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A Meet-in-the-Middle Attack on Reduced-Round Kalyna-b/2b

Riham ALTAWY†a), Member, Ahmed ABDELKHALEK†b),
and Amr M. YOUSSEF†c), Nonmembers

SUMMARY In this letter, we present a meet-in-the-middle attack on
the 7-round reduced block cipher Kalyna-b/2b, which has been approved
as the new encryption standard of Ukraine (DSTU 7624:2014) in 2015.
According to its designers, the cipher provides strength to several cryptan-
alytic methods after the fifth and sixth rounds of the versions with block
length of 128 and 256 bits, respectively. Our attack is based on the dif-
ferential enumeration approach, where we carefully deploy a four-round
distinguisher in the first four rounds to bypass the effect of the carry bits
resulting from the prewhitening modular key addition. We also exploit
the linear relation between consecutive odd and even indexed round keys,
which enables us to attack seven rounds and recover all the round keys in-
crementally. The attack on Kalyna with 128-bit block has a data complexity
of 289 chosen plaintexts, time complexity of 2230.2 and a memory complex-
ity of 2202.64. The data, time and memory complexities of our attack on
Kalyna with 256-bit block are 2233, 2502.2 and 2170, respectively.
key words: Kalyna, cryptanalysis, meet-in-the-middle attacks, differential
enumeration, DSTU 7624:2014

1. Introduction

Kalyna [1] is an SPN cipher that won the Ukrainian national
public cryptographic competition, which aimed to select a
block cipher to become the new Ukrainian national encryp-
tion standard known as DSTU 7624:2014 [2]. Kalyna sup-
ports block sizes of 128-bit, 256-bit, and 512-bit, and key
sizes of 128-bit, 256-bit, and 512-bit, where the key size
can be equal to or double the block length. In this letter we
will refer to a specific version of the cipher as Kalyna−b/k,
where b and k denote the employed block and key lengths,
respectively. Although the detailed analysis of the resistance
of Kalyna to various attacks has not been described by its de-
signers, they concluded that the cipher is sufficiently secure
against several cryptanalytic methods after rounds five and
six when the block size is 128-bit and 256-bit, respectively
(cf. page 14 of [1], [3]).

Demirci and Selçuk were the first to apply the MitM
attack on AES [4]. They employed a distinguisher in the
middle four rounds and showed that if its input has one byte
that takes all the possible values, then each output byte can
be evaluated as a function of 25 byte parameters. They also
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showed that the values of each output byte corresponding
to the input byte values form an ordered sequence that can
be used as a property to identify the right key guess. The
attack has a high memory complexity, which is required
to store 2200 ordered sequences. Moreover, Dunkelman et
al. addressed the high memory requirements of the attack
in [4] by introducing multisets and differential enumera-
tion [5]. While the use of multisets provides better encoding
of the ordered sequences, differential enumeration reduces
the number of parameters to 16 bytes, which reduces the
memory complexity to 2128. Later on, Derbez et al. [6] uti-
lized the rebound approach [7] to further reduce the number
of parameters to 10 bytes, thus the memory complexity is re-
duced to 280. Moreover, a 9-round attack on AES-192 was
presented by Li et al. in [8].

In this work, we present a MitM attack on seven round
reduced Kalyna-b/2b utilizing the idea of efficient differen-
tial enumeration. Kalyna employs a pre- and post-whitening
key mixing using modulo 264 addition. Accordingly, we de-
ploy a specific four-round distinguisher that covers the first
four rounds, where the active byte is chosen to prevent the
propagation of differences to the neighboring bytes. We also
exploit the linear relation between odd and even indexed
round keys to efficiently recover the last two round keys.
The key schedule of Kalyna is designed to make it computa-
tionally infeasible to retrieve the master key from the round
keys. For that reason, we propose an approach to recover all
the round keys using parameters matching. Employing this
proposed technique, we use the parameters corresponding
to the matching multiset to filter pairs of two consecutive
round keys guesses.

2. Specifications of Kalyna

Our attack targets Kalyna-b/2b, where the size of the key
is double that of the state. Accordingly, in this section, we
give a description of the encryption and round key genera-
tion procedures of Kalyna-b/2b. The encryption procedure
updates an 8 × c-byte state for 14 and 18 rounds, where
c denotes the number of columns in the block state and
is equal to 2 and 4 for the 128 and 256-bit block, respec-
tively. The encryption procedure employs a pre- and post-
whitening stages using modulo 264 addition applied on the
state columns independently. Each round applies the fol-
lowing transformations on the state:
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• SubBytes (SB): A layer of 8-bit substitution boxes.
• ShiftRows(SR): A transformation that cyclically right

shifts the rows of the state. The value of the shift is
given by � i·b

512 �, where i = 0, 1, · · · 7 and b = 128 or 256
denote the row number and state size, respectively.
• MixColumns(MC): A transformation that multiplies

the columns of the state independently by an MDS ma-
trix.
• X: A round key mixing layer consisting of xoring the

state with the round keys.

