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Low-Rank and Sparse Decomposition Based Frame Difference
Method for Small Infrared Target Detection in Coastal Surveillance

Weina ZHOU†,††a), Xiangyang XUE††, Nonmembers, and Yun CHEN††, Member

SUMMARY Detecting small infrared targets is a difficult but impor-
tant task in highly cluttered coastal surveillance. The paper proposed a
method called low-rank and sparse decomposition based frame difference
to improve the detection performance of a surveillance system. First, the
frame difference is used in adjacent frames to detect the candidate object
regions which we are most interested in. Then we further exclude clutters
by low-rank and sparse matrix recovery. Finally, the targets are extracted
from the recovered target component by a local self-adaptive threshold.
The experiment results show that, the method could effectively enhance
the system’s signal-to-clutter ratio gain and background suppression factor,
and precisely extract target in highly cluttered coastal scene.
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1. Introduction

Small infrared target detection plays an important role in
infrared search and track system, and numerous methods
have been put forward in the past decades to improve the
detection accuracy and robustness. However, the detection
performance is still poor in situations like coastal surveil-
lance, which always has a low signal-to-clutter ratio (SCR)
due to highly cluttered and complex background or spot-
like noises [1]–[4]. Recently, low-rank and sparse matri-
ces recovery theory (LRMR) [5], [6] has been proposed and
applied in target detection and tracking. And it has been
proved more effective compared with conventional baseline
methods in some situations [7]. These LRMR methods can
be mainly classified into two kinds. The first kind detects
the small infrared target in a single frame [7]–[9], but its per-
formance could degrade rapidly when the SCR is low. The
other kind [5], [6], [10]–[12] makes use of the information
of all the frames in a video sequence, the moving targets
could then be more easily detected in a low-SCR scene. Un-
fortunately, the computation amount and time of this kind of
method are huge, and it makes sense on the assumption that
the targets are uniformly located at the scene [10].

In this paper, we detect the small infrared target in
coastal surveillance video sequence using a method called
low-rank and sparse decomposition based frame difference
(LRSFD). Compared to other target detection method based
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on LRMR, our algorithm has three main advantages. First,
profiting from getting information from multi-frames, the
method could be effectively used in highly cluttered situa-
tions. Second, the method detects the target based on the
result of frame difference, thus it not only has high stability
but also requires much less computation amount and time
than the existing methods based on video sequence. Third,
the LRSFD method uses a local self-adaptive threshold and
frame difference to improve the result of sparse recovery,
so it could greatly enhance the signal-to-clutter ratio gain
(SCRG) and the background suppression factor (BSF).

2. LRMR Theory and Its Application in Small Target
Detection

LRMR is a theory stretching from compressive sensing and
sparse represent theory. It supposes an ideal image of size m
x n as a low-rank matrix, whose rank-r is much smaller than
its size, i.e. r << min(m, n). But, in fact, the entries of the
matrix are often corrupted by errors or noises, making the
image not a low-rank matrix any more. To recover the low-
rank character of the image, we regard every image as the
combination of a low-rank matrix and a noise matrix, which
could be represented in Eq. (1).

D = A + E. (1)

In which, D is a corrupted image, A is an ideal low-
rank image, E represents arbitrary noise and errors caused
by various factors. Recently, it has been shown that, un-
der surprisingly broad conditions, one can exactly recover
A and E from D via Robust Principal Component Analysis
(RPCA) to solve the following convex optimization prob-
lem [6].

min
A,E
= ‖A‖∗ + λ‖E‖1, subject to D = A + E. (2)

Here, ‖·‖∗ represents the nuclear norm of a matrix, ‖·‖1
denote the norm-1, and λ is a positive weighting parameter,
which could be utilized to enhance the detection stability
and suppress random noise. It is on this premise that the
problem of small target detection could also be resolved as
recovery of a low-rank matrix and a noise matrix.

