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LETTER

Unsupervised Learning of Continuous Density HMM for
Variable-Length Spoken Unit Discovery

Meng SUN†a), Member, Hugo VAN HAMME††, Yimin WANG†, and Xiongwei ZHANG†, Nonmembers

SUMMARY Unsupervised spoken unit discovery or zero-source
speech recognition is an emerging research topic which is important for
spoken document analysis of languages or dialects with little human anno-
tation. In this paper, we extend our earlier joint training framework for un-
supervised learning of discrete density HMM to continuous density HMM
(CDHMM) and apply it to spoken unit discovery. In the proposed recipe,
we first cluster a group of Gaussians which then act as initializations to
the joint training framework of nonnegative matrix factorization and semi-
continuous density HMM (SCDHMM). In SCDHMM, all the hidden states
share the same group of Gaussians but with different mixture weights. A
CDHMM is subsequently constructed by tying the top-N activated Gaus-
sians to each hidden state. Baum-Welch training is finally conducted to
update the parameters of the Gaussians, mixture weights and HMM tran-
sition probabilities. Experiments were conducted on word discovery from
TIDIGITS and phone discovery from TIMIT. For TIDIGITS, units were
modeled by 10 states which turn out to be strongly related to words; while
for TIMIT, units were modeled by 3 states which are likely to be phonemes.
key words: spoken unit discovery, unsupervised HMM learning, nonnega-
tive matrix factorization, language acquisition

1. Introduction

Unsupervised spoken unit discovery or zero-source speech
recognition is an emerging research topic which is impor-
tant for spoken document analysis of languages or dialects
with little human annotation [1]. Supervised training of an
automatic speech recognition (ASR) system normally re-
quires a large collection of transcribed speech data, where
continuous density hidden Markov models (CDHMM) with
Gaussian mixture models (GMM) are conventional tools
to represent each spoken unit. Forced alignment between
acoustic features (e.g. MFCC vectors and their probabili-
ties emitted by the states of CDHMM) and the word or
phoneme transcriptions are conducted in conventional EM
algorithms to estimate the observation and transition param-
eters in HMMs. However, in languages or dialects for which
it is difficult to hire experts to make abundant annotations,
one has to develop new techniques to train an ASR system
with limited labeled data. This is the basic motivation for
the recent work on unsupervised spoken unit discovery.

The key research objective is to discover the invariant
speech structures in a weakly supervised way or in an unsu-
pervised way in its extreme case, much like an infant learn-
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ing a language [2]. Thanks to the repetition of the invari-
ant speech structures, one can deploy the clustering methods
from machine learning to discover them. One of the difficul-
ties is that due to the lack of proper segmentation conven-
tional vector-based clustering approaches cannot be imple-
mented directly to deal with the variable length of the units
in continuous speech. Thus, one has to consider the seg-
mentation and clustering jointly. Segmental dynamic time
warping (DTW) was applied to spectrograms and Gaussian
posteriorgrams to find repeated structures in [3] and [4], re-
spectively. Because the same unit uttered by different speak-
ers can have very different spectral properties, a character-
ization of spoken units by a raw spectrogram will not gen-
eralize well over speakers. Therefore, in light of the suc-
cessful implementation of GMMs in ASR, Gaussians were
adopted to represent spoken units [4]. Besides using DTW,
pre-segmentation was first implemented to extract short seg-
ments and spectral clustering of Gaussian components was
subsequently utilized to cluster the mean vectors of the short
segments into spoken units in [5]. However, a GMM itself
cannot model the sequential nature of speech. Additional
dynamic models should be introduced to work together with
the GMM. In [6] an HMM was utilized to improve the clus-
tering results of a GMM for spoken unit discovery, where
ad hoc labels generated by the learned HMMs from the last
iteration were treated as transcriptions to update the HMM
parameters in the current iteration, as presented in [7].

Due to the large number of unknown parameters, the
initialization of the GMM/HMM has a strong impact on
its performance. DTW was utilized as initialization of
HMMs to alleviate the problem of poor local optima in
[8]. A Dirichlet process [9] and a hierarchical Dirichlet
process [10] were integrated in the joint learning of GMM,
HMM and speech units to model the Zipfian distribution of
speech units. Without any prior segmentation, the algorithm
was reported to be able to extract phone-like units which had
strong correspondence with the English phones.

