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DNN-Based Voice Activity Detection with Multi-Task Learning

Tae Gyoon KANG†, Nonmember and Nam Soo KIM†a), Member

SUMMARY Recently, notable improvements in voice activity detec-
tion (VAD) problem have been achieved by adopting several machine learn-
ing techniques. Among them, the deep neural network (DNN) which learns
the mapping between the noisy speech features and the corresponding voice
activity status with its deep hidden structure has been one of the most pop-
ular techniques. In this letter, we propose a novel approach which enhances
the robustness of DNN in mismatched noise conditions with multi-task
learning (MTL) framework. In the proposed algorithm, a feature enhance-
ment task for speech features is jointly trained with the conventional VAD
task. The experimental results show that the DNN with the proposed frame-
work outperforms the conventional DNN-based VAD algorithm.
key words: deep neural network, voice activity detection, multi-task learn-
ing

1. Introduction

Voice activity detection (VAD) algorithms have been widely
applied to speech communication systems and front-end
processing modules for the last few decades. Traditional ap-
proaches to VAD problem have usually been designed based
on the assumption of stationary background noise. Recently,
further improvements in VAD problem have been achieved
by adopting several machine learning techniques [1]–[4].
The fundamental idea of these techniques is to consider the
VAD task as a two-class classification problem and learn
the mapping between the noisy speech features and the cor-
responding voice activity status from a huge amount of ex-
emplars.

Compared to the traditional VAD algorithms, machine
learning-based techniques are competitive in two aspects.
First, machine learning-based VAD algorithms do not re-
quire any structural model which should be verified rigor-
ously but only a set of examples of the input-output pairs is
adequate. Second, they can fuse information from a variety
of different features. Fusing various features allows them to
estimate the voice activity status from richer information.

Among a number of machine learning techniques, the
deep neural network (DNN) which learns the mapping be-
tween the noisy speech features and the corresponding voice
activity status with its deep hidden structure has been one
of the most popular techniques. The DNN-based VAD
algorithm outperformed the traditional and other machine
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learning-based VAD algorithms since the DNN is efficient
in learning the complicated inter-dependencies between the
input variables [5].

Though the DNN-based VAD algorithm showed good
performance in matched noise conditions, its performance
sometimes deteriorates when the training and test environ-
ments are not matched with each other. To ameliorate this
performance degradation, the mapping learned by the DNN
should be general enough to cover the possible environmen-
tal mismatches.

In this letter, we propose a novel approach which en-
hances the robustness of DNN with the use of the multi-task
learning (MTL) framework. In the MTL framework, several
related tasks are jointly trained with shared hidden layers
to improve the generalization power of each task [6]–[10].
In the proposed approach, the main task of VAD is jointly
trained with a subsidiary task of feature enhancement.

By employing the feature enhancement task, the DNN
is encouraged to denoise the noisy speech feature before es-
timating the voice activity status, which is useful to main-
tain the VAD performance in mismatched noise conditions.
Experiments performed on Aurora2 database demonstrated
that the DNN trained under the MTL framework is superior
to the conventional DNN-based VAD algorithm.

2. DNN-Based VAD Algorithm with MTL Framework

In this section, we briefly review the conventional DNN-
based VAD algorithm which considers the VAD task as a
two-class classification problem [5]. The MTL framework
for training the DNN will be followed with detailed descrip-
tion.

2.1 A Brief Review on DNN-Based VAD Algorithm

Figure 1(a) shows the structure of the conventional DNN
for the VAD task. The DNN consists of an input layer, a few
hidden layers and an output layer which are fully connected
to their adjacent layers. For the sake of notation simplicity,
the number of hidden layers is denoted as L and the input
and output layers of the DNN are denoted as the 0-th and
(L + 1)-th layers of the DNN, respectively. The input vector
of the DNN is usually given by the noisy speech features.

For the l-th hidden layer, the number of nodes in the
layer is denoted by nl. The nl-dimensional activation vector
vl is defined as follows:

vl = g(al) = g(W lvl−1 + bl) (1)
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Fig. 1 Scheme of the conventional DNN (a) and the MTL-DNN (b) for
the VAD task. The layers in the dotted line in (b) are discarded before the
test stage.

where al, W l, and bl denote the nl-dimensional excita-
tion vector, nl × nl−1-dimensional weight matrix and nl-
dimensional bias vector, respectively, and g(·) represents an
element-wise activation function. In this letter, all hidden
layers of the DNN use the element-wise logistic sigmoid
function which is defined as follows:

σ(al
i) =

1

1 + e−al
i

(2)

where al
i denotes the i-th element of the al. Since the VAD

task is a binary classification problem, the activation vector
of the output layer consists of a single node ẑ which is given
by

ẑ = σ(WL+1vL + bL+1). (3)

Interested readers are referred to [11] for more detail on
DNN.

