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SUMMARY In our previous work [12], [13], we introduced general-
ized feed-forward shift registers (GF2SR, for short) to apply them to secure
and testable scan design. In this paper, we introduce another class of gener-
alized shift registers called generalized feedback shift registers (GFSR, for
short), and consider the properties of GFSR that are useful for secure scan
design. We present how to control/observe GFSR to guarantee scan-in and
scan-out operations that can be overlapped in the same way as the conven-
tional scan testing. Testability and security of scan design using GFSR are
considered. The cardinality of each class is clarified. We also present how
to design strongly secure GFSR as well as GF?SR considered in [13].

key words: design-for-testability, scan design, generalized feedback/feed-
forward shift registers, security, scan-based side-channel attack

1. Introduction

Scan design is a powerful design-for-testability (DFT) tech-
nique that offers high controllability and observability over
a chip and yields high fault coverage [1]. However, it also
allows reverse engineering, which contradicts security. It is
essential to protect secrete data from side-channel attacks
and other hacking schemes [2]. Hence, it is important to
find an efficient DFT approach that satisfies both security
and testability. Various approaches to secure scan design
have been reported [3]-[9]. We have reported a secure and
testable scan design approach by using extended shift reg-
isters called “SR-equivalents” that are functionally equiva-
lent but not structurally equivalent to shift registers [10] and
“SR-quasi-equivalents” [11]. The proposed approach only
replaces part of the original scan chains to SR-equivalents
or SR-quasi-equivalents, which satisfy both testability and
security of digital circuits. This method requires very little
area overhead and no performance overhead.

We then introduced a new class of extended shift regis-
ters called generalized feed-forward shift registers (GF>SR,
for short) by relaxing the condition of the SR-equivalents
and SR-quasi-equivalents and considered the testability and
security of GF?SR[12]. In [13], we introduced a more se-
cure concept called strong security such that no internal state
of strongly secure circuits leaks out, and presented how to
design such strongly secure GF?SRs.
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In this paper, we introduce another class of general-
ized shift registers called generalized feedback shift registers
(GFSR, for short), and consider the properties of GFSR that
are useful for secure scan design. We present how to con-
trol/observe GFSR to guarantee scan-in and scan-out opera-
tions that can be overlapped in the same way as the conven-
tional scan testing. Testability and security of scan design
using GFSR are considered. The cardinality of each class
is clarified. We also present how to design strongly secure
GFSR as well as GF?SR considered in [13].

2. Generalized Shift Registers

In our previous works[10], [11], to organize secure and
testable scan design, we introduced five types of linear struc-
tured shift registers called inversion-inserted SR ( P2SR), lin-
ear feed-forward SR (LF’SR), linear feedback SR (LFSR),
inversion-inserted linear feed-forward SR (IPLF?SR) and
inversion-inserted linear feedback SR (PLFSR). In [12], we
then introduced an extended class called generalized feed-
forward shift registers (GF*SR), shown in Fig.1(a). In
this figure, fy, fi,..., fr are arbitrary logic functions. Fig-
ures 1 (b) and (c) show examples of 3-stage GF?SRs, R; and
R;. Generally, for any GF?>SR with k flip-flops, the output 7
at time ¢ + k behaves in accordance with the following equa-
tion.

Wt +k) = x()® Fx(t+ 1), x(t +2), ..., x(t + k).

Here, we introduce another class of generalized shift reg-
isters called generalized feedback shift registers (GFSR),
shown in Fig. 2 (a). Figures 2 (b) and (c) show examples of
3-stage GFSRs, R; and R4. The difference between GFSR
and GF?SR is whether the structure is feedback type or feed-
forward type. From the feedback structure of Fig. 2 (a), we
can see that for any GFSR with k flip-flops, the output z at
time ¢ + k behaves in accordance with the following equa-
tion.
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(c) GF?SR, R,

(b) GF2SR, R;

Fig.1  Generalized feed-forward shift register (GF>SR).
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Fig.4  Symbolic simulation of Ry.
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Fig.2  Generalized feedback shift register (GFSR).
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Fig.3  Symbolic simulation of R3.

2t + k) = x(0) ® f(y1(0), y2(0), - .., yi(1)).

Consider a 3-stage GFSR, R3, given in Fig. 2 (b). By using
symbolic simulation, we can obtain the output z(t + 3) =
x(1) ® y1 (Hy2 (1) ® y2(Hy3(¢) as shown in Fig. 3.

3. How to Control/Observe GFSRs

For a generalized shift register, GFSR/GF?SR, the follow-
ing two problems are important in order to utilize the gen-
eralized shift register as a scan shift register in testing.
One problem is to generate an input sequence to transfer
the circuit into a given desired state. This is called state-
Jjustification problem. The other problem is to determine
the initial state by observing the output sequence from the
state. This is called state-identification problem. In [12], we
showed the following properties of GF>SR.

Let C be any circuit of GF2SR with k flip-flops, (1) for
any internal state of C a transfer sequence (of length k) to
the state (final state) can be generated only from the con-
nection information of C, independently of the initial state,
and (2) any present state (initial state) of C can be iden-
tified from the input-output sequence (of length k) and the
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Fig.5 GFSR, Rs.

connection information of C.

