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Learning a Similarity Constrained Discriminative Kernel
Dictionary from Concatenated Low-Rank Features for Action

Recognition

Shijian HUANG "™, Junyong YE™, Tongqing WANG', Li JIANG ", Changyuan XING ™", Nonmembers,

SUMMARY  Traditional low-rank feature lose the temporal informa-
tion among action sequence. To obtain the temporal information, we split
an action video into multiple action subsequences and concatenate all the
low-rank features of subsequences according to their time order. Then we
recognize actions by learning a novel dictionary model from concatenated
low-rank features. However, traditional dictionary learning models usu-
ally neglect the similarity among the coding coefficients and have bad per-
formance in dealing with non-linearly separable data. To overcome these
shortcomings, we present a novel similarity constrained discriminative ker-
nel dictionary learning for action recognition. The effectiveness of the pro-
posed method is verified on three benchmarks, and the experimental results
show the promising results of our method for action recognition.

key words: low-rank feature, similarity constraint, kernel method, human
action recognition

1. Introduction

Human action recognition is a very active research topic
with many important applications. Many approaches have
been proposed for action recognition[1], [2]. However,
many traditional methods usually depend on accurate actor
segmentation, body tracking or interest point detection. The
low-rank feature proposed in our previous work [3] can well
avoids these intermediate steps. Assuming that there is an
action sequence, we first reshape each frame into a column
vector. Then, the all column vectors will be stacked as the
columns of a data matrix. Finally, the data matrix will be de-
composed by robust principal component analysis to obtain
the low-rank feature of action sequence. The obtained low-
rank feature can well capture the motion information and
remove action background. However the manner of extract-
ing low-rank feature in the work [3] neglects the temporal
information among the action sequence. To overcame this
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shortcoming, we split an entire action sequence into multi-
ple overlapping subsequences, and concatenate the low-rank
features of all subsequences according to their time order.
The concatenated low-rank features naturally fit the dictio-
nary learning, thus we present a novel dictionary learning
model from concatenated low-rank features to recognize ac-
tions.

Recently, many researchers have given attention to dic-
tionary learning [4]-[6]. However, traditional dictionary
learning usually neglects the similarity among the coding
coefficients and have poor performances in dealing with
non-linearly separable data. To overcame these shortcom-
ings, we present a novel similarity constrained discrimi-
native kernel dictionary learning (SCDKDL). We test our
method on KTH, UCF Sports and HMDBS51 datasets, and
experimental results demonstrate the competitive perfor-
mance of our proposed method.

The remainder of the letter is organized as follows: In
Sect. 2, we introduce our proposed approach. In Sect. 3, we
verify the proposed method on three benchmarks. Finally,
we conclude this letter in Sect. 4.

2. Proposed Approach
2.1 Concatenated Low-Rank Features

We first split an action sequence into multiple overlapping
subsequences according to a overlapping ratio 6. After-
wards, we extract the low-rank features of all subsequences.
Then, each low-rank feature will be represented as a feature
vector by accumulated edge distribution histogram (AEDH)
descriptor [3]. The AEDH is specifically designed to de-
scribe the low-rank feature, which counts the edge distribu-
tion of low-rank image transformed from low-rank feature.
Finally, we concatenate all feature vectors into a feature ma-
trix according to their time order. Figure 1 present the illus-
tration of constructing a feature matrix with temporal infor-
mation.

2.2 Proposed Dictionary Learning Model

The similarity constrained can force the coding coefficients
from a same category as similar as possible and that from
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(c)

Fig.1 TIllustration of concatenating low-rank feature. (a) Split original
action sequence. (b) Concatenated low-rank features. (c) Corresponding
features matrix. Arrow Al denotes low-rank feature extraction, and arrow
A2 denotes AEDH representation.

different categories as different as possible, which is con-
ducive to improve the classification performance. Thus, we
add the similarity constrained into our dictionary learning
model and employ kernel method to enhance the ability of
our model in processing non-linearly separable data.

Let X = [X},X5,...,Xc] be a set of training samples
with C action categories, where X; = [x; 1, Xi2, ..., Xix,] and
N; is the number of training samples of the ith action cate-
gory. The x;; € RP€ is the feature matrix of the jth train-
ing sample in the ith category, where P is the length of the
feature vector of each low-rank feature and Q is the num-
ber of the split subsequences. Our goal is learning a shared
dictionary D € RP*X. To facilitate optimization, we fur-
ther use the sparse dictionary model [7] (i.e., D = DyU),
where Dy € RP*K denotes a predefined base dictionary and
U = [uy,us, ... ,ug] € REK is a representation matrix.