The DNN-based VAD technique consists of three parts:
pre-training, fine-tuning and test stages. In the pre-training
stage, DNN parameters are initialized using stacked re-
stricted Boltzmann machines trained through greedy layer-
wise unsupervised learning [11]. After the pre-training
stage, the fine-tuning stage which involves stochastic gra-
dient descent and backpropagation is carried out with the
cross-entropy objective function CVAD which is defined as
follows:

CVAD = −zln(ẑ) − (1 − z)ln(1 − ẑ) (4)

where z denotes the actual target output value which equals
1 for active voice and 0 for inactive voice, respectively. In
the test stage, ẑ is estimated from the noisy input features
through the standard feedforward processing and the final
decision to VAD is made according to

Hd =

H1, if ẑ > η,

H0, otherwise.
(5)

where H1 and H0 denote active voice and noise-only hypoth-
esis, respectively, and η is a threshold which is usually set to

0.5.

2.2 MTL Framework for DNN-Based VAD Algorithm

The performance of the DNN-based VAD algorithm with
the conventional training procedure is deteriorated in some
mismatched noise conditions since the mapping learned by
the DNN is not general enough to cover the environmental
mismatches. When the DNN is trained with the conven-
tional training procedure, the DNN can learn the mapping
between the noisy features and the corresponding voice ac-
tivity status in several ways, e.g., relying on trivial charac-
teristics or simply memorizing the training data [9]. Thus
DNNs with these mappings may have difficulties in estimat-
ing voice activity status when there exists severe mismatch
in noise condition.

In this letter, we introduce the MTL framework which
combines the conventional VAD task with a feature en-
hancement task during the training stage in order to ame-
liorate this performance degradation. The DNN with the
proposed MTL framework (MTL-DNN) denoises the noisy
speech features in the shared hidden layers and learns the
mapping between the denoised hidden representation and
the corresponding voice activity status in the separated lay-
ers for the VAD task. The mapping which is learned by the
MTL-DNN is more robust against the environmental mis-
matches since it represents the general denoising function
for the speech features.

Figure 1(b) shows the network structure of the MTL-
DNN where the conventional VAD and feature enhancement
tasks share the lower hidden layers of the DNN. The right
part of this network has the same structure with Fig. 1(a)
which performs VAD while the left part performs feature en-
hancement. Both the left and right parts of the DNN share
the lower hidden layers including the input layer but pro-
duce different types of outputs; left part gives the enhanced
speech features while the right part outputs the voice activity
status. The left part of the network is treated as a subsidiary
DNN, which means that it is used only for training the DNN
parameters and it is removed after training.

Similar to the conventional DNN-based VAD tech-
nique, the MTL-DNN is trained by passing through the pre-
training and fine-tuning stages. In the pre-training stage,
the parameters of the MTL-DNN are initialized by the same
layer-wise unsupervised learning algorithm. In the fine-
tuning stage, the objective function for the feature enhance-
ment task CFE is given by the Euclidean distance between
the target clean feature y and its estimated value ŷ as fol-
lows:

CFE =
∑

i

(ŷi − yi)
2. (6)

The objective function for MTL-DNN training, CMT L is de-
rived by combining CVAD and CFE as given by

CMT L = λCVAD + (1 − λ)CFE (7)

where λ is a trade-off parameter between the VAD and fea-
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ture enhancement tasks.
One important characteristic of the MTL framework

is that it only increases the training complexity. After the
fine-tuning stage, the layers for the conventional VAD task
are preserved while those parts that are relevant to only the
subsidiary task are discarded. In the test stage, the same
feedforward algorithm and decision rule to the conventional
DNN-based VAD algorithm are applied to estimate the voice
activity status.

3. Experiments

3.1 Experiments in Matched Noise Conditions

In order to evaluate the performance of the proposed algo-
rithm, we conducted a set of VAD experiments. In the exper-
iments, the {Airport, Babble, Car, Restaurant, Street, Sub-
way, Train} noisy speech data was taken from the Aurora2
database [12]. Each waveform was sampled at 8 kHz and
the frame length was 25 ms with a frame-shift of 10 ms. The
list of features for the DNN input used in the experiments is
shown in Table 1. We compared the frame level accuracies
of VAD obtained from the proposed algorithm with those
from the conventional DNN-based VAD algorithm [5].

To train the DNNs, a set of noisy speech utterances
with SNRs from -5 to 10 dB were used. 1001 utterances
for each SNR and each noise type were randomly split into
300 utterances of training set, 300 utterances of validation
set and 401 utterances of test set, respectively. The input
features of the DNNs were normalized to have zero mean
and unit variance. The DNNs were implemented using the
Theano neural network toolkit [13].