In the last round, the X transformation is replaced by a post-
whitening modular key addition. In our analysis, we use the
following property of the substitution layer:

Proposition 1: Given two non-zero differences in F256, Δx

and Δy, the average number of solutions for SB(x) ⊕ SB(x ⊕
Δx) = Δy is one.

Key schedule. Even indexed round keys are indepen-
dently evaluated from the master key, K. The key state is
first initialized by a master key dependent value, which un-
dergoes two encryption rounds. Odd indexed round keys are
linearly computed from their previous even indexed round
keys according to the formula: Ki = Ki−1 <<< (b/4 + 24).
For further details regarding the SBoxes, the linear transfor-
mation or the key schedule of other versions, the reader is
referred to [1]. The following notation is used throughout
the letter:

• xi, yi, zi, and wi: the 8 × 2 bytes state after the X or
addition modulo 264, SB, SR, and MC transformations
at round i, respectively.
• xi[ j]: The jth byte of the state xi, where j =

0, 1, · · · , 15, and the bytes are indexed column wise.
• x j

i : The state at round i, and j denotes the order of state
xi within a sequence.

• xi[ j · · · k]: The bytes between the jth and kth positions
inclusive of the state xi.
• Δxi, Δxi[ j]: The difference at state xi and byte xi[ j],

respectively.
• Δ j xi: The difference at state xi, and j denotes the order

of state xi within a set or a sequence.

We measure the memory complexity of our attack in b-bit
Kalyna-b/2b blocks and the time complexity in reduced-
round Kalyna-b/2b encryptions. In the following section,
we give the details of our MitM attack on Kalyna-128/256.

3. A Differential Enumeration MitM Attack on
Kalyna-128/256

The utilized distinguisher is a truncated differential charac-
teristic such that, when a set of input states from a δ-set is
used as its input, the set of a given one byte difference of
the output state forms an ordered sequence, which can be
represented using a multiset. Our middle distinguisher is a
truncated differential characteristic such that, when a set of
input states from a δ-set [9] is used as its input, the set of

a given byte difference of the output state forms an ordered
sequence, which can be represented using a multiset.

Definition 1 (δ-set of Kalyna-128/256): Let a δ-set be a
set of 256 Kalyna-128/256 states where one byte at a par-
ticular state position takes all the 28 possible values and the
rest of the 15 bytes are constants.

Definition 2 (Multisets of bytes): A multiset generalizes
the set concept by allowing elements to appear more than
once. In our case, a multiset of 256 bytes can take as many

as

(
28 + 28 − 1

28

)
≈ 2506.17 different values [5].

We employ a distinguisher in the form of 1 → 8 → 16 →
8 → 4. The distinguisher starts at x0, where byte x0[15]
takes all possible 28 values and ends at z4, where we eval-
uate the multiset of one out of the four-byte differences in
z4[0 · · · 3]. We specifically locate the distinguisher in the
first four rounds, which enables us to exploit the linear re-
lation between the last two round keys and attack seven
rounds. Additionally, we choose the active byte at the be-
ginning of the distinguisher in the most significant byte of
the second column to prevent the propagation of the differ-
ence to the neighboring bytes, which happens due to the
carry propagation resulting from the modular addition key
mixing. On the other hand, placing the distinguisher in the
middle as in the traditional setting [4] allows us to attack
six rounds only. Additionally, we must deal with the prob-
abilistic carry propagation in the analysis of the first round,
which reduces the path probability, and hence both the data
and time complexities of the attack are increased. It should
be noted that while our distinguisher ends with four active
bytes, which increases the path probability when we evalu-
ate the multiset from the ciphertext side, this distinguisher
does not affect the memory complexity because we store
a multiset of the differences in only one of the four active
bytes. In other words, since each byte out of the four active
bytes at the end of the distinguisher forms an ordered se-
quence, we can choose any of them to distinguish between
key candidates as long as the probability of error is negligi-
ble. We denote the δ-set at state x0 by δs, where

δs = {x0
0, x

1
0, · · · , x255

0 }.
We also denote the set of 255 differences at bytes z4[0 · · · 3]
by ds, where

ds = {Δ1z4[0 · · · 3], Δ2z4[0 · · · 3], · · · , Δ255z4[0 · · · 3]},
and Δlz4[0 · · · 3] = z0

4[0 · · · 3] ⊕ zl
4[0 · · · 3], for l =

1, 2, · · · , 255. The multiset at z4 is evaluated by the
knowledge of the values of 37 bytes, Δly0[15], 8 bytes at
x1[8 · · · 15], 16 byte at x2, 8 bytes at x3[0 · · · 3], x3[12 · · · 15],
and 4 bytes at x4[0 · · · 3]. However, by employing the re-
bound based differential enumeration technique [6], we de-
duce that if x0

0 of the δ-set belongs to a pair of plain-
texts that conforms to the differential path in Fig. 1, then
the corresponding multiset can be computed by the knowl-
edge of 25 byte parameters only. These parameters are
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Fig. 1 Differential path used in the attack on the 7-round reduced
Kalyna-128/256.