The above properties can be easily seen from the feed-
forward structure of GF2SR. In contrast, the feedback struc-
ture of GFSR derives the following properties.

Let C be any circuit of GFSR with k flip-flops, (1) for
any internal state of C a transfer sequence (of length k) to
the state (final state) can be generated from a given ini-
tial state and the connection information of C, and (2) any
present state (initial state) of C can be identified only from
the output sequence (of length k) and the connection infor-
mation of C, independently of the initial state and the input
sequence.

Consider a GFSR, R4, of Fig.2(c). Figure 4 shows
the result of symbolic simulation. As illustrated in the fig-
ure, we can derive equations to obtain an input sequence
(x(1), x(t + 1), x(r + 2)) that transfers R4 to the desired fi-
nal state (y;(¢r + 3),y>(¢t + 3),y3(¢t + 3)). The transfer se-
quence depends on the initial state (y;(7), y2(t), y3(f)). Simi-
larly, we can derive equations to determine uniquely the ini-
tial state (y1(?), y2(?), y3(¢)) only from the output sequence
(z(®), z(t + 1), z(t + 2)).

4. Application to Scan Testing

A scan-designed circuit under consideration consists of a
single or multiple scan chains and the remaining combina-
tional logic circuit (kernel). A scan chain can be regarded as
a circuit consisting of a shift register with multiplexers that
select the normal data from the combinational logic circuit
and the shifting data from the preceding flip-flop. Here, we
replace the shift register with a GFSR. However, to reduce
the area overhead as much as possible, not all scan chains
are replaced with extended scan chains. Only parts of scan
chains necessary to be secure, e.g. secret registers, are re-
placed with GFSRs, and the size of the extended scan chains
is large enough to make it secure. The delay overhead due
to additional logic and Exclusive-OR gates influences only
scan operation, and hence there is no delay overhead for nor-
mal operation.

For a GFSR, the initial state can be identified only from
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the output sequence. However, the information of not only
the final state but also the initial state is needed to gener-
ate a transfer sequence. Hence, at first of scan testing, it is
necessary to identify the initial state by observing the out-
put sequence. After knowing the initial state of the scan
testing, both state-justification and state-identification can
be performed simultaneously, i.e., both scan-in and scan-out
operations can be overlapped.

From the above observation, we can easily generate
scan-in and scan-out sequences such that both scan-in and
scan-out operations can be overlapped and hence testing can
be done in the same way as the conventional scan testing.
The test sequence is of the same length as the conventional
scan design. There is no need to change traditional ATPG
algorithm though a logic implication process is needed only
for the extended shift register after ATPG.

In [12], we also showed that GF?SR can be used for se-
cure scan path design. Comparing the properties of GF>?SR
and GFSR mentioned in the previous section, we can see
the following. As for state-justification, the scan-in oper-
ation for GF?SR is easier than GFSR. On the other hand,
as for state-identification, the scan-out operation for GFSR
is easier than GF*SR. Although there are those differences,
both can be used for secure scan path design.

5. Security of GFSRs

When we consider a secure scan design, we need to assume
what the attacker knows and how he can potentially make
the attack. Here, we assume that the attacker does not know
the detailed information in the gate-level design, and that
the attacker knows the presence of test pins (scan injout,
scan, and reset) and modified scan chains. However, he does
not know the structure of extended scan chains. Based on
this assumption, we consider the security to prevent scan-
based attacks.

A circuit C with a single input, a single output, and k
flip-flops is called scan-secure if the attacker cannot deter-
mine the structure of C.

Consider two different structured 3-stage GFSRs, Ry
and Rs, shown in Figs. 2 (c) and 5. From the results of sym-
bolic simulation, we can see their outputs z(z + 3) are the
same, i.e., z(t +3) = x(1) @y (t) ®y1(t)y,(¢). Therefore, their
input/output behaviors after time ¢ + 3 are the same. On the
other hand, their internal state behaviors are not the same
because of their different structures. Hence one cannot con-
trol/observe internal states unless one knows the structure of
the circuit, which means one cannot determine the structure
of the circuit only from input/output behaviors, and hence
they are scan-secure.

Next, let us consider the security level by clarifying the
cardinality of the class of GFSRs. The security level of the
secure scan architecture based on GFSR is determined by
the probability that an attacker can guess right the structure
of the GFSR used in the scan design, and hence the attack
probability approximates to the reciprocal of the cardinality
of the class of GFSR.
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Fig.6  Cover relation among classes.

Table1 Cardinality of each class.
Class # of circuits in the class
I>SR 28T

LFZSR 2k(k+l) 2 _ 1

LFSR 2K+ _
IZLFZSR (2k(k+l) 2 _ 1)(2k+1 -1
IZLFSR (2k(k+1) 2 _ 1)(2k+1 _ 1)
GF?SR 20T -1
GFSR 20%-D

The class of GF2SR covers I2SR, LF?SR, and I?’LF2SR.
The class of GFSR covers I2SR, LFSR, and I’LFSR. So,
we have the covering relation as shown in Fig. 6. In [11],
we showed the cardinality of each class of linear structured
circuits (ISR, LF?SR, LFSR, I’LF?SR and I’LFSR). In
[12], we showed the cardinality of the class of GF?SR is
22“"=1)_1. Obviously, the cardinality of the class of GFSR
is the same as GF?SR. The summary of the cardinality of
each class is shown in Table 1.