The DNN with conventional training procedure was
constructed by stacking 2 hidden layers of 1024 nodes.
We ran 30 epochs for pre-training of each hidden layer to
train the DNN. For Gaussian-Bernoulli RBMs, we fixed the
learning rate to 0.001 while for Bernoulli-Bernoulli RBMs
we fixed the learning rate to 0.01. For the fine-tuning stage,
the learning rate started at 0.1. At the end of each epoch,
if the frame accuracy on the development set decreased, the
parameters of the DNN were returned to their values at the
beginning of the epoch and the learning rate was exponen-
tially decayed with a decaying factor of 0.8. This procedure
was continued until the learning rate fell below 0.001. For
both stages, we fixed the mini-batch size to 100.

The MTL-DNN was constructed by stacking one
shared hidden layer and one separated hidden layer for each
task with 1024 nodes each. The clean features for the fea-
ture enhancement task were normalized to have zero mean
and unit variance. The MTL-DNN was trained with the
same training configuration to that of the conventional DNN
except the objective function in the fine-tuning stage was
changed to (7). During the fine-tuning stage, we fixed λ to
0.9.

Tables 2 and 3 show the frame accuracies of the DNNs
with or without the MTL framework in matched noise con-
ditions. From the results, we can see that the proposed al-

Table 1 Feature structures extracted from noisy and clean speech wave-
form.

Feature Dimension Feature Dimension

Pitch 1 MFCC16 20
DFT 16 LPC 12
DFT8 16 RASTA-PLP 17
DFT16 16 AMS 135
MFCC 20 Total 273
MFCC8 20

Table 2 Frame Accuracies (%) of the conventional DNN-based VAD in
matched noise conditions.

SNR (dB)
-5 0 5 10 Average

Street 73.45 81.57 87.22 90.45 83.17
Airport 76.19 84.17 89.89 93.38 85.91

Car 79.18 86.84 90.91 93.74 87.67
Babble 73.57 83.24 89.16 93.00 84.74
Train 76.22 83.98 89.92 93.09 85.80

Restaurant 69.93 80.87 87.78 92.15 82.68
Subway 69.77 79.51 87.39 91.62 82.07
Average 74.04 82.88 88.9 94.49 84.58

Table 3 Frame Accuracies (%) of the MTL-DNN-based VAD algorithm
in matched noise conditions.

SNR (dB)
-5 0 5 10 Average

Street 73.93 81.71 86.95 90.57 83.29
Airport 77.35 84.68 90.10 93.46 86.40

Car 79.60 86.79 91.04 93.92 87.84
Babble 74.72 84.07 89.78 93.28 85.46
Train 75.05 82.89 89.55 93.17 85.17

Restaurant 70.61 81.20 88.14 92.36 83.08
Subway 69.09 78.84 86.91 91.53 81.59
Average 74.33 82.89 88.92 92.61 84.69

gorithm showed slightly better performance than the con-
ventional DNN-based VAD. The performance difference be-
tween the two DNNs in matched noise condition was not
significant since the DNN can learn the mapping between
the noisy speech features and the corresponding voice ac-
tivity status without any denoising function when the back-
ground noises match.

3.2 Experiments in Mismatched Noise Conditions

We also evaluated the performance of the DNNs when
the noises were mismatched between the training and test
phases. In this experiment, the DNNs were trained with
{Airport, Babble, Car, Train} noisy speech data and tested
with {Street, Restaurant, Subway} noisy speech data. For
each SNR and each noise in {Airport, Babble, Car, Train}
data, 600 utterances were assigned to the training set and
401 utterances were assigned to the validation set. For each
SNR and each noise in {Street, Restaurant, Subway} data,
401 utterances were used as the test data.

Tables 4 and 5 show the frame accuracies of the DNNs
with or without MTL framework in mismatched noise con-
ditions. From the results, we can see that the proposed algo-
rithm outperformed the conventional DNN-based VAD al-
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Table 4 Frame Accuracies (%) of the conventional DNN-based VAD
algorithm in mismatched noise conditions.

SNR (dB)
-5 0 5 10 Average

Street 68.84 80.06 87.39 91.37 81.92
Restaurant 62.58 72.43 82.21 89.96 76.80

Subway 57.25 58.83 63.09 70.54 62.43
Average 62.89 70.44 77.56 83.96 73.71

Table 5 Frame Accuracies (%) of the MTL-DNN-based VAD algorithm
in mismatched noise conditions.

SNR (dB)
-5 0 5 10 Average

Street 71.50 81.87 88.40 91.90 83.42
Restaurant 63.18 73.90 84.37 90.94 78.10

Subway 57.66 60.80 67.96 77.85 66.07
Average 64.11 72.19 80.24 86.90 75.86

gorithm. These results show that the MTL framework im-
proves the robustness of the DNN especially in mismatched
noise conditions.

4. Conclusions

In this letter, we have proposed an MTL framework for ro-
bust DNN-based VAD algorithm in mismatched noise con-
ditions. From the results, it has been shown that the pro-
posed algorithm outperformed the conventional algorithm
in mismatched noise conditions. The future work will focus
on employing the MTL framework with a set of tasks which
represent other types of speech information, such as speaker
and phonetic identities.
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