stability as well as accuracy
of our system.

3. Experimental Results

In this section, we progressively evaluate the performance
of our method with different configurations and compare
the final proposed tracker with existing trackers on vari-
ous tasks. In experiments, we initialize the algorithm with
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DPMs trained for PASCAL VOC 2009 [3], which contain
six components consisting of nine deformable parts. All ex-
periments are carried out in MATLAB with Intel Core i5
Duo 2.93GHz CPU environment. Since most of computa-
tion of our method is spent on HOG features extraction, we
implement an adaptive HOG feature extraction mechanism
as shown in Fig. 1. The mechanism depends on the scale of
previous results, only extracting related features in the pyra-
mid. Therefore the computational cost of our method de-
pends on the ratio of target size and background size rather
than absolute size of images in video sequence. For the ma-
jority of our experiments, the tracker can process one frame
in 0.4s. It is relatively much faster than detecting object with
DPMs directly (2.5 second per frame).

Fig. 2 Quantitative and qualitative evaluations of different methods on
“Woman” sequence: (a) performances of our method with different con-
figurations, (b) comparison of other leading methods and our proposed
method, (c) and (d) are tracking results of different methods at frame #147
and #217 respectively.

Fig. 4 Sample tracking results on different tasks.

First, we empirically analyze the influence of each pro-
posed mechanism according to tracking results on a chal-
lenging video sequence, the “Woman” sequence [12]. Here
four different configurations are taken into consideration:
detection by DPMs directly (DPM), detection by DPMs and
occlusion handling (DPM+OH), tracking by DCRF merely
with Gaussian kernel in Eq. (1) (DCRF), and tracking with
complete temporal potential function and component tran-
sition (Proposed). Since there is no tracking failure prob-
lem for detection methods, we follow the evaluation proto-
col proposed by [4] in Fig. 2 (a) with center errors.

It is easy to observe in Fig. 2 (a) that the proposed track-
ing method brings significant improvement to DPMs based
detection. Note that adding unparameterized occlusion han-
dling to DPMs directly actually leads to worse result. It
agrees with the illustration in Fig. 3. The voting method
helps observed parts to contribute as well as the whole en-
tirety of target, thus introducing extra noises into detection
results. However these noises can be filtered out by prior
knowledge in terms of temporal potentials in DCRF so that
more robust tracking results are ensured. On the other hand,
tracking with DCRF without occlusion handling achieved a
desirable result at the beginning of the sequence. However
the method failed to follow the target around frame #125,
where a long-term partial occlusion occurs, finally leading

Fig. 3 Resulting heat maps of different detection methods at frame #125
of “Woman” sequence. The red part represents higher possibility of hy-
pothesis that the target occurs at current position. (a) heat map of DPMs,
(b) heat map of DPMs with occlusion handling.
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Table 1 Average center error (pixels) for various methods.

Video Clip MIL VTD Frag SRPCA L1 proposed

Woman 122.4 186.6 92.6 120.2 - 14.9
Car 4 60.1 12.3 179.8 3.0 4.1 8.6
Car 11 43.5 27.1 63.9 2.3 33.3 2.4

Singer 1 15.2 4.1 22.0 4.7 4.6 4.2
David Indoor 16.1 13.6 76.7 9.2 7.6 49.8

Shaking 11.2 6.1 85.7 - 103.7 102.6
Average 44.8 41.6 86.8 27.9 30.7 30.4

to mitigated result.
We also show quantitative (Fig. 2 (b)) and qualitative

(Fig. 2(c-d)) comparison of various methods on “Woman”
sequence in Fig. 2. Here four representative tracking meth-
ods are considered, i.e., MIL [4], VTD [13], Frag [12], and
SRPCA [7]. It can be seen that due to serious partial occlu-
sion, the MIL and VTD trackers fail to trace target around
frame #147. Moreover, during frame #147 to #217, there ex-
ists an obvious size variation of target. Therefore the FRAG
and SRPCA trackers drift from target as well. DPMs based
method shows high robustness to practical challenges and is
the sole method which can trace target during the whole se-
quence. Note that the dashed rectangles (No CT) in Fig. 2(c-
d) represent tracking results of our method without compo-
nent transition mechanism described in Sect. 2.3. The jitters
occur here since another component with incorrect shape
obtains highest score at these frames. The component tran-
sition effectively imposes the component change between
frames and prompts the robustness of tracking.

Second, to evaluate the performance of our proposed
tracking framework, we compare various leading methods
on six tracking tasks. Here we further take L1 [14] tracker
into consideration. In Fig. 4, we illustrate some key results
of various methods on different sequences. One can see
that the proposed method simultaneously tackles challeng-
ing problems such as severe occlusion (Woman, Shaking),
perspective change (Woman, Singer 1), illumination varia-
tion (Car 11, Singer 1, Shaking) and scale variation (Car 4,
David Indoor, etc.). Note that for David Indoor and Shack-
ing sequences, our tracker attempts to trace entirety of hu-
man body rather than face as other trackers do. This is due
to the utilization of pedestrian model from DPMs.

We also list average center errors of various methods
in Table 1. The results of our tracker on David Indoor and
Shacking sequences are calculated by the distance from cen-
ter of our results to center of ground truth face data as well.
Although our proposed algorithm successfully traces target
during the whole entirety of video sequence as shown in
Fig. 4, the modification of criterion leads to mitigation of
statistical results. However, one can still see from the com-
parison of average results that our proposed method per-
forms favorably against other state-of-the-art trackers.

4. Conclusion

In this paper, a robust tracking approach is proposed by em-

bedding DPMs into DCRF. We employ high-performance
DPMs to model the appearance of object. By introducing
abundant prior knowledge into tracking, we can handle var-
ious challenging problems in practical scenes. Also, an oc-
clusion handling mechanism is proposed to be complemen-
tary to DPMs during tracking. Our proposed tracker repre-
sents promising efficacy and efficiency in different tracking
tasks.
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