In this paper, we extend our recently proposed ap-
proach, joint training of nonnegative matrix factorization
(NMF) and discrete density HMMs (DDHMM) [11], to
the case with semi-continuous density (SCDHMM) and
continuous density (CDHMM). Compared to DDHMM,
SCDHMM and CDHMM have more powerful representa-
tion abilities. However, their unsupervised learning is more
difficult due to the great number of unknown parameters in-
volved, as the learning algorithm could be trapped into poor
local optima.
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2. Preliminaries on HMM for Acoustic Modeling

In conventional ASR, the time-domain speech signal is
mapped onto frames which are described by their spectral
parameters, O1, . . . ,OTn where Ot denotes a frame vector
such as MFCC+Δ+ΔΔ and Tn is the number of frames in the
utterance n. An HMM for spoken unit discovery and speech
recognition on sequences {O1, . . . ,OTn } (where 1 ≤ n ≤ N
and N is the total number of sequences) is configured by
connecting a number of left-to-right sub-HMMs with non-
emitting beginning and ending states. Initially, we will as-
sume that each unit is modeled by one sub-HMM. However,
in view of pronunciation variation modeling in speech, it is
conceivable that multiple sub-HMMs are used to model a
single unit (e.g. word or phoneme). An HMM is character-
ized by the following elements [12].

• The hidden states of the r-th sub-HMM {S r,1, . . . , S r,Lr }
where Lr is the number of states in the sub-HMM. So
K =
∑R

r=1 Lr is the total number of hidden states and R
is the number of sub-HMMs. Lr is selected as a con-
stant L in this paper.
• The sequence of hidden states {Q1,Q2, . . . ,QTn } which

are aligned to {O1,O2, . . . ,OTn } of the n-th training se-
quence with length Tn.
• The transition matrix TK×K whose element Tk,k′ is the

conditional probability of transition from S k to S k′ :
Pr(Qt+1 = S k′ |Qt = S k), ∀t. An HMM consisting of R
sub-HMMs has a special structure with only non-zero
probabilities on the diagonal/sub-diagonal locations
{T(r−1)L+l′,(r−1)L+l′ ,T(r−1)L+l,(r−1)L+l+1} and cross-unit lo-
cations {TrL,(r′−1)L+1}, where 1 ≤ r, r′ ≤ R and 1 ≤ l ≤
L − 1 and 1 ≤ l′ ≤ L.

• An emission model ak(Ot) to measure the similarity be-
tween the hidden state S k and the observation Ot.

To summarize the above description, the HMM is de-
scribed by a group of parameters Λ = {ak(.),T}. According
to the configuration of the emission probability ak(Ot), we
consider two types of HMMs as follows.

2.1 Semi-Continuous Density HMM

In semi-continuous density HMM (SCDHMM), a Gaussian
mixture model (GMM) is utilized to compute the likelihood
of observation Ot given state S k,

ak(Ot) =
∑

m

Am,kG(Ot;µµµm,ΣΣΣm) (1)

where A is the Gaussian weight matrix of the states,µµµm is the
mean of the m-th Gaussian and ΣΣΣm is the covariance matrix
of the m-th Gaussian which is diagonal here. The Gaussians
are shared across all the hidden states in SCDHMM.

2.2 Continuous Density HMM

In a continuous density HMM (CDHMM), every hidden

state S k has its own Gaussian mixture model (GMM) to
compute the likelihood of observation Ot,

ak(Ot) =
∑

m

A(k)
m G(Ot;µµµm.k,ΣΣΣm,k) (2)

where A(k)
m is the Gaussian weight vector of the state S k,

µµµm,k and ΣΣΣm,k are the mean and covariance matrix of the m-
th Gaussian of the k-th state, respectively. The Gaussians
are tied to a specific hidden state.

3. Nonnegative Matrix Factorization for (S)CDHMM
Learning

Before introducing the nonnegative matrix factorization
(NMF) approach to SCDHMM learning, we first represent
each utterance as its Gaussian posteriorgram,

X1, . . . ,XTn (3)

where Xt contains the posterior probabilities of frame Ot on
the Gaussians. By computing and accumulating the Gaus-
sian posterior probabilities,

Tn−1∑

t=1

Pr(X(n)
t = Gm, X

(n)
t+1 = Gm′ )

=

Tn−1∑

t=1

Pr(X(n)
t = Gm)Pr(X(n)

t+1 = Gm′ ), (4)

we obtain the co-occurrence matrix of Gaussians of the n-th
utterance. By vectorizing, i.e. stacking the columns of the
co-occurrence matrix, one utterance is represented by a M×
M-dimensional vector where M is the number of Gaussians.
For all the training utterances, we obtain a matrix VM×M,N .