Let ¢ : L — H denote a non-linear mapping from low
dimensional space into a higher dimensional space. Then
the mapped X; can be denoted as ¢(X;). The mapped dictio-
nary can be denoted as ¢(D) = ¢(Dy)U. We use the Gaus-
sian kernel to compute the dot product of features x; and x;
in the high-dimensional space, i.e., k(x;, x;) = d(x)Tp(x )=
exp(—A|x; — x j||2). Finally, our proposed dictionary learning
model can be formulated as:

C
1
<U" A", W'> =arg min —Z I6(X;) — $(D)UA,%
W2 L
a
—ZS(B)+ = 2
+5SB) + SVl

C
+ 23 I¥i- B
i=1

s.t. ||¢(D0)uk||% =1, Vk=12,....K (D
where S (B) is defined as:
SB) = D 3 > I bl
i m#F j on

- 167 biall3 2)
)R

In Eq.(1), A; = [ai1,ai2s---,ain,] € RE*Ni are the cod-
ing coefficient matrix of X;. B = [Bl,Bz,.. ,Bcl, B;

[bitsbis....bin] € RN b;; = al Ix € R2, whereIK is
a vector of length K, and its each element is equal to 1/K.
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|W|[2. is a regularization penalty term. ||Y; — WB||% is a clas-
sification error term, where Y; = [y;1,Yi2, .- ., yin.] € RON,
yi; =[0,0,...,1,...,0, 0]” (the nonzero position indicates
the class). W € R€*? is a linear classifier. @, 8 and y are
three scalars controlling the relative contribution of the cor-
responding terms. Note that we constraint B instead of A
in Eq. (2). The reason is that the B is directly related to the
training of the classifier W.

2.3 Optimization Method

The SCDKDL model can be solved in an iterative manner.
Specifically, we iteratively minimize the objection function
over the atom representation matrix U, coding coefficients
matrix A, and linear classifier W until the final optimal val-
ues of them are obtained.

We first initialize U and A. Specifically, we group all
the low-rank features of an action dataset into K clusters by
using k-means algorithm, and set the K centres as the initial
base dictionary Dy. U can be initialized as an identity matrix
Ix«k, and A can be initialized as:

1
< A" >=argmin{fi(4) = ZlI$X) - JDVAI}  (3)

Let the partial derivative of fi(A) equal zero, i.e., % =
—UT¢pT (Do) (@(X) — ¢(Dy)UA) = 0. The initial A° can be
computed as A° = (UT«k(Dy, DoU)~'UT k(Dy, X).

Then we fix U and A, and update W. Here, Eq. (1) can

be rewritten as:

< W' >=arg mui/n{fz(W) = §|IW|I% +

iy - wiRi)
Let 2207 equal zero, i.e., 2207 = BW — (Y - WB)BT = 0
The 0pt1rnal W* = yYBT (BIxxx + yBBT)™!.

Afterwards, we update A atom by atom with U and W
fixed. Here, Eq. (1) can be rewritten as:
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1 2
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The partial derivative of f3(a; ;) can be computed as:
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(+1) _ (0 9f3(aij) .
e Rl e where p is a step

We update a; ; via a;;
length. In the solving process, we use two termination crite-
ria, i.e., the algorithm runs out the maximum iteration num-
ber T or ||a§f;r1) - af,’;II% < € (e is a preset threshold).

Finally, we update U atom by atom with W and A fixed.
Here, Eq. (1) can be rewritten as:

. 1
< U >=argmin Z[l¢(X) = ¢(Do)UAI:

st lpDoyull3 = 1,

We define an intermediate variable ¢()?) = ¢X) -
¢(Do)ur Ay, where u; denotes U discarding the kth column
and Ay is A discarding the kth row. Then Eq.(7) can be
rewritten as:

Vk=1,2,...,K @)

1 —
< up >= argmin{fy(u0) = SlI$X) — HDo)uealz}
st llpDowll3 =1, Yk=1,2,...,K (8)

Where a; denotes the kth row of A. Let its partial

derivative equal to zero, i.e., afg—xk) = —¢T(D0)(¢()?) -

¢(D0)ukaka,{ = 0, then the optimal u; can be computed as
up = — K’l(DO,Do)K(Do,)?)a,{. Considering the constraint