Δy0[15], x1[8 · · · 15], x3[0 · · · 3], x3[12 · · · 15], x4[0 · · · 3],
and Δz4[0 · · · 3], where Δy0[15] and Δz4[0 · · · 3] denote the
differences generated by a conforming message pair.

3.1 Attack Procedure

The attack is composed of precomputation and online
phases. The online phase is further divided into data col-
lection and key recovery phases.

Precomputaion phase: In this phase, we build a
lookup table that contains 2200 multisets of the 255 differ-
ence in one of the byte differences in z4. Using the re-
bound approach, we iterate over the 2200 possible values of
the 25 bytes Δy0[15], x1[0 · · · 7], x3[0 · · · 3], x3[12 · · · 15],
x4[0 · · · 3], and Δz4[0 · · · 3] to construct 2200 multisets of dif-
ferences. The procedure can be summarized as follows:

• For each of the 2200 values of Δy0[15] ‖ x1[0 · · · 7] ‖
x3[0 · · · 3], x3[12 · · · 15] ‖ x4[0 · · · 3] ‖ Δz4[0 · · · 3],
evaluate the value of x2 as follows:

1. Linearly propagate Δy0[15] forward to evaluate
Δx1[0 · · · 7].

2. Using x1[0 · · · 7], deduce Δx2.
3. Compute Δy3[0 · · · 3], Δy3[12 · · · 15] using
Δz4[0 · · · 3] and x4[0 · · · 3].

4. Using x3[0 · · · 3], x3[12 · · · 15], evaluate Δy2.
5. Find x2, such that SB(x2) ⊕ SB(x2 ⊕ Δx2) = Δy2.

According to proposition 1, we get one solution
on average.

• Having the value of x2, we can now compute the
255 unordered differences Δiz4[0 · · · 3] in ds for i =

1, 2, · · · , 255 as follows:

1. Set Δiy0[15] = i. As the SBox is a permutation
over F256, the sequence of Δy0[15] corresponds to
the unordered sequence of Δx0[15] of the delta-
set.

2. Linearly propagate Δiy0[15] forward and compute
the value of Δi x1[0..7].

3. Using the value of x1[0 · · · 7] and Δi x1[0 · · · 7],
pass the substitution layer with certainty and eval-
uate Δi x2.

4. Using the value of x2 and Δi x2, evaluate
Δi x3[0 · · · 3], Δi x3[12 · · · 15].

5. Propagate Δi x3[0 · · · 3], Δi x3[12 · · · 15] with the
knowledge of x3[0 · · · 3], x3[12 · · · 15] through the
Sboxes to evaluate Δi x4[0 · · · 3].

6. Using x4[0 · · · 3] and Δi x4[0 · · · 3], compute
Δiz4[0 · · · 3].

• Now we get 255 4-byte differences in z4 correspond-
ing to the 255 values of the δs, so we pick one active
byte position from the four active bytes in z4 and rep-
resent its 255 difference values using a multiset. In
other words, we represent a sequence of one out of
the four generated byte differences in z4, (i.e., Δz4[ j],
j = 0, 1, 2, 3) using a multiset and store it in a hash
table.

Data collection In this stage, we query the encryption
oracle with structures of chosen plaintexts to get enough
pairs such that one of them conforms to the whole trun-
cated differential path. The employed structure is a set of
256 plaintexts, which are equal in the least significant 15
bytes and the most significant byte takes all the possible 256
values. For each structure, we variate the most significant
state byte and set the remaining 15 bytes to a constant value,
thus one active byte in the plaintext propagates to one ac-
tive byte in x0 with certainty. A structure results in about
28×(28−1)

2 ≈ 215 pairs. While a chosen plaintext pair fol-
lows the forward path from the plaintext to state x0 with
certainty, the probability that its corresponding ciphertext
pair conforms to the backward path from the ciphertext to
state z4 is 2−96. This probability is due to the 16 → 8 and
8 → 4 transitions through the inverse MixColumn transfor-
mation in rounds six and five, respectively. Accordingly, it
is expected that when trying 296 plaintext pairs, a cipher-
text pair corresponding to one of them follows the path in
Fig. 1. Since, each structure provides 215 pairs, one requires
about 281 structures. All in all, we ask for the encryption of
281×28 = 289 chosen plaintexts to get the required 296 pairs.