3.1 NMF on Gaussian Co-Occurrences to Extract Repeat-
ing Spoken Units

NMF has good performance on finding repeating patterns.
We thus utilize it to find repeating spoken units. The process
is described by the following optimization problem where
the columns of W represent the discovered spoken units in
their Gaussian co-occurrence form and H stores the pres-
ence probability of the units in the utterances.

{W,H} = argmin
W,H

KLD(V||WH), (5)

where KLD refers to the Kullback-Leibler divergence which
fits well to the count data. This model has been successfully
discovered word-like units as reported in [11].

However, for short unit discovery, e.g. phones, one
should better first cut the whole utterance into short seg-
ments and treat each segment as an artificial utterance to
conduct the above process. Once the segments are short, the
activation matrix H should be constrained to be sparse since
only a few of the spoken units appear in each short segment,
which is helpful to alleviate the confusion between spoken
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units in a long utterance. Thanks to the zero-locking prop-
erty of NMF, the segments do not have to be accurately lo-
cated in the non-silence region, which is an advantage com-
pared to HMM where strict beginning/ending frames are re-
quired.

3.2 NMTF Links NMF Outputs to Initialize the SCDHMM

Subsequently, each column of W is matricized (inverse
of vectorization) to a square co-occurrence matrix C. If
the data is generated by a HMM, this matrix is structured
C ≈ ATAT . Hence, the mixture weight matrix A and tran-
sition matrix T of each sub-HMM can be estimated from a
nonnegative matrix tri-factorization (NMTF) [11].

{A,T} = argmin
A,T

KLD(C||ATAT ), (6)

In a DDHMM, the discrete emission probabilities are esti-
mated as A in this process. Here, only the Gaussian weight
matrix A and the transition matrix T of the sub-HMM is ob-
tained, while the Gaussian means and co-variance matrices
are kept fixed.

Subsequently, the sub-HMMs are initialized by the
Gaussians from the input (e.g. from unsupervised k-means
clustering or GMM training), the Gaussian mixture weights
and the transition probabilities of the hidden states both es-
timated from the NMTF. Baum-Welch training is then con-
ducted to update all the parameters involved.

3.3 Updated the Gaussian Posteriors in NMF by the Out-
puts of SCDHMM

In Baum-Welch training, Gaussian means and co-variances
are updated. So in the next cycle we have to update the
Gaussian posteriorgram in (3) by computing the posterior
probabilities of the frames on the updated Gaussians. By
sequentially executing the steps in Sect. 3.1, Sect. 3.2 and
Sect. 3.3, one cycle of SCDHMM learning is completed.
Since NMF and NMTF can be interpreted as nonnegative
Tucker decomposition (NTD) and to be consistent with the
terminology in [11], we name this algorithm as the alterna-
tive training of NTD and SCDHMM (NTD.Alt.SCD.BW in
short in Fig. 1 where “SCD.BW” refers to the BW training
of the SCDHMM).

3.4 CDHMM Refinement of SCDHMMs

In state-of-the-art ASR, CDHMM with tied Gaussians for
each state has shown to have strong ability to represent the
probabilistic distribution of a steady part of the speech sig-
nals in a speaker independent way. However, the training
of CDHMM directly from input observations is severely af-
fected by the initialization. Our experiments showed that
random initialization of CDHMM shrank to one sub-HMM
while leaving the remaining sub-HMMs unused. We thus
utilize the above SCDHMM to initialize the CDHMM.

For each hidden state in the yielded SCDHMM, take

the top-N Gaussians with the highest weights and these
Gaussians are subsequently assigned to this state. In this
process, the same Gaussian tied to different states will be
regarded as different Gaussians in the following CDHMM
training. Baum-Welch learning is again adopted to update
the involved parameters.