6. How to Design Strongly Secure GFSRs

Consider again the GFSR, Rj3, of Fig. 2 (b) and the result of
symbolic simulation shown in Fig. 3. When y(¢) = y»(¢) =
0, it holds that (x(¥), x(r + 1), x(t + 2)) = (y3(t + 3), y2(t +
3),y1(t + 3)), i.e., any input sequence (x(¢), x(t + 1), x(¢ + 2))
that transfers R3 to the desired final state (y(t + 3), yo(¢ +
3), y3(t + 3)) becomes (y3(t + 3),y2(t + 3),y,1(t + 3)) when
y1(t) = y»(¢) = 0. This means R3 behaves in the same way as
a shift register during scan-in operation when y;(f) = y»(¢) =
0, and hence it is not secure when the attacker regards Rj
as a shift register and tries to initialize it. Similarly, when
y2(t) = 0 ory3(r) = 0, it holds that (y,(2), y2(1), y3(1)) = (z(r+
2), z(t+1), z(?)), i.e., the output sequence (z(1), z(t+1), z(t+2))
equals to (y3(1), y2(1), y1(1)) when y,(t) = 0 or ys(1) = 0.
This means R3 behaves in the same way as a shift register
during scan-out operation when y,(#) = 0 or y3(¢) = 0, and
hence it is not secure when the attacker regards Rj as a shift
register and tries to observe a present state of R3. In this way,
it may happen that the attacker succeeds in initializing the
contents of R3 and/or observing the contents of R3, though
he/she does not notice them.

To avoid such leakage, we introduced a new secure
concept called strong security as follows [13]. Consider a
circuit C with a single input, a single output, and k-flip-
flops. C is called to be scan-in secure if for any internal
state of C a transfer sequence (of length k) to the state (final
state) is always different from that of a k-stage shift register.
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C is called to be scan-out secure if any present state (ini-
tial state) of C can be identified from the output sequence
that is always different from that of a k-stage shift register.
C is called to be strongly secure if C is scan-in secure and
scan-out secure.

In [13], we presented a method for making a given
GF?SR strongly secure. Here, we consider GFSR and
present how to make a given GFSR strongly secure.

Consider a GFSR C with input x, output z, and k flip-
flops y1,y>2, ..., Yk, such that the most left XOR gate is lo-
cated between y, and yp.; as shown in Fig.7 (a) and the
most right XOR gate is located between y,_; and y, as
shown in Fig. 7 (b). If there is no flip-flop between a pri-
mary input x and the most left XOR gate, we need to add
a dummy flip-flop. As illustrated in Fig. 7 (a), if there is at
least one NOT gate between a primary input x and flip-flop
Yp, the final state of (yy,ys,...,yx) of Cis always different
from that of a shift register. Hence, we can see C is scan-
in secure. Similarly, as illustrated in Fig. 7 (b), if there is at
least one NOT gate between flip-flop y, and a primary out-
put z, the output sequence of C is always different from that
of a shift register, and hence C is scan-out secure.

Method for making scan-in secure:

(1) If there is no flip-flop between a primary input and the
most left XOR, add a dummy flip-flop between them.

(2) If there is no NOT gate between a primary input x and
flip-flop y, (see Fig. 7 (a)), insert at least one NOT gate
between them.

Method for making scan-out secure:

(1) If there is no NOT gate between flip-flop y, and a pri-
mary output z (see Fig.7 (b)), insert at least one NOT
gate between them.

As mentioned at the beginning of this section, GFSR,
R3, shown in Fig. 2 (b) is neither scan-in secure nor scan-out
secure. So, we apply both methods for making R; scan-
in secure and scan-out secure. R4 shown in Fig.2(c) is a
result by inserting two NOT gates. It is obvious that the

The most left XOR

At least one NOT
in this interval

(a) Design for scan-in secure GFSR
The most right XOR

At least one NOT
in this interval

(b) Design for scan-out secure GFSR

Fig.7  Design for strongly secure GFSR.
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modified circuit is scan-in secure and scan-out secure and
hence strongly secure.

7. Conclusion

In our previous work, we reported a secure and testable scan
design approach by using extended shift registers called SR-
equivalents [10] and SR-quasi-equivalents [11], and gener-
alized feed-forward shift registers (GF*SR)[12]. In this pa-
per, we introduced another class of generalized shift regis-
ters called generalized feedback shift registers (GFSR), and
considered the properties of GFSR that are useful for secure
scan design. We presented how to control/observe GFSR to
guarantee scan-in and scan-out operations that can be over-
lapped in the same way as the conventional scan testing.
Testability and security of scan design using GFSR were
considered. The cardinality of each class was clarified. We
also presented how to design strongly secure GFSR as well
as GF?SR considered in [13].
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