T
akak

term [|¢(Do)uill; = 1, we finally update u; = i Where

llwzll, = 1/u,{K(Do,Do)uk. To maintain the consistent val-

ues of ||¢()?) — ¢(Do)ugarl[> and ||Y — WBJ[%, we also update

*

a; = arlliugll, and W* = i simultaneously.
2.4 Recognition Protocol

Given a new test video v;, we first extract its concatenated
low-rank features x;, and compute the corresponding coding
coefficient matrix a, by a, = (U k(Dg, Do)U)~' U” k(Dy, x,).
Then we further pool the a; into b, = a,TIK. Finally, we
assign v; to the object class by:

identity(v;) = argmax(l;), i=1,2,...,C ©))
where [; € [, and [ = Wb; is the class label vector.
3. Experimental Results

In this section, We evaluate the performance of the proposed
method on KTH and UCF Sports datasets in a leave-one-
out cross validation manner, and on HMDBS51 dataset in the
manner as the method [10].

3.1 Parameter Settings

In our model, the length of a single low-rank feature is nor-
malized to 200 (i.e., P = 200). The parameter of Gaussian
kernel A is set to 0.05. The coefficients a, 5 and y in Eq. (1)
are set to 0.25, 0.1 and 0.3 respectively. In updating A,
the step length p, the maximum iteration number 7 and the
threshold € are set to 0.5, 30 and 0.001 respectively.
Besides, for KTH, the parameters 6, K and Q are set
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to 0.3, 1600 and 100 respectively. For UCF Sports, the pa-
rameters 0, K and Q are set to 0.4, 1000 and 60 respectively.
For HMDBS51, the parameters 6, K and Q are set to 0.4, 1200
and 80 respectively.

3.2 Experiment Results on Three Datasets

Figures 2, 3 and 4 show the confusion matrixs on KTH, UCF
Sports and HMDBS51 datasets respectively. On KTH, the
main confusion occurs between jogging and running. On
UCF Sports, the running and skateboarding are relatively
easy to confuse. On HMDB51, because there are too many
action categories, we can only observe the rough confusion
among action categories. Finally, with our approach, the
overall average accuracies are 98.67% on KTH, 94.67% on
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Fig.4  Confusion matrix on HMDBS51 dataset
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Table 1  Performances (%) of our different models on three datasets
Our model KTH  UCF Sports HMDBS51
Without similarity constraint ~ 92.81 89.33 46.51
Without kernel method 95.65 90 48.37
Without both 89.53 84 45.13
Complete model 98.67 94.67 54.29

Table2  Performances (%) of different methods on KTH and UCF Sports

Method Year KTH  UCF Sports

Zhu et al. [4] 2010  94.92 84.33

Zhang et al. [5] 2012 95.6 87.33

Wang et al. [8] 2013 94.2 88

Zhangetal.[6] 2014  93.8 86.7

Lietal. [9] 2014 96.33 92

Huang etal.[3] 2015 97.32 92.67

Ours 98.67 94.67

Table 3  Performances (%) of different methods on HMDBS51

Method Year HMDBS5I
Kuehne et al. [10] 2011 22.83
Jiang et al. [11] 2012 40.7
Wang et al. [12] 2013 57.2

Lietal. [9] 2014 29.6
Wu et al. [13] 2014 47.1

Huang et al. [3] 2015 49.71
Ours 54.29

UCEF Sports and 54.29% on HMDB51.
3.3 Comparison Experiments

Figure 5 compares the performances of different overlap-
ping ratios on three datasets, which show the effectiveness
of the optimal overlapping ratio 6 (i.e., 8 = 0.3 for KTH,
6 = 0.4 for UCF Sports and HMDBS51).

Table 1 lists the comparison results of our different
models, which demonstrate the effectiveness of our com-
plete model. Tables 2 and 3 present the comparison of our
method with state-of-the-art results on the three datasets. It
can be observed that our method outperforms the compared
methods besides the method [12] on HMDBS51, and achieves
the best performances on KTH and UCF Sports datasets.
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4. Conclusion

In this letter, to obtain the temporal information of low-rank
feature and overcome the shortcomings of traditional dictio-
nary learning model, we present learning a similarity con-
strained discriminative kernel dictionary from concatenated
low-rank features for action recognition. Experimental re-
sults on three benchmarks demonstrate the effectiveness of
our method. In the future, we will investigate novel dictio-
nary learning models to recognize more complex actions.
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