4. Experiments and Results

4.1 Word Discovery on TIDIGITS

The proposed recipe was evaluated on word discovery from
TIDIGITS to see if it outperforms the discrete density ver-
sion of [11]. We utilized an analysis window with 25ms
long and 10ms shift. Mean purity of the discovered units
is again taken as the evaluation metric. The purity is com-
puted from the confusion matrix of the units and the ground
truth words. An utterance is first decoded into a unit se-
quence using the Viterbi algorithm. The confusion matrix
is then constructed by counting the overlapping frames be-
tween the decoded unit sequence and the ground truth word
sequence from a supervised speech recognizer. The confu-
sion matrices from unsupervised training of SCDHMM with
two different random initializations (attempts) are illustrated
in Fig. 1. Since a continuous density is used to describe the
emission density of a hidden state, a relatively small num-
ber M = 500 of Gaussians are used in the above experi-
ments instead of 1000 Gaussians in our previous work [11].
R=25 sub-HMMs each of which has L = 10 hidden states
are created and initialized randomly. The BW training uses
25 EM passes, while 5 NMF-NMTF passes and 5 EM passes
are applied in the proposed recipe. Compared to the results
reported in [11], sub-HMMs discovered by the BW train-
ing of CDHMM have higher purity than the ones from the
BW training of discrete density HMM. The proposed recipe
yields the best results regarding the pure units correspond-
ing to digits. Our experiments also showed that the improve-
ment from SCDHMM to CDHMM (5 Gaussians per state,
thus 1250 ones in total) was marginal, so the performance
of CDHMM was not included here.

4.2 Phoneme Discovery on TIMIT

To extract phones (not words) from the TIMIT dataset we
utilized a finer analysis window with 20ms long and 5ms
shift. For the NMF learning stage, every utterance was cut
into small segments by using a 100-frames window and with
50-frames shift. A segment was represented in its Gaussian
posteriorgram and its co-occurrence vector forms a column
of the NMF data matrix. The number of sub-HMMs was
set as R=125 to give sufficient complexity to model male
and female versions of the 61 phonemes. To treat the large
number of segments (around 60k) on a personal computer,
online NMF learning was adopted instead of the batch learn-
ing [13], where the epoch size was 4000 (segments). The
number of NMF training pass was 2, i.e. the training data
was covered twice. Subsequently, NMTF was computed to
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Fig. 1 Confusion matrices on TIDIGITS from the BW training and the
proposed recipe. For DDHMM results, the reader is referred to Fig. 5 of
[11] for comparison, where the highest purity from DDHMM is 88.6.

Table 1 Results on TIMIT dataset with all the speakers.

Method Purity
Purity

NMI
NMI

(no sil.) (no sil.)

Phn. Cls
BW 44.1 40.1 35.4 35.5

NTD.Alt.SCD.BW 44.3 41.0 37.2 35.0
NTD.Alt.CD.BW 44.0 42.2 36.0 36.4

Phones
BW 33.2 42.4 38.2 34.4

NTD.Alt.SCD.BW 34.2 43.1 39.0 34.5
NTD.Alt.CD.BW 33.4 44.5 38.6 35.7

Table 2 Results on the utterances of female speakers of TIMIT only

Method Purity
Purity

NMI
NMI

(no sil.) (no sil.)

Phn. Cls
BW 46.7 42.9 38.5 39.9

NTD.Alt.SCD.BW 47.5 43.7 39.8 38.8
NTD.Alt.CD.BW 47.1 44.8 39.0 40.4

Phones
BW 36.3 44.1 40.8 38.1

NTD.Alt.SCD.BW 37.6 45.4 42.0 37.8
NTD.Alt.CD.BW 37.7 46.0 41.3 40.0

yield emission matrices and transition matrices of 125 sub-
HMMs. Every sub-HMM has 3 states.

The purity and normalized mutual information
(NMI) [6] of the confusion matrix between the discov-
ered units and the phoneme (or phoneme classes) were
reported in Table 1 and 2 where Purity (no sil.) and
NMI (no sil.) refer to the corresponding metrics after re-
moving the units strongly related to silence. Phoneme
classes refers to the re-calculated results by collapsing the
61 phones into 39 phoneme classes [6]. From the tables,
we see an improvement of the model’s performance from
the BW/NTD.Alt.SCD.BW to NTD.Alt.CD.BW by approx-
imating the state-of-the-art results obtained by using a pre-
segmentation [6].

5. Conclusion

In this paper, we extended our recently proposed unsuper-
vised learning algorithm of discrete density HMM to contin-
uous HMM. The algorithm was able to discover units of dif-
ferent length by adjusting the number of hidden unit and the

discovered units had strong correspondence to the ground
truth units. The algorithm performed pretty well on the
small vocabulary dataset TIDIGITS by reaching high purity
of the spoken units. On the performance on the phoneme
dataset TIMIT, the proposed model approximated the state-
of-the-art results which used a pre-segmentation and spec-
tral clustering of Gaussians. Additional constraints from a
few human labels are likely to improve the purity.
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