Generally speaking, frames of coastal surveillance
video consist of three components: the background, the
small target, and various kinds of noises. As found by refer-
ence [7]–[9], patches of the background are commonly ap-
proximately context correlated with each other even though
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the pixel distance between two patches may be large in an
image. Thus, background could be assumed as a low-rank
matrix. Nevertheless, the foreground target is always small
with respect to the whole image, which makes the target
as a sparse noise matrix. Thus the small target detection
task is intrinsically a typical problem of recovering a low-
rank component (A) and a sparse component (E) from a
data matrix (D). This model has been improved efficient in
small target detection under the assumption that the random
noise is i.i.d. and its Frobenius norm is smaller than some σ
(σ > 0) [7]. That is

‖D − A − E‖F ≤ σ. (3)

Where, ‖ · ‖F is the Frobenius norm. However, not all
kinds of noises can satisfy the Eq. (3) in reality, thus we pro-
posed LRSFD method to further improve detection rate of
small infrared target in highly cluttered and complex back-
ground.

3. Sparse Coding Based Frame Difference (LRSFD)
Method

In coastal surveillance, targets which we focus on usually
have three essential characteristics: sparse, in motion, and
bright in a local region. And as can been seen from Fig. 1,
they would usually been affected by noises such as clutters
of sea (marked as “F”), sensor noises (marked as “N”), spot-
like noises (marked as “P”), coastline (marked as “L”) and
buildings or other kinds of objects in the coast (marked as
“B”). Since not all the disturbances satisfy the definition of
noise in LRMR, the recovery of sparse matrix is not always
efficient in small target detection. Therefore, we classify
these disturbances into three types according to characteris-
tics of targets themselves: the stationary disturbances, ran-
dom noises of i.i.d., and dynamic and irregular sea clutter.
And methods of frame difference, LRMR and a local self-
adaptive threshold are integrated successively to distinguish
all types of noises from targets in different manners.

The LRSFD method of small target detection proposed
in this paper is shown in Fig. 2. First, image difference be-
tween adjacent frames is executed to exclude the stationary

Fig. 1 A typical frame in costal surveillance video.

disturbances for obtaining the candidate moving target re-
gions we are most interested in. Second, accelerated prox-
imal gradient (APG) solution is applied to the frame differ-
ence result to estimate the sparse target matrix E. Finally,
targets are extracted by a local self-adaptive threshold by
excluding left clutter noises based on their brightness char-
acteristics. The algorithm is explained in detail as follows.

Frame difference: image difference between adjacent
frames is a fundamental preprocessing measure to segment
out the motion objects for further analysis. It is espe-
cially efficient to exclude stationary disturbances like spot-
like noises, coastline and buildings or other kinds of objects
in the coast. Since these noises are commonly complex and
irregular, but relative stationary in a short period. The mo-
tion objects D can then be obtained by Eq. (4), which is the
absolute value of the frame difference.

D = |I(t) − I(t − 1)|. (4)

Here, I(t) is the tth frame, I(t-1) is the frame before the
I(t). | ∗ | is the absolute operation. And D is the motion
objects including potential targets.

APG based LRMR: As explained in Sect. 2, targets
are sparse, and much different from low-rank background
and random noise of i.i.d. Thus LRMR method is then used
to recover target sparse matrix, extracting more accurate tar-
get regions E from D. Algorithm 1 (APG algorithm) is ap-
plied to solve the convex optimization problem of Eq. (2).
It has a relative good accuracy and velocity among all the
RPCA algorithms. In this paper, we choose λ = 0.1,

Fig. 2 The flow chart of LRSFD.
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Algorithm 1: Robust PCA via Accelerated Proximal Gradient
Input: small infrared target frame D ∈ Rm×n, λ
1. A0 = A−1 = 0; E0 = E−1 = 0, t0 = t−1 = 1;
μ0 > 0; μ = δμ0; 0 < η < 1.

2. while not converged do
3. YA

k = Ak +
tk−1−1

tk
(Ak − Ak−1), YE

k = Ek +
tk−1−1

tk
(Ek − Ek−1).

4. GA
k = YA

k − 1
2 (YA

k + YE
k − D).

5. (U, S ,V) = svd(GA
k ), Ak+1 = US μk

2
[S ]VT .

6. GE
k = YE

k − 1
2 (YA

k + YE
k − D).

7. Ek+1 = S λμk
2

[GE
k ].

8. tk+1 =
1+
√

4t2k+1

2 ; μk+1 = max(ημk, μ).
9. k = k + 1.