Key recovery: In this stage, for each plaintext pair
(P0, P′0), we pick P0 and construct the rest of the 255 plain-
texts in its delta-set by Pi = P0 ⊕ i for i = 1, 2, · · · , 255.
Then, we get their corresponding 256 ciphertexts Ci for
i = 0, 1, · · · , 255, partially decrypt them using guesses for
K7 and K6 to get the 255 differences Δiz4[0 · · · 3], evalu-
ate the multiset and match it with the precomputed table.
In this stage, we exploit the linear relation between even
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and odd indexed round keys to identify the right K7 and
K6 by guessing the 128-bit K7 only and getting K6 candi-
dates for free. The probability of a false match is given by
2200+96+128−467.6 = 2−43.6 which is negligible. Note that the
probability of randomly having a match in the table is 2−467.6

(and not 2−506.7 which is the numbers of different values a
multiset can represent) because the number of ordered se-
quences associated to a multiset is not constant (the proof is
provided in section 4 of [10]).

Attack Complexity: The memory requirement of the
attack is given by 2200 × 512/128 = 2202 128-bit blocks.
The data complexity is 289 chosen plaintexts. The time
complexity of the offline phase is due to performing 2200

partial encryptions of 256 messages, which is equivalent
to 2200+8 × 5/7 ≈ 2208 encryptions. The time complex-
ity of the online phase to recover K7 and K6 is given by
296+128+8 × 2/7 ≈ 2230.2.

3.2 Recovering the Remaining Round Keys

Even indexed round keys are generated independently from
the master key through 2 rounds of encryption, which makes
the recovery of the master key computationally infeasible.
For this reason, we recover all the eight round keys using the
plaintext pair and its corresponding ciphertext pair, which
resulted in a match in the precomputed table and the set of
parameters used in the offline computation of the matching
multiset. In the precomputation phase, we store the values of
the parameters x1[0 · · · 7], x2, x3[0 · · · 3], x3[12 · · · 15], and
x4[0 · · · 3] along with the multiset in the table entries. Then,
we perform incremental filtering to recover the remaining
round key. In other words, we guess K5 and evaluate x4.
It is expected that 296 candidates survive parameters match-
ing. Then, we evaluate K4 candidates from K5 and filter
the 296 (K5,K4) candidates by computing x3 and compar-
ing it with the retrieved parameters. We repeat this in-
cremental filtering with K3,K2,K1, and K0 candidates un-
til one guess for the six round keys remains. The mem-
ory complexity is slightly increased since we store an ad-
ditional 36 bytes in each entry and accordingly is given by
2200 × (512+ 36× 8)/128 = 2202.64 128-bit blocks. The time
complexity of this stage is equal to 2128 × 1/7 + 296 × 2/7 +
2160 ×3/7+232 ×4/7+2128 ×1/7 ≈ 2159. Consequently, the
online time complexity of the attack remains the same and
is given by 2230.2.

4. Analysis of the Attack on Kalyna-256/512

Our MitM attack can also be applied on Kalyna-256/512,
where the state has four columns. The attack steps are sim-
ilar to the steps on Kalyna-128/256 except the precompu-
tation phase. As depicted in Fig. 2, the distinguisher ends
in two active bytes in z4. Accordingly, we only need 21
byte parameters, which are Δy0[31], x1[16 · · · 23], x3[0, 1],
x3[26, 27], x3[20, 21], x3[14, 15], x4[0, 1], and Δz4[0, 1]. We
assume the independence of both the ordered sequences
generated by individual bytes and their corresponding mul-

Fig. 2 Differential path used in the attack on the 7-round reduced
Kalyna-256/512.

tisets. Accordingly, we store two multisets of differences
in the two active bytes of z4 so that the probability of false
matches is very low. Hence, the memory complexity of the
attack is 2168 × 1024/256 = 2170. The data complexity is
determined according to the path probability, which is equal
to 2−240. Thus the data complexity of the attack is given by
2225+8=233 chosen plaintexts. The time complexity of the of-
fline phase is due to performing 2168 partial encryptions on
256 messages, which is equivalent to 2168+8×5/7 ≈ 2176 en-
cryptions. The time complexity of the online phase is given
by 2240+256+8×2/7 ≈ 2502.2. The probability of a false match
is given by 2168+240+256−467.6×2 = 2−271.2, which is negligible.

5. Conclusion

We have presented a MitM attack on the new Ukranian stan-
dard encryption algorithm Kalyna reduced to seven rounds.
According to the security analysis performed by the design-
ers of the cipher, Kalyna is resistant to various cryptanalytic
methods after rounds five and six of the 128-bit and 256-
bit block versions, respectively. Our results are considered
the first steps towards the public cryptanalysis of the new
Ukrainian encryption standard.
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