10. end while
output: A = Ak; E = Ek

μ0 = ‖D‖2, δ = 10−5, η = 0.99.
Local self-adaptive threshold: To further eliminate

the disturbances of sea clutter other than the random noise,
we finally use a local self-adaptive threshold to extract the
target by using its brightness characteristics. That is, the tar-
get whose size may vary from 2x2 to 16x16 pixels, is always
the brightest in a local region. In this paper, the size of the
local region is set as 50x50 pixels, and the horizontal and
vertical sliding step are set as 10 pixels, which are proved
efficient in detection [7]. The local self-adaptive threshold
is described in Eq. (5):

E(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (E(x, y) ≥ αMmax)
& (Mmax − Mmin > β)

0 others
(5)

Where Mmax is the maximum pixel value of the local
region. And Mmin is the minimum pixel value of the local
region which is bigger than zero. α is the threshold coeffi-
cient and set as 0.6, β is the threshold for judging the existing
of the target. And no target is expected to exist in the frame
when the difference value of the Mmax and Mmin is smaller
than β. In the paper, we choose β = 40.

4. Experiment Work

To demonstrate the effectiveness of the LRSFD method,
experiments are executed using a real and representative
highly cluttered coastal surveillance video sequence with 48
frames. And all experiments were implemented by Matlab
software on a PC with 2-GB RAM and 2.60-GHz Intel-i5
processor.

Figures 3 and 4 are randomly selected two adjacent
frames in the video sequence, and their corresponding gray
distributions. From Fig. 4, we can see that, the SCR of the
frames is very low. The image difference result of the two
adjacent frames is shown in Fig. 5. We can find out that
those disturbances like spotlike noises, coastline and build-
ings are successfully eliminated. Figure 6 is the recovered
target and background result by LRMR method, the vast ma-
jority of the sea clutter and random noises have been ex-

Fig. 3 Two adjacent frames in a real video sequence.

Fig. 4 The gray distributions of the frames in Fig. 3.

Fig. 5 The image difference result of the adjacent frames (color reversed
for observation).

Fig. 6 The recovered target and background component by LRMR (color
reversed for observation).

Fig. 7 The target image (color reversed for observation) and its gray
distribution.

cluded as low-rank background. Finally, by applying the
local threshold in recovered sparse image, the target could
be obviously distinguished in Fig. 7.

The detection capability of our proposed method is
also compared to other baseline methods like TopHat [13],
Maxmean, Maxmedian [14], and Infrared patch-image (IPI)
model [7] which is a representative method based on LRMR.
The SCRG and BSF are employed for objective evaluation.
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Table 1 Comparison of small target detection methods.

Detection
Tophat

Maxmean Maxmedian
IPI LRSFD

methods (5*5) (5*5)
SCRG 16.53 28.51 35.95 38.16 88.60
BSF 18.94 65.77 82.05 130.96 150.48

The SCRG and BSF are two common filter metrics [15].
They are respectively defined by Eqs. (6) and (7).

S CRG =
(S/C)out

(S/C)in
. (6)

BS F =
Cin

Cout
. (7)

Where, S is the target amplitude and C is the clutter
standard deviation within the original frame or the processed
frame. And the average results of all frames in the above
mentioned video sequence are used for comparison.

From the Table 1, we can see that, the LRSFD method
has better performance than other detection methods under
the same circumstance.

Never mind of the influence of other process in PC, the
total processing time of the proposed method is 41.35s. Al-
though the processing time is less than that of the traditional
LRMR method of video performed in the same PC environ-
ment, it is far from meeting the realtime requirement. The
reason mainly lies in the non-optimized APG algorithm in
LRMR, which occupies more than 99% of the total compu-
tation. Thus what we will do next is to optimize the APG
algorithm and propose a FPGA based acceleration scheme.

5. Conclusion

In this paper, we present the LRSFD method for infrared
small target detection in highly cluttered coastal surveillance
video sequence. It is the first time that the sparse image re-
covery has been integrated with frame difference and local
self-adaptive threshold. The proposed method takes full ad-
vantage of the integrated algorithm according to the different
types of noises, and obtains better performance in detection
capability compared with TopHat, Maxmean, Maxmedian
and typical LRMR based method. Thus the method is ex-
pected to be effectively used in infrared surveillance system
for coastal safety in future.
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